JPH0674454B2 - Method for producing thick high-strength steel sheet with excellent low temperature toughness and weldability - Google Patents

Method for producing thick high-strength steel sheet with excellent low temperature toughness and weldability

Info

Publication number
JPH0674454B2
JPH0674454B2 JP19367286A JP19367286A JPH0674454B2 JP H0674454 B2 JPH0674454 B2 JP H0674454B2 JP 19367286 A JP19367286 A JP 19367286A JP 19367286 A JP19367286 A JP 19367286A JP H0674454 B2 JPH0674454 B2 JP H0674454B2
Authority
JP
Japan
Prior art keywords
rolling
temperature
toughness
less
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP19367286A
Other languages
Japanese (ja)
Other versions
JPS6350424A (en
Inventor
岳史 都築
幸男 冨田
良太 山場
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP19367286A priority Critical patent/JPH0674454B2/en
Publication of JPS6350424A publication Critical patent/JPS6350424A/en
Publication of JPH0674454B2 publication Critical patent/JPH0674454B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は低温靱性,溶接性に優れた厚手高張力鋼板の製
造方法に関し、特に、加熱条件,圧延条件並びにその後
の冷却速度を制御して、板厚方向に均一で且つ優れた低
温靱性を有する厚手高張力鋼板を製造する方法に関する
ものである。
Description: TECHNICAL FIELD The present invention relates to a method for producing a thick high-strength steel sheet excellent in low-temperature toughness and weldability, and in particular, controlling heating conditions, rolling conditions and subsequent cooling rates. The present invention relates to a method for producing a thick high-strength steel sheet which is uniform in the sheet thickness direction and has excellent low temperature toughness.

〔従来の技術〕[Conventional technology]

近年、エネルギー開発が極地化,深海化しており、使用
される海洋構造物は年々巨大化が著しく、また効率的な
エネルギー輸送のため、砕氷タンカーなどの使用が必要
とされる。そして、これらに使用される鋼材は板厚が厚
くかつ非常に低温靱性が優れたものが要求される。とこ
ろが板厚が増すと板厚方向の材質差が増し、板厚中心部
の機械的性質が他の部分より劣る。特に、低温靱性の劣
化が大きい。更に、板厚中心部は拘束応力が最大とな
り、破壊の起点となりやすいので、板厚中心部まで均一
で優れた低温靱性を有することが必要である。
In recent years, energy development has become polar and deep sea, and the marine structures used have become extremely large year by year, and it is necessary to use ice-breaking tankers for efficient energy transportation. The steel material used for these is required to have a large plate thickness and excellent low temperature toughness. However, as the plate thickness increases, the material difference in the plate thickness direction increases, and the mechanical properties of the center part of the plate thickness are inferior to other parts. In particular, the low temperature toughness is greatly deteriorated. Further, since the constraint stress is maximized at the center of the plate thickness and the starting point of fracture is likely to occur, it is necessary to have uniform and excellent low temperature toughness even at the center of the plate thickness.

また、これらの巨大構造物に対する安全性確保は重要な
問題であり、溶接割れ性,溶接部継手靱性等の向上のた
めに炭素当量を低く抑えることが必要である。
Also, ensuring safety for these huge structures is an important issue, and it is necessary to keep the carbon equivalent low in order to improve weld cracking resistance and weld joint toughness.

近年、炭素当量を減少して高強度・高靱性を得る手段と
して、制御圧延と制御冷却を組み合せた材質改善技術が
種々検討され、提案されており、例えば提案されたもの
として特開昭57−169019号公報記載のものが公知であ
る。しかしながら、前記公報記載の技術はラインパイプ
や一般造船材を対象とし、加えて板厚50mm以下の比較的
薄いものを対象とした技術であり、このように板厚の薄
い領域では板厚方向の材質はもともと比較的均一であ
る。
In recent years, as a means for reducing the carbon equivalent to obtain high strength and high toughness, various material improvement techniques combining controlled rolling and controlled cooling have been studied and proposed, and for example, as a proposed method, Japanese Patent Laid-Open No. 57- The one described in Japanese Patent No. 169019 is known. However, the technique described in the above publication is intended for line pipes and general shipbuilding materials, and is also a technique for relatively thin plates with a thickness of 50 mm or less. The material is relatively uniform by nature.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

