JPH0674155B2 - Manufacturing method of crystalline foam glass - Google Patents
Manufacturing method of crystalline foam glassInfo
- Publication number
- JPH0674155B2 JPH0674155B2 JP63173185A JP17318588A JPH0674155B2 JP H0674155 B2 JPH0674155 B2 JP H0674155B2 JP 63173185 A JP63173185 A JP 63173185A JP 17318588 A JP17318588 A JP 17318588A JP H0674155 B2 JPH0674155 B2 JP H0674155B2
- Authority
- JP
- Japan
- Prior art keywords
- raw material
- temperature
- silica
- based raw
- glass
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Glass Compositions (AREA)
Description
【発明の詳細な説明】 〔産業上の利用分野〕 本発明は建築物の壁材、天井材、床材等に利用される泡
ガラス、特に熱衝撃性、機械的強度等に優れた結晶質泡
ガラスの製法に関する。DETAILED DESCRIPTION OF THE INVENTION [Industrial field of application] The present invention relates to a foam glass used for a wall material, a ceiling material, a floor material, etc. of a building, particularly a crystalline material excellent in thermal shock resistance, mechanical strength and the like. It relates to a method for producing foam glass.
泡ガラスは不燃、軽量、断熱性の点において極めて優れ
ており、その特性を利用して建材等として使用されつつ
あるが、一方耐熱衝撃性、機械的強度等において不充分
であり、従来よりこれを改善するために結晶化させる試
みがなされている。Foam glass is extremely excellent in terms of non-combustibility, light weight, and heat insulation property, and is being used as a building material by utilizing its characteristics.On the other hand, it is insufficient in thermal shock resistance, mechanical strength, etc. Attempts have been made to crystallize in order to improve.
例えば特公昭38−26470号にはSiO2、Li2O、P2O5を必須
成分とするガラス粉末に発泡剤を混合したものを加熱発
泡させ、一たん冷却後再加熱して結晶化させることが、
また特開昭54−152011号にはホウ珪酸系ガラス粉末に発
泡剤を加えて混合し、加熱処理により発泡、結晶化させ
ることが、さらに特開昭59−92944号にはソーダ石灰系
ガラス粉末にZr、Ti等の化合物、アルカリ土類金属化合
物、および発泡剤を混合し、昇温制御して発泡、結晶化
させることが開示されている。For example, in Japanese Examined Patent Publication No. Sho 38-26470, glass powder containing SiO 2 , Li 2 O, and P 2 O 5 as essential components is mixed with a foaming agent to heat-foam, and after cooling, reheat to crystallize. That
In JP-A-54-152011, a borosilicate glass powder is mixed with a foaming agent and foamed and crystallized by heat treatment. In JP-A-59-92944, soda-lime glass powder is added. It is disclosed that a compound such as Zr or Ti, an alkaline earth metal compound, and a foaming agent are mixed with, and the temperature is controlled to foam and crystallize.
これら公知例において、前者はLi2O-SiO2系結晶を析出
させるもので、その熱膨張係数が低いことから、優れた
耐熱衝撃性を示すが、原料コストが高く、精緻かつ長時
間の結晶化処理工程を必要とし、製造効率に劣り、建築
用材料等に汎用するうえで生産性、経済性に難点を有す
る。In these publicly known examples, the former is one that precipitates Li 2 O-SiO 2 based crystals, and because of its low coefficient of thermal expansion, it shows excellent thermal shock resistance, but the raw material cost is high, and the crystals are precise and long-lasting. It requires a chemical treatment process, is inferior in production efficiency, and has a problem in productivity and economical efficiency when it is widely used as a building material.
