JPH0674187A - Turbo-molecular pump - Google Patents

Turbo-molecular pump

Info

Publication number
JPH0674187A
JPH0674187A JP22817992A JP22817992A JPH0674187A JP H0674187 A JPH0674187 A JP H0674187A JP 22817992 A JP22817992 A JP 22817992A JP 22817992 A JP22817992 A JP 22817992A JP H0674187 A JPH0674187 A JP H0674187A
Authority
JP
Japan
Prior art keywords
vacuum
turbo
molecular pump
fixed
intake port
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP22817992A
Other languages
Japanese (ja)
Inventor
Masataka Kase
正隆 加勢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP22817992A priority Critical patent/JPH0674187A/en
Publication of JPH0674187A publication Critical patent/JPH0674187A/en
Withdrawn legal-status Critical Current

Links

Abstract

PURPOSE:To provide a turbo-molecular pump where a high exhaust speed can be attained in a low vacuum while a high ultimate vacuum degree can be obtained in a high vacuum. CONSTITUTION:In a turbo-molecular pump constituted of moving blades 13 fixed to the outer peripheral surface of a rotor 12 and fixed blades 14, 15 intruding into clearances 16 between the moving blades 13, where the moving blades 13 are rotated together with the rotor 12 to compress air 10 which is sucked from an intake port 11a of a pump case 11 so as to exhaust it through an exhaust port 11b, the fixed blade 15 in the vicinity of the exhaust port 11b intrudes in a shallow manner into the clearance 16 when a vacuum degree of the intake port 11a is in a viscous flow region while it intrudes into the clearance 16 deeper than the intruding depth when the vacuum degree is in a molecular flow region.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、ターボ分子ポンプ、特
に低真空度領域では排気速度が大きく、高真空度領域で
は高い到達真空度が得られるターボ分子ポンプに関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a turbo molecular pump, and more particularly to a turbo molecular pump which has a high pumping speed in a low vacuum region and a high ultimate vacuum in a high vacuum region.

【0002】[0002]

【従来の技術】従来のターボ分子ポンプの固定翼は固定
されていた。
2. Description of the Related Art The fixed blade of a conventional turbo molecular pump has been fixed.

【0003】[0003]

【発明が解決しようとする課題】したがって、従来のタ
ーボ分子ポンプにおいては、低真空度領域の排気速度を
大きくしようとすると高真空度領域の到達真空度が低下
し、また高真空度領域の到達真空度を高くしようとする
と低真空度領域の排気速度が低下するという問題があっ
た。
Therefore, in the conventional turbo molecular pump, when the pumping speed in the low vacuum region is increased, the ultimate vacuum in the high vacuum region is lowered, and the ultimate vacuum in the high vacuum region is reached. There is a problem that the exhaust speed in the low vacuum region decreases when trying to increase the vacuum level.

【0004】本発明は、このような問題を解消するため
になされたものであって、その目的は低真空度領域では
排気速度が大きく、高真空度領域では高い到達真空度が
得られるターボ分子ポンプの提供にある。
The present invention has been made in order to solve such a problem, and its purpose is to provide a turbo molecule which has a high pumping speed in a low vacuum region and a high ultimate vacuum in a high vacuum region. In the provision of pumps.

【0005】[0005]

【課題を解決するための手段】図1に示すように前記目
的は、ロータ12の外周面に固定された動翼13と、この動
翼13相互間の間隙16に侵入させた固定翼14,15 とを含ん
で構成し、この動翼13をロータ12とともに回転してポン
プケース11の吸気口11a から吸い込んだ気体10を圧縮し
てその排気口11b から排出するターボ分子ポンプにおい
て、排気口11b 近くの固定翼13は、吸気口11a 内の真空
度が粘性流領域においては間隙16に浅く侵入し、吸気口
11a 内の真空度が分子流領域においては前記の侵入深さ
と比較して間隙16により深く侵入することを特徴とする
ターボ分子ポンプにより達成される。
As shown in FIG. 1, the above-mentioned object is to provide moving blades 13 fixed to the outer peripheral surface of a rotor 12 and fixed blades 14 inserted into a gap 16 between the moving blades 13. In the turbo molecular pump that includes the rotor blade 13 and the rotor blade 12 and the rotor 12, rotates the rotor blade 13 and compresses the gas 10 sucked from the inlet 11a of the pump case 11 and discharges it from the outlet 11b. In the nearby fixed blade 13, the vacuum degree in the intake port 11a invades the gap 16 shallowly in the viscous flow region.
The degree of vacuum in 11a is achieved by a turbomolecular pump which is characterized in that in the molecular flow region it penetrates deeper into the gap 16 compared to the aforementioned penetration depth.