しかるに、板厚が50mm以上に厚くなると板厚方向に材質
差が大きくなり、特に板厚中心部の靱性は著しく低下す
る。この原因の一つに、従来の加熱,圧延方法では、第
2図に示すように加熱炉で900〜1150℃に加熱後粗圧延
を経て仕上圧延に至る間に鋼板温度は時間と共に低下
し、板厚中心(1/2t)部と表面直下では温度差が大き
く、とりわけ未再結晶域の圧延を開始する際に、表面と
板厚中心部の温度差が大きくなり、板厚中心部は再結晶
したり、未再結晶域高温側での圧延になってしまうこと
が考えられる。このため、最善の未再結晶域低温側で圧
延が達成できている1/4t部などに比べ、板厚中心部の靱
性が低い。一方、圧延温度を低下させれば板厚中心部の
低温靱性の改善は可能であるが、表面側の温度が低下し
すぎ、変態して出来たフエライトを加工することにな
り、表面側の低温靱性が低下するとともに、板厚方向の
ミクロ組織も不均一であり、板厚全体が均質で優れた低
温靱性を有する技術開発が望まれていた。
However, when the plate thickness is increased to 50 mm or more, the material difference in the plate thickness direction becomes large, and the toughness particularly at the center of the plate thickness is significantly reduced. One of the causes for this is that in the conventional heating and rolling method, as shown in FIG. 2, the steel sheet temperature decreases with time during heating to 900 to 1150 ° C. in a heating furnace and then rough rolling to finish rolling. There is a large temperature difference between the center of the plate thickness (1 / 2t) and immediately below the surface, and especially when starting rolling in the non-recrystallized region, the temperature difference between the surface and the center of the plate thickness becomes large, and It is conceivable that crystallization will occur and rolling will occur on the high temperature side of the non-recrystallized region. Therefore, the toughness at the center part of the plate thickness is lower than that at the 1/4 t part where rolling can be achieved at the low temperature side of the best non-recrystallization region. On the other hand, if the rolling temperature is lowered, the low temperature toughness at the center of the plate thickness can be improved, but the temperature on the surface side will be too low and the transformed ferrite will be processed. With the decrease in toughness, the microstructure in the plate thickness direction is also non-uniform, and it is desired to develop a technology having a uniform whole plate thickness and excellent low temperature toughness.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は上記の如き問題点を有利に解決し、板厚50mm以
上、引張強さ50kgf/mm2以上の厚手高張力鋼板において
板厚方向全域にわたり低温靱性の均質化と向上が可能な
製造方法の提供を目的とする。
The present invention advantageously solves the above problems, a plate thickness 50 mm or more, a tensile strength 50 kgf / mm 2 or more in a thick high-tensile steel plate, a manufacturing method capable of homogenizing and improving the low temperature toughness over the entire plate thickness direction For the purpose of providing.

上記目的を達成するため本発明は (1)重量比にて C:0.03〜0.20%,Si:0.05〜0.60%,Mn:0.50〜2.50%,Nb:
0.001〜0.10%,Al:0.005〜0.1%を含有し、残部Feおよ
び不可避不純物からなる鋼を900〜1150℃に加熱し、中
間段階厚さまで圧延して一旦圧延を中断して冷却するか
または圧延せずスラブ状態のまま冷却し表面温度がAr3
を割る前に該鋼をAr3+150℃〜Ar3の温度に均一に保熱
し、次いでAr3以上で圧下率50〜70%の圧延を行い、圧
延後、冷却速度1〜10℃/secで250〜600℃まで冷却し、
引き続き空冷することを特徴とする低温靱性と溶接性に
優れた厚手高張力鋼板の製造方法。
In order to achieve the above object, the present invention provides (1) by weight ratio C: 0.03 to 0.20%, Si: 0.05 to 0.60%, Mn: 0.50 to 2.50%, Nb:
Steel containing 0.001 to 0.10%, Al: 0.005 to 0.1% and the balance Fe and unavoidable impurities is heated to 900 to 1150 ° C and rolled to an intermediate stage thickness, and the rolling is temporarily interrupted and cooled or rolled. Without cooling, the surface temperature is Ar 3
Heated uniformly coercive the steel to a temperature of Ar 3 + 0.99 ° C. to Ar 3 before dividing, and then subjected to rolling reduction ratio 50% to 70% in the Ar 3 or more, after rolling, at a cooling rate 1 to 10 ° C. / sec Cool to 250-600 ℃,
A method for producing a thick high-strength steel sheet excellent in low-temperature toughness and weldability, which is characterized by continuous air cooling.