後二者は最も一般的かつ低廉なソーダ石灰系あるいは耐
熱ガラスとして汎用されるホウ珪酸系ガラスにクリスト
バライト結晶を析出させるものであるが、クリストバラ
イト自体は200℃付近の低温度で著しい体積変化を伴な
う転移があり、耐熱衝撃性や機械的強度を損ない易い。The latter two are methods for precipitating cristobalite crystals on the most common and inexpensive soda-lime glass or borosilicate glass that is commonly used as heat-resistant glass, but cristobalite itself causes a significant volume change at a low temperature near 200 ° C. There is a dent transition, and it is easy to impair thermal shock resistance and mechanical strength.
さらにこれら公知例はいずれもガラス粉を出発原料とす
るものであるが、汎用建材を量産するうえで組成の揃っ
たガラスカレットを多量に準備するのは困難であり、あ
るいは一たん高温溶融しガラスとしたものを再度熱処理
に付し発泡結晶化させるのは経済上、効率上得策ではな
い。Further, all of these known examples use glass powder as a starting material, but it is difficult to prepare a large amount of glass cullet having a uniform composition in mass-producing general-purpose building materials, or glass melted at a high temperature at once. It is not economically and efficiently advantageous to subject the above-mentioned material to heat treatment again for foam crystallization.
本発明の目的の一つはこれら公知例と異なり、ソーダ石
灰系ガラスの元原料である安価な天然原料を主材とした
シリカ−石灰−ソーダ系出発原料および発泡剤を熱処理
により直にガラス化および針状結晶析出せしめ、かつ発
泡せしめた結晶質ガラスの製法を提供することにある。One of the objects of the present invention is different from these known examples, and the silica-lime-soda-based starting material and the foaming agent whose main material is an inexpensive natural material which is a raw material of soda-lime-based glass are directly vitrified by heat treatment. Another object of the present invention is to provide a method for producing crystalline glass in which needle-like crystals are precipitated and foamed.
一方、従来ソーダ−石灰系板ガラスや容器ガラスの製造
において、特に失透と称する結晶の析出があり、透視像
を歪めたり局部歪を発生させる欠点として忌避されてい
たが、泡ガラスにおいては本来空気泡により光散乱非透
視性を有するので光学上の問題とはならない。また微細
な針状結晶を無数に析出させ、かつそれらを相互に交錯
した状態にすれば機械的強度が増大し、またガラスのご
とく比較的低い温度で軟化するようなこともなく、耐熱
性も向上させることができる。On the other hand, in the production of conventional soda-lime plate glass and container glass, there is precipitation of crystals particularly called devitrification, which has been evaded as a defect that distorts the perspective image or causes local distortion, but in bubble glass, it is originally air. Since it has a light-scattering non-transparency due to bubbles, it does not cause an optical problem. In addition, if a large number of fine needle-shaped crystals are deposited and they are made to intersect with each other, the mechanical strength will increase, and it will not soften at a relatively low temperature like glass, and will also have heat resistance. Can be improved.
すなわち本発明の他の目的は針状結晶を無数に析出させ
機械的強度や耐熱性を増大した結晶質泡ガラスの製法を
提供することにある。That is, another object of the present invention is to provide a method for producing a crystalline foam glass in which a large number of needle-like crystals are precipitated to increase mechanical strength and heat resistance.
本発明は針状結晶を固相全体の20vol%以上含有したソ
ーダ石灰系結晶質泡ガラスの製法において、SiO2分の50
wt%以上が結晶質シリカからなるシリカ系原料、石灰系
原料、ソーダ系原料および発泡剤からなる粉体混合物ま
たは混合スラッジを成形する段階、該成形体をソーダ系
原料の溶解温度以上に加熱する段階、当該温度以上ない
し液相温度未満の温度範囲の適宜温度に加熱維持し、発
泡させ、かつ針状結晶を析出せしめる段階よりなるこ
と、前記針状結晶がNa2CaSi3O8、デビトライトまたはウ
ォラストナイトの1種以上であることからなる。The present invention is a method for producing a soda-lime-based crystalline foam glass containing needle-like crystals in an amount of 20 vol% or more of the total solid phase, with a ratio of 50 / SiO 2
Forming a powder mixture or mixed sludge consisting of a silica-based raw material whose wt% is crystalline silica, a lime-based raw material, a soda-based raw material and a foaming agent, and heating the molded body above the melting temperature of the soda-based raw material. Step, heating and maintaining at an appropriate temperature in the temperature range of the temperature above or below the liquidus temperature, foaming, and consisting of a step of precipitating acicular crystals, the acicular crystals Na 2 CaSi 3 O 8 , devitrite or It consists of one or more types of wollastonite.