【0006】なお、図1は、本発明の原理図であって、
図1(a) は固定翼が動翼間の間隙に深く侵入した状態を
模式的に示す要部側断面図、図1(b) は固定翼が動翼間
の間隙に浅く侵入した状態を模式的に示す要部側断面図
である。
FIG. 1 is a principle diagram of the present invention.
Fig. 1 (a) is a cross-sectional side view of a main part schematically showing the state where the fixed blades penetrate deeply into the gap between the moving blades, and Fig. 1 (b) shows the state where the fixed blades penetrate shallowly into the gap between the moving blades. It is a principal part side sectional view which shows typically.

【0007】[0007]

【作用】本発明のターボ分子ポンプにおいては、動翼13
相互間の間隙16への固定翼15の侵入の深さは、吸気口11
a 内の真空度が粘性流領域においては浅く、吸気口11a
内の真空度が分子流領域においては深く侵入する。
In the turbo molecular pump of the present invention, the rotor blade 13
The depth of penetration of the fixed blades 15 into the gap 16 between them depends on the intake port 11
The degree of vacuum in a is shallow in the viscous flow region, and the intake port 11a
The degree of vacuum inside penetrates deeply in the molecular flow region.

【0008】したがって、本発明のターボ分子ポンプに
おいては、低真空度領域 (吸気口11a 内の真空度が粘性
流領域に対応) では吸気口11a から気体10を排気する排
気速度が大きく、高真空領域( 吸気口11a 内の真空度が
分子流領域に対応) では吸気口11a 内を超高真空度にす
ることができる。
Therefore, in the turbo molecular pump of the present invention, the exhaust speed for exhausting the gas 10 from the intake port 11a is high in the low vacuum region (the degree of vacuum in the intake port 11a corresponds to the viscous flow region), and the high vacuum In the region (the degree of vacuum inside the inlet 11a corresponds to the molecular flow region), the inside of the inlet 11a can be made to have an extremely high degree of vacuum.

【0009】[0009]

【実施例】以下、本発明の一実施例のターボ分子ポンプ
について図2を参照しながら説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A turbo molecular pump according to an embodiment of the present invention will be described below with reference to FIG.

【0010】図2は、本発明の一実施例のターボ分子ポ
ンプの説明図であって、図2(a) はターボ分子ポンプの
構成を模式的に示す要部側断面図、図2(b) は固定翼を
模式的に示す要部平面図である。
FIG. 2 is an explanatory view of a turbo-molecular pump according to an embodiment of the present invention. FIG. 2 (a) is a side sectional view of a main part schematically showing the structure of the turbo-molecular pump, and FIG. ) Is a schematic plan view of a fixed blade.

【0011】図2(a),(b) において、21はポンプケー
ス、21a は吸気口、21b は排気口、22はモータ、23はロ
ータ、24は動翼、25と26は固定翼、27はパルスモータ、
28は回動伝達シャフト、29は歯車、30は外輪、31は内
輪、32は連結ピン、33は真空計、34は制御装置である。
2 (a) and 2 (b), 21 is a pump case, 21a is an intake port, 21b is an exhaust port, 22 is a motor, 23 is a rotor, 24 is a moving blade, 25 and 26 are fixed blades, 27 Is a pulse motor,
28 is a rotation transmission shaft, 29 is a gear, 30 is an outer ring, 31 is an inner ring, 32 is a connecting pin, 33 is a vacuum gauge, and 34 is a controller.

【0012】このような構成要素からなる本発明の一実
施例のターボ分子ポンプの作用について詳細に説明す
る。まず、制御装置34をオンし、この制御装置34を介し
て真空計33(例えばピラニゲージ) 、パルスモータ27を
稼働状態にする。
The operation of the turbo-molecular pump of one embodiment of the present invention having such components will be described in detail. First, the control device 34 is turned on, and the vacuum gauge 33 (for example, Pirani gauge) and the pulse motor 27 are brought into an operating state via the control device 34.