(2)重量比にて C:0.03〜0.20%,Si:0.05〜0.60%,Mn:0.50〜2.50%,Nb:
0.001〜0.10%,Al:0.005〜0.1%を基本成分とし、更
に、Cr:1.0%以下,Mo:1.0%以下,V:0.1%以下,Cu:2.0%
以下 のうち1種又は2種以上を含有し更に Ni:4.0%以下,Ti:0.15%以下,Ca:0.01%以下 のうち1種又は2種以上を含有し残部Feおよび不可避不
純物からなる鋼を900〜1150℃に加熱し、中間段階厚さ
まで圧延して一旦圧延を中断して冷却するか、または圧
延せずスラブ状態のまま冷却し表面温度がAr3を割る前
に該鋼をAr3+150℃〜Ar3の温度に均一に保熱し、次い
でAr3以上で圧下率50〜70%の圧延を行い、圧延後、冷
却速度1〜10℃/secで250〜600℃まで冷却し、引き続き
空冷することを特徴とする低温靱性と溶接性に優れた厚
手高張力鋼板の製造方法。
(2) By weight, C: 0.03 to 0.20%, Si: 0.05 to 0.60%, Mn: 0.50 to 2.50%, Nb:
0.001 to 0.10%, Al: 0.005 to 0.1% as a basic component, Cr: 1.0% or less, Mo: 1.0% or less, V: 0.1% or less, Cu: 2.0%
A steel containing one or more of the following, Ni: 4.0% or less, Ti: 0.15% or less, Ca: 0.01% or less, and one or more of the following, with the balance Fe and inevitable impurities. 900 to 1150 was heated to ° C., intermediate stage or cool suspends rolled once rolled to a thickness of, or the cooling surface temperature remains slab state without rolling the steel before dividing the Ar 3 Ar 3 +150 ℃ ~ Ar 3 to maintain a uniform temperature, then rolled with Ar 3 or more at a rolling reduction of 50 ~ 70%, after rolling, cooling at a cooling rate of 1 ~ 10 ℃ / sec to 250 ~ 600 ℃, followed by air cooling A method for producing a thick high-strength steel sheet excellent in low-temperature toughness and weldability, which is characterized by:

を要旨とするものである。Is the gist.

前述したように、従来、板厚50mmを越えるような厚手鋼
板においては板厚方向に材質差、特に低温靱性の差が生
じるのは圧延温度を管理する制御圧延の宿命であり、や
むを得ない現象と考えられて来た。
As described above, conventionally, in a thick steel plate having a thickness of more than 50 mm, a material difference in the plate thickness direction, particularly a difference in low temperature toughness, is the fate of control rolling for controlling the rolling temperature, which is an unavoidable phenomenon. It has been considered.

しかしながら、発明者等はこの板厚方向の靱性差の要因
につき更に深く追求した結果、圧延時の板厚各部位の塑
性変形、圧延による温度変化等よりも、圧延前の板厚方
向温度分布が最も影響していることを見出した。そし
て、スラブの状態で冷却後あるいは若干の圧延後保熱を
行なって制御圧延前に生じた表面〜板厚中心の温度差を
なくし均一にすることにより、その後の制御圧延−制御
冷却後において板厚方向に均質なミクロ組織、機械的性
質が得られることを知見し、本発明はかかる知見にもと
づいて構成したものである。
However, as a result of further deep pursuit of the factors of the difference in toughness in the plate thickness direction, the inventors have found that the temperature distribution in the plate thickness direction before rolling is rather than the plastic deformation of each part of the plate thickness during rolling, the temperature change due to rolling, etc. We found that it had the most influence. Then, after the cooling in the state of the slab or after some rolling, heat retention is performed to eliminate the temperature difference between the surface and the center of the plate thickness that occurs before the controlled rolling to make it uniform, and thereafter the controlled rolling-the plate after the controlled cooling. It was found that a uniform microstructure and mechanical properties can be obtained in the thickness direction, and the present invention is configured based on such knowledge.

まず、本発明における成分限定理由を述べる。First, the reasons for limiting the components in the present invention will be described.

Cは安価に強度を上昇させる元素で強度確保のため0.03
%以上必要であるが、多量に添加すると鋼の靱性および
溶接性を害するので上限を0.20%とした。
C is an element that increases the strength at a low cost, and 0.03 is used to secure the strength.
%, But if added in a large amount, the toughness and weldability of steel are impaired, so the upper limit was made 0.20%.