本発明においてシリカ系原料として石英、トリジマイト
等の結晶質シリカを少なくとも50wt%(以下重量%をあ
らわすときは単に%で示す)以上含むものを用い、石灰
系原料として消石灰、石灰石等カルシウム化合物を含む
ものを使用し、またはアルカリ土類金属化合物を含むも
のを併用し、さらにソーダ系原料として炭酸ソーダ、苛
性ソーダ等ナトリウム化合物を含むものを使用し、また
はカリウム、リチウム化合物を含むものを併用してもよ
い。In the present invention, as the silica-based raw material, use is made of one containing at least 50 wt% of crystalline silica such as quartz and tridymite (hereinafter, simply referred to as% when the weight% is represented), and as the lime-based raw material, slaked lime, limestone and other calcium compounds are included. What is used, or used together with those containing an alkaline earth metal compound, and further used as a soda-based raw material containing sodium compounds such as sodium carbonate, caustic soda, or together with those containing potassium or lithium compounds Good.
シリカ系原料として結晶質シリカを用いず、例えばガラ
スを用いるとNa2CaSi3O8、デビトライト、ウォラストナ
イト等の針状結晶の再結晶化にきわめて長時間の熱処理
を必要とし、また耐熱衝撃性等に悪影響を及ぼすクリス
トバライトを析出し易い。If crystalline silica is not used as the silica-based raw material and glass is used, for example, reheating of needle-shaped crystals of Na 2 CaSi 3 O 8 , devitrite, wollastonite, etc. requires extremely long heat treatment, and thermal shock resistance It is easy to deposit cristobalite, which adversely affects the sex.
一方シリカ系原料として石英等の結晶物を多く用いるこ
とにより、加熱過程でまず該シリカ系原料の一部が殆ど
のアルカリ系原料および一部の石灰系原料と反応してア
ルカリ分に富んだNa2O-CaO-SiO2系融体を形成し、融体
と発泡剤との反応により発泡し、さらに前記融体と未反
応のシリカ系原料、石灰系原料とが反応して前記針状結
晶の生成を容易とする。結晶質シリカは50%以上含むこ
とが必要である。On the other hand, by using a large amount of crystal such as quartz as the silica-based raw material, a portion of the silica-based raw material first reacts with most of the alkali-based raw material and part of the lime-based raw material in the heating process to generate Na rich in alkali. 2 O-CaO-SiO 2 to form a melt, foamed by the reaction of the melt and a foaming agent, further the melt and unreacted silica-based raw material, lime-based raw material to react with the needle crystals To facilitate the generation of. It is necessary to contain 50% or more of crystalline silica.
これらシリカ系原料としては珪砂、珪石、珪岩、あるい
は石英等のシリカ粒を比較的多量に含有する火山灰や凝
灰岩等がある。Examples of these silica-based raw materials include silica sand, silica stone, silica rock, and volcanic ash and tuff containing a relatively large amount of silica particles such as quartz.
シリカ系原料、特に結晶質シリカが石灰、ソーダ系フラ
ックスと迅速に反応するためにはその粒度を微細化する
ことが好ましく、望ましくは270メッシュ以下である。In order for the silica-based raw material, particularly crystalline silica, to react rapidly with lime and soda-based flux, it is preferable to make the particle size smaller, and preferably 270 mesh or less.