【0013】稼働状態にされた真空計33は、排気口21b
内の真空度を連続的に測定し、その測定結果を制御装置
34に連続的に入力する (なお、排気口21b 内の真空度を
測定すれば吸気口21a 内の大凡の真空度は推定できる)
The vacuum gauge 33, which has been put into operation, has an exhaust port 21b.
Continuously measures the degree of vacuum inside and controls the measurement results
Continuously input to 34 (Note that if you measure the vacuum level in the exhaust port 21b, you can estimate the approximate vacuum level in the intake port 21a)
.

【0014】真空計33から真空度データを入力した制御
装置34は、排気口21b の真空度が例えば10-1Torr( 本発
明の一実施例のターボ分子ポンプにおいては排気口21b
の真空度10-1Torrは、吸気口21a 内の真空度が粘性流領
域となるか、それとも分子流領域となるかの指標値であ
る) より悪ければ、図2(b) の点線で示すようにパルス
モータ27を介して排気口21b に近い固定翼26を傾斜させ
て動翼24間の間隙16への侵入深さを最も浅くする。
The control device 34, to which the vacuum degree data is input from the vacuum gauge 33, has a vacuum degree of the exhaust port 21b of, for example, 10 -1 Torr (in the turbo molecular pump of the embodiment of the present invention, the exhaust port 21b is used).
The vacuum degree of 10 -1 Torr is an index value of whether the vacuum degree in the intake port 21a is in the viscous flow region or the molecular flow region.) If it is worse, it is shown by the dotted line in Fig. 2 (b). As described above, the fixed blade 26 near the exhaust port 21b is tilted via the pulse motor 27 to make the depth of penetration into the gap 16 between the moving blades 24 the shallowest.

【0015】このようにして固定翼26の移動が完了した
後に、制御装置34はモータ22を起動し、ロータ23を介し
て動翼24を回転する。この動翼24の回転により本発明の
一実施例のターボ分子ポンプは、気体10をポンプケース
21の吸気口21a から吸入し、排気口21b から排気するこ
ととなる。
After the movement of the fixed blades 26 is completed in this way, the controller 34 activates the motor 22 and rotates the moving blades 24 via the rotor 23. Due to the rotation of the rotor blades 24, the turbo molecular pump according to the embodiment of the present invention stores the gas 10 in the pump case.
The air is taken in through the intake port 21a of 21 and exhausted through the exhaust port 21b.

【0016】ところで、本発明の一実施例のターボ分子
ポンプが作動してから暫くの間は吸気口21a 側の真空度
は粘性流領域 (真空度が10-1Torrより悪い領域) にあ
り、しかも固定翼26は図2(b) の点線で示すように動翼
24間の間隙16への侵入深さが最浅の状態であるから、こ
のターボ分子ポンプは吸気口21a から大きな排気速度で
もって気体10を排気することとなる。
By the way, for a while after the turbo molecular pump according to the embodiment of the present invention operates, the degree of vacuum on the side of the intake port 21a is in the viscous flow region (the region where the degree of vacuum is worse than 10 -1 Torr). Moreover, the fixed blade 26 is a moving blade as shown by the dotted line in Fig. 2 (b).
Since the depth of penetration into the gap 16 between the 24 is the shallowest, the turbo molecular pump exhausts the gas 10 from the intake port 21a at a high exhaust velocity.

【0017】本発明の一実施例のターボ分子ポンプが排
気を継続し、その排気口21b 内の真空度が10 Torr(吸気
口21a 内の真空度は10-2Torr程度、すなわち分子流領域
の真空度) より良くなると、制御装置34はパルスモータ
27を介して固定翼26を実線のように直立して動翼24間の
間隙16への侵入深さを最深にする。
The turbo molecular pump of one embodiment of the present invention continues to exhaust gas, and the exhaust port 21b has a vacuum degree of 10 Torr (intake port 21a has a vacuum degree of about 10 -2 Torr, that is, in the molecular flow region). (Vacuum level)
The fixed blades 26 are erected upright as indicated by the solid lines via 27 to maximize the depth of penetration into the gap 16 between the moving blades 24.