Siは鋼の脱酸のため0.05%以上必要であるが、多くなる
と溶接性を害するので上限を0.60%とする。
Si is required to be 0.05% or more for deoxidizing the steel, but if it increases, it deteriorates the weldability, so the upper limit is made 0.60%.

Mnは強度確保のため0.50%以上は必要であるが、多くな
ると溶接性,靱性の低下を招くため上限を2.50%とす
る。
Mn needs to be 0.50% or more to secure strength, but if it increases, it causes deterioration of weldability and toughness, so the upper limit is made 2.50%.

Nbはオーステナイト粒の粗大化防止と再結晶抑制効果お
よび強度確保のため0.001%以上必要であるが、多くな
ると溶接性を阻害するため、0.1%を上限とする。
Nb needs to be 0.001% or more to prevent coarsening of austenite grains, suppress recrystallization, and secure strength, but if it increases, it hinders weldability, so the upper limit is 0.1%.

Alは脱酸のため0.005%以上必要であるが、多くなると
靱性が著しく低下するため0.1%を上限とする。
Al is required to be 0.005% or more for deoxidation, but if it increases, the toughness decreases significantly, so 0.1% is made the upper limit.

本発明は上記の基本成分のほかに、要求される鋼の特性
に応じて次の元素を1種または2種以上選択的に添加す
ることができる。
In the present invention, in addition to the above basic components, one or more of the following elements can be selectively added depending on the required properties of steel.

Crは焼入れ性を向上させ強度上昇に有用な元素である
が、多くなると靱性,溶接性を阻害するため1.0%以下
とする。
Cr is an element that improves the hardenability and is useful for increasing the strength, but if it increases, it hinders the toughness and weldability, so it is made 1.0% or less.

Moは焼入れ性を向上させ強度上昇に有用な元素である
が、多くなると溶接性、靱性を低下させるので1.0%以
下とする。
Mo is an element that improves the hardenability and is useful for increasing the strength, but if it increases, it lowers the weldability and toughness, so it is made 1.0% or less.

Cuは強度上昇に有用な元素であるが、多くなると熱間加
工の際、割れを発生し、かつ溶接性を害するため2.0%
以下とする。
Cu is an element that is useful for increasing strength, but if it increases, it causes cracking during hot working and impairs weldability, so 2.0%
Below.

Vは析出硬化による強度上昇に有用な元素であるが、多
くなると溶接性を阻害するため0.1%以下とする。
V is an element useful for increasing the strength due to precipitation hardening, but if it increases, it interferes with the weldability, so it is made 0.1% or less.

Niは靱性向上に有用な元素であるが、高価な元素である
ため4.0%以下とする。
Ni is an element useful for improving the toughness, but it is an expensive element, so the content is set to 4.0% or less.

Tiはオーステナイト粒の粗大化を防ぎ靱性確保に有用で
あり、また析出硬化により強度上昇にも有用な元素であ
るが、多くなると溶接性を阻害するため0.1%以下とす
る。
Ti is an element that is useful for preventing coarsening of austenite grains and ensuring toughness, and is also useful for increasing strength by precipitation hardening, but if it increases, it impairs weldability, so it is made 0.1% or less.

Caは鋼中硫化物の形態制御によりZ方向の材質改善に有
効であるが、多くなると鋼中介在物が増加し、靱性,溶
接性を害するため0.01%以下とする。
Ca is effective in improving the material quality in the Z direction by controlling the morphology of sulfides in steel, but if it increases, inclusions in the steel increase, impairing toughness and weldability, so it is made 0.01% or less.

これらの添加元素のうち、V,Cu,Cr,Moは主に強度上昇に
有用な元素で必要に応じて1種または2種以上添加す
る。また、Ti,Ni,Caは主に靱性向上に有用な元素で必要
に応じ、1種または2種以上添加する。
Among these additive elements, V, Cu, Cr, and Mo are elements mainly useful for increasing strength, and one or more kinds are added as required. Further, Ti, Ni, and Ca are elements mainly useful for improving the toughness, and if necessary, one kind or two or more kinds are added.

次に加熱,圧延,冷却条件について限定理由を述べる。Next, the reasons for limiting the heating, rolling and cooling conditions will be described.