発泡剤は公知のCaSO4、Na2SO4、CaCO3、MgCO3、As2O3、
Sb2O3等が採用できる。またNa2CO3は分解時にCO2の殆ど
が系外に逸脱するが、一部は残留し多泡化に寄与する。
発泡剤の量は所望するかさ比重に応じ適宜決定する。Known foaming agents are CaSO 4 , Na 2 SO 4 , CaCO 3 , MgCO 3 , As 2 O 3 ,
Sb 2 O 3 etc. can be adopted. Although Na 2 CO 3 most CO 2 during disassembly deviates out of the system, some of which contribute to the residual Taawa of.
The amount of the foaming agent is appropriately determined according to the desired bulk specific gravity.
本発明において成分範囲をSiO265〜80%、CaO7〜20%、
Na2O10〜20%とすることにより、熱処理が容易であり、
発泡過程で適度な粘性を呈し、均一かつ安定した発泡体
が得られ易く、スムーズな針状結晶の再結晶化が行なわ
れる等多くの利点を有する。当該成分系においてはNa2C
aSi3O8、デビトライト、ウォラストナイトおよびクリス
トバライト(シリカ)の晶出領域にある。うちクリスト
バライトは針状結晶を形成せず、比較的低い温度で転移
による異常体積変化があり、耐熱衝撃や機械的強度に劣
るので好ましくないが、本発明によればその晶出を抑制
できる。In the present invention, the composition range of SiO 2 65-80%, CaO 7-20%,
By setting Na 2 O 10 to 20%, heat treatment is easy,
It has many advantages such as exhibiting an appropriate viscosity in the foaming process, easily obtaining a uniform and stable foam, and smooth recrystallization of needle-shaped crystals. Na 2 C in the component system
In the crystallized region of aSi 3 O 8 , devitrite, wollastonite and cristobalite (silica). Of these, cristobalite does not form acicular crystals, undergoes an abnormal volume change due to transition at a relatively low temperature, and is inferior in thermal shock resistance and mechanical strength, which is not preferable, but according to the present invention, crystallization thereof can be suppressed.
SiO2が65%未満では気泡径が不均一で粗大泡を生じ易
く、微細かつ均一に針系結晶すなわちNa2CaSi3O8、デビ
トライトまたはウォラストナイト等を析出し難く、また
ガラスマトリックスをアルカリ分過剰とし、耐熱、耐候
性等において不充分となる。一方80%を超えると溶融過
程におけるSiO2-Na2O-CaO功融体の生成量が過少であ
り、従って前記針状結晶の生成が不充分となる。If the SiO 2 content is less than 65%, the bubble diameter is not uniform and coarse bubbles are likely to be formed, and it is difficult to precipitate fine and uniform needle crystals, that is, Na 2 CaSi 3 O 8 , devitrite, wollastonite, etc. Excessive amount will result in insufficient heat resistance and weather resistance. On the other hand, if it exceeds 80%, the amount of the SiO 2 —Na 2 O—CaO effective melt produced in the melting process is too small, so that the formation of the needle crystals becomes insufficient.
Na2Oが10%未満またはCaOが7%未満であるとNa2Oまた
はCaOが過少のため前記針状結晶の生成が不充分とな
り、一方Na2OまたはCaOが20%を超えると、微細かつ均
一に針状結晶を析出し難く、気泡径も不均一かつ粗大に
なり易い。If the content of Na 2 O is less than 10% or the content of CaO is less than 7%, the formation of the needle-shaped crystals becomes insufficient because the content of Na 2 O or CaO is too small. On the other hand, if the content of Na 2 O or CaO exceeds 20%, the fine particles become fine. In addition, it is difficult to uniformly deposit needle-like crystals, and the bubble diameter tends to be nonuniform and coarse.