【0018】かかる状態、すなわち動翼24間の間隙16へ
の固定翼26の侵入深さが最深の状態における本発明の一
実施例のターボ分子ポンプは、その排気速度は低下する
ものの、吸気口21a 内を超高真空状態にする。
In such a state, that is, in the state where the depth of penetration of the fixed blade 26 into the gap 16 between the moving blades 24 is the deepest, the turbo molecular pump according to one embodiment of the present invention has its exhaust speed reduced, but its intake port The inside of 21a is set to an ultra-high vacuum state.

【0019】以上、説明したように本発明の一実施例の
ターボ分子ポンプは、吸気口21a 側の真空度が低真空度
領域 (粘性流領域) では、この吸気口21a から気体10を
大きな排気速度でもって排気し、また吸気口21a 側の真
空度が高真空 (分子流領域)時には、この吸気口21a(図
示しない真空装置等の真空容器) 内を超高真度にするこ
とができる。
As described above, in the turbo molecular pump according to the embodiment of the present invention, when the vacuum degree on the intake port 21a side is in the low vacuum region (viscous flow region), the gas 10 is largely discharged from the intake port 21a. When the gas is exhausted at a speed and the degree of vacuum on the side of the intake port 21a is high vacuum (molecular flow region), the inside of the intake port 21a (a vacuum container such as a vacuum device (not shown)) can be made extremely high in accuracy.

【0020】なお、制御装置34が排気口21b 内の真空度
に応じてパルスモータ27の回転伝達シャフト28の回動角
を変えるように構成することも当然可能である。このよ
うに構成すれば固定翼26は動翼24相互間の間隙16への侵
入の深さを排気口21b 内の真空度に応じて変えることと
なる。
It is of course possible that the control device 34 changes the rotation angle of the rotation transmission shaft 28 of the pulse motor 27 according to the degree of vacuum in the exhaust port 21b. According to this structure, the fixed blades 26 change the depth of penetration into the gap 16 between the moving blades 24 according to the degree of vacuum in the exhaust port 21b.

【0021】次に、リンク機構により可動にした固定翼
26について図2(a) 及び(b) を参照して説明する。この
固定翼26は、ロータ23の外周部を取り囲んで同心円をな
す外輪30及び内輪31に、連結ピン32によりそれぞれ回動
自在に連結されている。
Next, a fixed blade movable by a link mechanism
26 will be described with reference to FIGS. 2 (a) and 2 (b). The fixed vanes 26 are rotatably connected to the outer ring 30 and the inner ring 31 that surround the outer peripheral portion of the rotor 23 and are concentric with each other by a connecting pin 32.

【0022】また、内輪31は、内輪ホルダー(図示せ
ず)に連結して固定されているが、外輪30は連結ピン32
を介して内輪31に連結している。また、この外輪30の円
周面の一部の領域に歯が切ってあり、この領域は歯車29
と噛合している。
The inner ring 31 is connected and fixed to an inner ring holder (not shown), but the outer ring 30 is connected to a connecting pin 32.
Is connected to the inner ring 31 via. Further, teeth are cut in a part of the circumferential surface of the outer ring 30, and this area is covered by the gear 29.
Meshes with.

【0023】したがって、歯車29を矢印A方向に回動す
ると外輪30は矢印L方向に回動することとなる。この外
輪30の矢印L方向の回動は、動翼24間の間隙16への侵入
が最深状態 (直立状態) にある固定翼26 (図2(b) にお
いて実線で示す固定翼26) を傾斜し、図2(b) において
点線で示すように動翼24間の間隙16への侵入を最浅状態
(傾斜状態) にする。
Therefore, when the gear 29 is rotated in the arrow A direction, the outer ring 30 is rotated in the arrow L direction. This rotation of the outer ring 30 in the direction of the arrow L tilts the fixed blade 26 (the fixed blade 26 shown by the solid line in FIG. 2 (b)) in which the penetration into the gap 16 between the moving blades 24 is in the deepest state (upright state). However, as shown by the dotted line in Fig. 2 (b), the penetration into the gap 16 between the rotor blades 24 is in the shallowest state.
(Tilt).