加熱温度はオーステナイト粒の細粒化のため1150℃以下
とする。一方低過ぎると析出硬化元素が固溶しなくなる
ため下限は900℃以上とする。強度,靱性の点からは950
℃〜1050℃の範囲が最も好ましい。
The heating temperature is 1150 ° C or lower for austenite grain refinement. On the other hand, if it is too low, the precipitation hardening element will not form a solid solution, so the lower limit is made 900 ° C or higher. 950 in terms of strength and toughness
Most preferred is the range of ℃ to 1050 ℃.

これらの温度で加熱後、中間段階厚さまで圧延して表面
の温度がAr3より低下する前に一旦圧延を中断し、該中
間段階厚の鋼あるいは圧延しないでスラブ状態のままの
鋼をAr3+150℃〜Ar3の温度に設定した炉等に装入し、
全体を均一温度に保熱する。この後抽出してすぐ未再結
晶域での制御圧延を施す。このような方法により、第1
図に示すように加熱炉抽出後粗圧延−仕上圧延に至る間
に生じた板厚中心部(1/2t)と表面直下との温度差が解
消され、未再結晶域での制御圧延開始時に表面が二相域
圧延となることなく、板厚中心部の圧延温度もAr3直上
にすることができる。すなわち、圧延中の温度が板厚方
向でほぼ均一となり板厚方向の特性差を小さくでき、こ
れにより板厚中心部も靱性の優れた鋼板が製造できる。
圧延中の温度はAr3〜Ar3+150℃の範囲とするが全厚がA
r3〜Ar3+50℃の範囲にはいることが好ましい。
After heating at these temperatures, rolling is interrupted before rolling to the intermediate stage thickness and the surface temperature lower than Ar 3 , and the steel of the intermediate stage thickness or the steel in the slab state without rolling is Ar 3 Charge into a furnace etc. set to a temperature of + 150 ° C to Ar 3 ,
Keep the whole at a uniform temperature. Immediately after extraction, controlled rolling is performed in the non-recrystallized region. With this method,
As shown in the figure, the temperature difference between the central part (1 / 2t) of the plate thickness and immediately below the surface that occurred during rough rolling-finish rolling after extracting the heating furnace was eliminated, and at the start of controlled rolling in the unrecrystallized region. The rolling temperature at the center of the plate thickness can be directly above Ar 3 without causing the surface to undergo two-phase rolling. That is, the temperature during rolling is almost uniform in the plate thickness direction, and the difference in characteristics in the plate thickness direction can be reduced, whereby a steel plate having excellent toughness at the center of the plate thickness can be manufactured.
The temperature during rolling should be in the range of Ar 3 to Ar 3 + 150 ℃, but the total thickness is A
It is preferable to fall within the range of r 3 to Ar 3 + 50 ° C.

圧延温度をこれらの温度に限定するのは、圧延温度が高
すぎると、細粒化が十分なされず、またAr3未満の温度
で圧延すると、その後の制御冷却時に十分焼きが入らず
所要の強度が得られないためである。
Limiting the rolling temperature to these temperatures is that if the rolling temperature is too high, grain refining is not sufficient, and if rolling is performed at a temperature of less than Ar 3, the required strength will not be sufficiently quenched during the subsequent controlled cooling. This is because you cannot get

これらの温度における圧下率を50%以上とするのは、こ
れ以下では細粒化が十分なされず、靱性が悪いためであ
る。上限は制御圧延の効果が飽和する70%以下とする。
The reason why the rolling reduction at these temperatures is 50% or more is that if the temperature is less than this, grain refinement is not sufficient and the toughness is poor. The upper limit is 70% or less at which the effect of controlled rolling is saturated.

次に熱間圧延後の冷却速度を1℃/sec以上としたのは、
板厚中心部まで焼入れ組織とし、所定の強度を確保する
ためであり、これ未満では強度不足となる。上限は表面
硬さの急上昇を抑え、また靱性の悪い中間組織を生じな
い10℃/sec以下とする。
Next, the cooling rate after hot rolling was set to 1 ° C / sec or more,
This is to ensure a predetermined strength by making a quenched structure up to the center of the plate thickness, and if it is less than this, the strength will be insufficient. The upper limit is 10 ° C / sec or less that suppresses a sudden increase in surface hardness and does not produce an intermediate structure with poor toughness.