SiO2に対し4%以下の範囲でAl2O3を、CaOに対し、その
1/3以下かつ6%以下の範囲でMgO、SrOまたはBaOの1種
以上を、Na2Oに対し4%以下の範囲でK2OまたはLi2Oの
1種以上を置換導入しても差支えない。またB2O3を5%
以下の範囲で添加導入しても結晶析出系に何等影響しな
い。Al 2 O 3 in the range of 4% or less relative to SiO 2 and CaO
Even if one or more of MgO, SrO or BaO is replaced with 1/3 or less and 6% or less and one or more of K 2 O or Li 2 O is replaced with 4% or less of Na 2 O by substitution. It doesn't matter. B 2 O 3 is 5%
Addition and introduction within the following range has no effect on the crystal precipitation system.
不純物としての0.5〜0.6%程度のFe2O3、MnO2、TiO2等
の混入は何等影響を受けない。The inclusion of about 0.5 to 0.6% of Fe 2 O 3 , MnO 2 , TiO 2, etc. as impurities is not affected at all.
本発明におけるより好適な組成範囲を例示すれば、SiO2
68〜75%、Al2O30〜3%、CaO8〜15%、MgO0〜5%、Na
2O10〜15%、K2O0〜3%である。As an example of a more preferable composition range in the present invention, SiO 2
68-75%, Al 2 O 3 0-3%, CaO 8-15%, MgO 0-5%, Na
2 O 10 to 15% and K 2 O 0 to 3%.
なお、公知の核形成剤であるZrO2、TiO2等を数%オーダ
ーで導入してもむしろクリストバライトが生成し易いの
で好ましくない。It should be noted that even if a known nucleating agent such as ZrO 2 or TiO 2 is introduced in the order of several%, cristobalite is likely to be generated, which is not preferable.
一方粒径数μないし数十μのウォラストナイトを前記原
料に対し0.2〜0.3%ないし数%程度分散混入することに
よりウォラストナイトやデビトライトの晶出が促進され
る傾向にある。On the other hand, crystallization of wollastonite or devitrite tends to be promoted by dispersing and mixing wollastonite having a particle size of several μm to several tens μm in an amount of 0.2 to 0.3% to several% with respect to the raw material.
前記した原料は混合した後公知の圧縮、押出または鋳込
成形法により成形する。概してソーダ系原料として炭酸
ソーダを用いるに際しては、乾式圧縮成形するのが好ま
しく、一方、例えば水添加スラッジを鋳込成形した場
合、炭酸ソーダの凝集膠着あるいはシリカ質原料との分
離不均一化が生じ易い。また苛性ソーダを用いるに際し
ては、泥漿鋳込成形するのが好ましく、一方、例えば乾
式成形した場合、成形後加熱過程で成形体が崩壊し易
い。The above-mentioned raw materials are mixed and then molded by a known compression, extrusion or cast molding method. Generally, when using sodium carbonate as a soda-based raw material, dry compression molding is preferable, while, for example, when water-added sludge is cast-molded, cohesive sticking of sodium carbonate or separation non-uniformity with the siliceous raw material occurs. easy. Further, when using caustic soda, it is preferable to carry out sludge casting molding. On the other hand, in the case of dry molding, for example, the molded body tends to collapse in the heating process after molding.
なお乾式圧縮成形においては基本的には成形後の取扱に
際して試料が崩壊しない程度にプレスすることが必要で
あるが、原料相互の接触を密にし反応性を向上させるう
えで20kg/cm2以上で加圧するのがよい。In dry compression molding, it is basically necessary to press so that the sample does not collapse during handling after molding, but at 20 kg / cm 2 or more in order to close the contact between the raw materials and improve the reactivity. It is good to pressurize.
成形後の原料は熱処理に付される。ソーダ系原料の殆ど
と石灰系原料の一部は略700℃ないし850℃で分解溶融が
進行し、一部の結晶質シリカと反応してアルカリ分に富
んだNa2O-CaO-SiO2系融体を形成する。なお分解溶融お
よび融体形成反応は850℃において著しい。The raw material after molding is subjected to heat treatment. Almost all of the soda-based raw materials and some of the lime-based raw materials undergo decomposition and melting at approximately 700 ° C to 850 ° C, reacting with some crystalline silica and are rich in alkali content Na 2 O-CaO-SiO 2 Form a melt. The decomposition and melt formation reactions are remarkable at 850 ° C.