【0024】このような場合は上述したように吸気口21
a 内の真空度が粘性流領域にある時の固定翼26の状態に
対応するものである。また、歯車29による外輪30の逆方
向への回動、すなわち外輪30の矢印R方向の回動は、動
翼24間の間隙16への侵入が最浅状態にある固定翼26 (図
2(b) において点線で示す固定翼26) を直立し、図2
(b) において実線で示すように動動翼24間の間隙16への
侵入を最深状態にする。
In such a case, as described above, the intake port 21
This corresponds to the state of the fixed blades 26 when the degree of vacuum in a is in the viscous flow region. Further, the rotation of the outer ring 30 in the opposite direction by the gear 29, that is, the rotation of the outer ring 30 in the direction of the arrow R, causes the fixed blade 26 (see FIG. The fixed wing 26) indicated by the dotted line in b) is placed upright and
As shown by the solid line in (b), the penetration into the gap 16 between the moving blades 24 is set to the deepest state.

【0025】この場合は吸気口21a 内の真空度が分子流
領域にある時の固定翼26の状態に対応するものである。
なお、外輪30を回動する歯車29は、制御装置34により制
御されるパルスモータ27に回動伝達シャフト28を介して
連結している。
This case corresponds to the state of the fixed blades 26 when the degree of vacuum inside the intake port 21a is in the molecular flow region.
The gear 29 that rotates the outer ring 30 is connected to the pulse motor 27 controlled by the control device 34 through the rotation transmission shaft 28.

【0026】[0026]

【発明の効果】以上説明したように本発明は、低真空度
領域では排気速度が大きく、高真空度領域では高い到達
真空度が得られるターボ分子ポンプの提供を可能にす
る。
As described above, the present invention makes it possible to provide a turbo-molecular pump that has a high pumping speed in a low vacuum region and a high ultimate vacuum in a high vacuum region.

【図面の簡単な説明】[Brief description of drawings]

【図1】は、本発明の原理説明図、FIG. 1 is an explanatory view of the principle of the present invention,

【図2】は、本発明の一実施例のターボ分子ポンプの説
明図である。
FIG. 2 is an explanatory diagram of a turbo molecular pump according to an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

10は、気体、 11は、ポンプケース、 11a は、吸気口、 11b は、排気口、 12は、ロータ、 13は、動翼、 14,15 は固定翼、 16は、間隙、 21は、ポンプケース、 21a は、吸気口、 21b は、排気口、 22は、モータ、 23は、ロータ、 24は、動翼、 25,26 は、固定翼、 27は、パルスモータ、 28は、回動伝達シャフト、 29は、歯車、 30は、外輪、 31は、内輪、 32は、連結ピン、 33は、真空計、 34は、制御装置をそれぞれ示す。 10 is gas, 11 is pump case, 11a is intake port, 11b is exhaust port, 12 is rotor, 13 is moving blade, 14,15 is fixed blade, 16 is gap, 21 is pump Case, 21a is an intake port, 21b is an exhaust port, 22 is a motor, 23 is a rotor, 24 is a moving blade, 25 and 26 are fixed blades, 27 is a pulse motor, 28 is a rotation transmission Shaft, 29 is a gear, 30 is an outer ring, 31 is an inner ring, 32 is a connecting pin, 33 is a vacuum gauge, and 34 is a controller.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 ロータ(12)の外周面に固定された動翼(1
3)と、この動翼(13)相互間の間隙(16)に侵入させた固定
翼(14,15) とを含んで構成し、 前記動翼(13)を前記ロータ(12)とともに回転してポンプ
ケース(11)の吸気口(11a) から吸い込んだ気体(10)を圧
縮してその排気口(11b) から排出するターボ分子ポンプ
において、 前記排気口(11b) に近い前記固定翼(15)は、前記吸気口
(11a) 内の真空度が粘性流領域においては前記間隙(16)
に浅く侵入し、前記吸気口(11a) 内の真空度が分子流領
域においては前記侵入深さと比較して前記間隙(16)によ
り深く侵入することを特徴とするターボ分子ポンプ。
1. A rotor blade (1) fixed to an outer peripheral surface of a rotor (12)
3) and fixed blades (14, 15) that have penetrated into the gap (16) between the moving blades (13), and rotate the moving blade (13) together with the rotor (12). In the turbo molecular pump that compresses the gas (10) sucked from the intake port (11a) of the pump case (11) and discharges it from the exhaust port (11b), the fixed blade (15) close to the exhaust port (11b) ) Is the intake port
When the degree of vacuum in (11a) is the viscous flow region, the gap (16)
The turbo molecular pump is characterized in that it shallowly penetrates into the air inlet (11a) and penetrates deeper into the gap (16) than the penetration depth in the molecular flow region.
【請求項2】 請求項1記載のターボ分子ポンプにおい
て、前記固定翼(15)は、前記動翼(13)相互間の間隙(16)
への侵入の深さを前記吸気口(11a) 内の真空度に応じて
変えることを特徴とするターボ分子ポンプ。
2. The turbo-molecular pump according to claim 1, wherein the fixed vanes (15) have a gap (16) between the moving vanes (13).
A turbo-molecular pump characterized in that the depth of penetration thereof is changed according to the degree of vacuum in the intake port (11a).
JP22817992A 1992-08-27 1992-08-27 Turbo-molecular pump Withdrawn JPH0674187A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22817992A JPH0674187A (en) 1992-08-27 1992-08-27 Turbo-molecular pump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22817992A JPH0674187A (en) 1992-08-27 1992-08-27 Turbo-molecular pump