次に水冷停止温度の下限を250℃とするのは、強度の上
がりすぎによる靱性の低下を防ぐためであり、上限を60
0℃とするのは、これ以上では所定の強度が得られず、
細粒化も不十分になるためである。
Next, the lower limit of the water cooling stop temperature is set to 250 ° C. in order to prevent deterioration of toughness due to excessive increase in strength, and the upper limit is set to 60 ° C.
The temperature of 0 ° C means that the desired strength cannot be obtained above this temperature.
This is because the grain size becomes insufficient.

なお、前記冷却停止後の空冷は、空冷中のオートテンパ
ー効果により強度の上がりすぎと靱性の低下を防止する
ためである。
The air cooling after the cooling is stopped is to prevent the strength from increasing too much and the toughness to decrease due to the auto-tempering effect during the air cooling.

(実施例) 次に本発明の実施例と比較例を挙げる。(Example) Next, the Example and comparative example of this invention are given.

供試材の化学組成を第1表に示し、製造条件を第2表
に、得られた厚鋼板の機械的性質を第3表に示す。
The chemical composition of the test material is shown in Table 1, the manufacturing conditions are shown in Table 2, and the mechanical properties of the thick steel plate obtained are shown in Table 3.

以上の通り、本発明法を適用して得た厚鋼板A1,B1,C1,D
1,E1,F1,G1,H1は何れも板厚方向の靱性差が小さく、表
面直下、1/4t,1/2tとも良好な靱性を示している。これ
に対し、比較例のA2は水冷停止温度が低いため、強度は
高いが靱性が低い。B2,H2は再保熱していないため、板
厚中心部の圧延温度が高く、靱性が悪い。E2は制御圧延
を38%しか行っていないため、板厚全体の靱性が悪い。
F2は板厚全体がAr3より低下しており、靱性が悪い。G2
は、加熱温度が高いため、板厚全体の靱性が悪い。
As described above, the thick steel plates A1, B1, C1, D obtained by applying the method of the present invention
All of 1, E1, F1, G1, and H1 have small toughness differences in the plate thickness direction, and show good toughness just below the surface at 1 / 4t and 1 / 2t. On the other hand, A2 of the comparative example has a low water-cooling stop temperature and therefore has high strength but low toughness. Since B2 and H2 are not reheat-retained, the rolling temperature at the center of the plate thickness is high and the toughness is poor. Since E2 is controlled rolling only 38%, the toughness of the entire plate thickness is poor.
For F2, the overall plate thickness is lower than Ar 3 , and the toughness is poor. G2
Since the heating temperature is high, the toughness of the entire plate is poor.

D2は保熱温度が高いため、強度は高いが靱性が低い。C2
は表面Ar3以下で保熱開始しているため表面の靱性が低
い。
Since D2 has a high heat retention temperature, it has high strength but low toughness. C2
Has a low surface toughness because heat retention begins at surface Ar 3 or lower.

(発明の効果) 以上の如く、本発明は板厚50mm以上で1mm2当たり50kgf
以上の引張強さを有する鋼板の板厚中心部の細粒化を加
熱、圧延、冷却を制御することにより達成したもので、
板厚中心部まで含めた良好な低温靱性の確保と成分組成
及び含有量の適切な限定により低炭素当量下での高強度
の確保を同時に可能としたもので、工業上その効果の大
きい発明である。
(Effects of the Invention) As described above, the present invention has a plate thickness of 50 mm or more and 50 kgf per 1 mm 2.
It is achieved by controlling the heating, rolling, and cooling of the grain refinement of the plate thickness center part of the steel plate having the above tensile strength,
It is possible to secure good low-temperature toughness including the center of thickness and to secure high strength under low carbon equivalents by appropriately limiting the component composition and content. is there.

【図面の簡単な説明】[Brief description of drawings]

第1図は、本発明により保熱した場合の表面直下と1/2t
の温度履歴を示す説明図、第2図は再加熱をしない従来
法の温度履歴を示す説明図である。
Fig. 1 shows just under the surface and 1 / 2t when heat is kept according to the present invention.
2 is an explanatory view showing the temperature history of FIG. 2, and FIG. 2 is an explanatory view showing the temperature history of the conventional method without reheating.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭60−258410(JP,A) 特開 昭61−71105(JP,A) 特開 昭61−139622(JP,A) 特開 昭63−50427(JP,A) ─────────────────────────────────────────────────── --- Continuation of the front page (56) Reference JP-A-60-258410 (JP, A) JP-A-61-71105 (JP, A) JP-A-61-139622 (JP, A) JP-A-63- 50427 (JP, A)

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】重量比にて C:0.03〜0.20%,Si:0.05〜0.60%,Mn:0.50〜2.50%,Nb:
0.001〜0.10%,Al:0.005〜0.1%を含有し、残部Feおよ
び不可避不純物からなる鋼を900〜1150℃に加熱し、中
間段階厚さまで圧延して一旦圧延を中断して冷却するか
または圧延せずスラブ状態のまま冷却し表面温度がAr3
を割る前に該鋼をAr3+150℃〜Ar3の温度に均一に保熱
し、次いでAr3以上で圧下率50〜70%の圧延を行い、圧
延後、冷却速度1〜10℃/secで250〜600℃まで冷却し、
引き続き空冷することを特徴とする低温靱性と溶接性に
優れた厚手高張力鋼板の製造方法。
1. A weight ratio of C: 0.03 to 0.20%, Si: 0.05 to 0.60%, Mn: 0.50 to 2.50%, Nb:
Steel containing 0.001 to 0.10%, Al: 0.005 to 0.1% and the balance Fe and unavoidable impurities is heated to 900 to 1150 ° C and rolled to an intermediate stage thickness, and the rolling is temporarily interrupted and cooled or rolled. Without cooling, the surface temperature is Ar 3
Heated uniformly coercive the steel to a temperature of Ar 3 + 0.99 ° C. to Ar 3 before dividing, and then subjected to rolling reduction ratio 50% to 70% in the Ar 3 or more, after rolling, at a cooling rate 1 to 10 ° C. / sec Cool to 250-600 ℃,
A method for producing a thick high-strength steel sheet excellent in low-temperature toughness and weldability, which is characterized by continuous air cooling.
【請求項2】重量比にて C:0.03〜0.20%,Si:0.05〜0.60%,Mn:0.50〜2.50%,Nb:
0.001〜0.10%,Al:0.005〜0.1%を基本成分とし、更
に、Cr:1.0%以下,Mo:1.0%以下,V:0.1%以下,Cu:2.0%
以下 のうち1種又は2種以上を含有し更に Ni:4.0%以下,Ti:0.15%以下,Ca:0.01%以下 のうち1種又は2種以上を含有し残部Feおよび不可避不
純物からなる鋼を900〜1150℃に加熱し、中間段階厚さ
まで圧延して一旦圧延を中断して冷却するか、または圧
延せずスラブ状態のまま冷却し表面温度がAr3を割る前
に該鋼をAr3+150℃〜Ar3の温度に均一に保熱し、次い
でAr3以上で圧下率50〜70%の圧延を行い、圧延後、冷
却速度1〜10℃/secで250〜600℃まで冷却し、引き続き
空冷することを特徴とする低温靱性と溶接性に優れた厚
手高張力鋼板の製造方法。
2. By weight ratio, C: 0.03 to 0.20%, Si: 0.05 to 0.60%, Mn: 0.50 to 2.50%, Nb:
0.001 to 0.10%, Al: 0.005 to 0.1% as a basic component, Cr: 1.0% or less, Mo: 1.0% or less, V: 0.1% or less, Cu: 2.0%
A steel containing one or more of the following, Ni: 4.0% or less, Ti: 0.15% or less, Ca: 0.01% or less, and one or more of the following, with the balance Fe and inevitable impurities. 900 to 1150 was heated to ° C., intermediate stage or cool suspends rolled once rolled to a thickness of, or the cooling surface temperature remains slab state without rolling the steel before dividing the Ar 3 Ar 3 +150 ℃ ~ Ar 3 to maintain a uniform temperature, then rolled with Ar 3 or more at a rolling reduction of 50 ~ 70%, after rolling, cooling at a cooling rate of 1 ~ 10 ℃ / sec to 250 ~ 600 ℃, followed by air cooling A method for producing a thick high-strength steel sheet excellent in low-temperature toughness and weldability, which is characterized by:
JP19367286A 1986-08-19 1986-08-19 Method for producing thick high-strength steel sheet with excellent low temperature toughness and weldability Expired - Lifetime JPH0674454B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19367286A JPH0674454B2 (en) 1986-08-19 1986-08-19 Method for producing thick high-strength steel sheet with excellent low temperature toughness and weldability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19367286A JPH0674454B2 (en) 1986-08-19 1986-08-19 Method for producing thick high-strength steel sheet with excellent low temperature toughness and weldability