Publications (1)

Publication Number Publication Date
JPH0674187A true JPH0674187A (en) 1994-03-15

Family

ID=16872454

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22817992A Withdrawn JPH0674187A (en) 1992-08-27 1992-08-27 Turbo-molecular pump

Country Status (1)

Country Link
JP (1) JPH0674187A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6702544B1 (en) * 1999-07-16 2004-03-09 Leybold Vakuum Gmbh Friction vacuum pump for use in a system for regulating pressure and pressure regulating system comprising a friction vacuum pump of this type
EP3438460A1 (en) * 2017-08-04 2019-02-06 Pfeiffer Vacuum Gmbh Vacuum pump
WO2022196560A1 (en) * 2021-03-17 2022-09-22 エドワーズ株式会社 Vacuum pump

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6702544B1 (en) * 1999-07-16 2004-03-09 Leybold Vakuum Gmbh Friction vacuum pump for use in a system for regulating pressure and pressure regulating system comprising a friction vacuum pump of this type
EP3438460A1 (en) * 2017-08-04 2019-02-06 Pfeiffer Vacuum Gmbh Vacuum pump
US20190040866A1 (en) * 2017-08-04 2019-02-07 Pfeiffer Vacuum Gmbh Vacuum pump
JP2019031966A (en) * 2017-08-04 2019-02-28 プファイファー・ヴァキューム・ゲーエムベーハー Vacuum pump
US11078916B2 (en) 2017-08-04 2021-08-03 Pfeiffer Vacuum Gmbh Vacuum pump
WO2022196560A1 (en) * 2021-03-17 2022-09-22 エドワーズ株式会社 Vacuum pump

Similar Documents

Publication Publication Date Title
JPS62291479A (en) Vacuum exhaust device
JPH01277698A (en) Compound vacuum pump
EP0155419A2 (en) Noise control for conically ported liquid ring pumps
JPH05195957A (en) Vacuum pump
KR20020034940A (en) Vacuum pump
JPH0674187A (en) Turbo-molecular pump
JPH1089284A (en) Turbo-molecular pump
JP2008530433A (en) Baffle structure for molecular drag vacuum pump
KR930016662A (en) Fluid rotating device
US5387079A (en) Pumping state turbomolecular pumps
JPS6355396A (en) Turbo vacuum pump
KR20020043445A (en) Vacuum pump
JPS62168994A (en) High vacuum exhaust device
JPS62279282A (en) Turbomolecular pump
JPS61215495A (en) Turbo molecular pump
JPH11218093A (en) Turbo molecular pump
JPH02136595A (en) Vacuum pump
JPH03151598A (en) Rotary fan of electric blower
JPS6385290A (en) Vacuum pump
JPS6245999A (en) Impeller of turbocompressor
JPH04353299A (en) Centrifugal fluid machinery and its control device
JPS63223394A (en) Turbo vacuum pump
JPS647234B2 (en)
JPH07293492A (en) Vacuum pump
JP2002317790A (en) Turbo dry vacuum pump

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19991102