Publications (2)

Publication Number Publication Date
JPS6350424A JPS6350424A (en) 1988-03-03
JPH0674454B2 true JPH0674454B2 (en) 1994-09-21

Family

ID=16311862

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19367286A Expired - Lifetime JPH0674454B2 (en) 1986-08-19 1986-08-19 Method for producing thick high-strength steel sheet with excellent low temperature toughness and weldability

Country Status (1)

Country Link
JP (1) JPH0674454B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019501281A (en) * 2015-12-04 2019-01-17 ポスコPosco High-strength steel material excellent in brittle crack propagation resistance and brittle crack initiation resistance of welds and method for producing the same
JP2019502018A (en) * 2015-12-04 2019-01-24 ポスコPosco High-strength steel material excellent in brittle crack propagation resistance and brittle crack initiation resistance of welds and method for producing the same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112643024B (en) * 2020-12-15 2021-12-10 上海海事大学 Preparation method of cobalt-based alloy powder for protecting ice-breaking belt on polar ice-breaking ship

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019501281A (en) * 2015-12-04 2019-01-17 ポスコPosco High-strength steel material excellent in brittle crack propagation resistance and brittle crack initiation resistance of welds and method for producing the same
JP2019502018A (en) * 2015-12-04 2019-01-24 ポスコPosco High-strength steel material excellent in brittle crack propagation resistance and brittle crack initiation resistance of welds and method for producing the same

Also Published As

Publication number Publication date
JPS6350424A (en) 1988-03-03

Similar Documents

Publication Publication Date Title
JP3863878B2 (en) Welded structural steel with excellent weld heat affected zone toughness, manufacturing method thereof, and welded structure using the same
JP4644076B2 (en) High strength thin steel sheet with excellent elongation and hole expansibility and manufacturing method thereof
EP3395986B1 (en) Thick steel plate for high heat input welding and having great heat-affected area toughness and manufacturing method therefor
CN108660389B (en) High-strength thick steel plate with excellent crack resistance and manufacturing method thereof
CN109628840B (en) 550 MPa-grade cold-rolled corrosion-resistant dual-phase steel and manufacturing method thereof
CN112143971A (en) Normalizing marine steel with low welding crack sensitivity, high strength and high toughness and preparation method thereof
JP2913426B2 (en) Manufacturing method of thick high strength steel sheet with excellent low temperature toughness
JP3922805B2 (en) Manufacturing method of high-tensile steel with excellent low-temperature toughness
JPH06929B2 (en) Manufacturing method of thick high-strength steel sheet with excellent weldability and low temperature toughness
CN111321340A (en) Hot rolled steel plate with yield strength of 450MPa and manufacturing method thereof
JP2004269924A (en) High efficient producing method of steel sheet excellent in strength and toughness
JP7265008B2 (en) Steel material for pressure vessel excellent in resistance to hydrogen-induced cracking and its manufacturing method
JPH0674454B2 (en) Method for producing thick high-strength steel sheet with excellent low temperature toughness and weldability
JPH0629480B2 (en) Hot-rolled high-strength steel sheet excellent in strength, ductility, toughness, and fatigue characteristics, and method for producing the same
JP3212344B2 (en) Manufacturing method of structural steel plate for welding with excellent toughness at low temperature
JPH0225968B2 (en)
JP3043517B2 (en) Manufacturing method of high strength hot rolled steel sheet
JP3854412B2 (en) Sour-resistant steel plate with excellent weld heat-affected zone toughness and its manufacturing method
JP3255004B2 (en) High strength steel material for welding excellent in toughness and arrestability and method for producing the same
JPS58120725A (en) Manufacture of nontemper 50kg steel having high toughness and high weldability
JPH0674455B2 (en) Method for manufacturing thick high-strength steel sheet with excellent toughness and weldability
JPS63179020A (en) Production of steel sheet having excellent strength and toughness and small difference in sectional hardness in thickness direction of sheet
JP3009568B2 (en) Manufacturing method of high strength steel sheet with excellent hydrogen induced cracking resistance and low temperature toughness
JPH064890B2 (en) Manufacturing method of high yield point steel for low temperature
JPH0674457B2 (en) Method for manufacturing thick high-strength steel sheet excellent in low temperature toughness and weldability