さらに前記分解溶融温度以上ないし液相温度以下に維持
することにより発泡し、かつ前記融体と未反応のシリカ
原料および石灰系原料との反応により針状結晶が生成す
る。なお液相温度以上に維持すると一時的に結晶が析出
しても消失し、また成形体の形状維持が困難となるので
好ましくない。液相温度は公知の状態図から確認でき、
あるいは予め当該成分系のサンプルを作成して公知の測
定手法により液相温度を測定してもよい。Further, by maintaining the temperature above the decomposition melting temperature to below the liquidus temperature, foaming occurs, and needle-like crystals are generated by the reaction of the melt with the unreacted silica raw material and lime-based raw material. It should be noted that maintaining the temperature above the liquidus temperature is not preferable because even if crystals are temporarily deposited, they disappear and it becomes difficult to maintain the shape of the molded body. The liquidus temperature can be confirmed from the known phase diagram,
Alternatively, a liquid phase temperature may be measured by preparing a sample of the component system in advance and using a known measurement method.
本成分系においては1100℃またはそれ以下程度である。In this component system, the temperature is about 1100 ° C or lower.
当該発泡、結晶析出温度で維持することにより結晶相が
増大するが、固相中の結晶相が20vol%以上でないと充
分な耐熱衝撃性や機械的強度が得られ難い。The crystal phase increases by maintaining the foaming and crystal precipitation temperature, but it is difficult to obtain sufficient thermal shock resistance and mechanical strength unless the crystal phase in the solid phase is 20 vol% or more.
なお、前記析出結晶相以外に、ガラス相、残留石英が認
められる。残留石英は同じシリカ相であるクリストバラ
イトのごとき異常体積変化がなく、熱に対して安定であ
る点において好ましい。In addition to the precipitated crystal phase, a glass phase and residual quartz are recognized. Residual quartz is preferable in that it does not have an abnormal volume change such as cristobalite, which is the same silica phase, and is stable to heat.
シリカ系原料として石英約90%、長石約10%を含む粒度
80〜100メッシュ、200〜270メッシュ、270メッシュ以下
および325メッシュ以下の珪砂を用いた。Particle size containing about 90% quartz and about 10% feldspar as silica-based raw materials
Silica sand of 80-100 mesh, 200-270 mesh, 270 mesh or less and 325 mesh or less was used.
石灰系原料として消石灰〔Ca(OH)2〕の粉末(粒度27
0メッシュ)を、ソーダ系原料として市販の炭酸ソーダ
(Na2CO3)の粉末を用いた。Powder of slaked lime [Ca (OH) 2 ] (particle size 27
(0 mesh) was used as a soda-based raw material powder of commercially available sodium carbonate (Na 2 CO 3 ).
発泡を目的とし、かつ石灰分供給源として市販の硫酸カ
ルシウム(CaSO4、2H2O)および炭酸カルシウム(CaC
O3)をCaO換算で総計5%以下の範囲で用いた。Commercially available calcium sulfate (CaSO 4 , 2H 2 O) and calcium carbonate (CaC) for foaming and as a lime source.
O 3 ) was used in the range of 5% or less in total in terms of CaO.
これら原料を調合し酸化物組成でSiO271.3%、Al2O31.4
%、CaO12.7%、Na2O12.8%、K2O0.8%からなる混合体
とした。なお原料からの不純物として若干量のFe2O3、T
iO2およびSO3の残留が見込まれる。Mixing these raw materials, the oxide composition was SiO 2 71.3%, Al 2 O 3 1.4
%, CaO 12.7%, Na 2 O 12.8%, K 2 O 0.8%. As impurities from the raw materials, some Fe 2 O 3 , T
iO 2 and SO 3 are expected to remain.
これらを方型プレス型に充填し50kg/cm3の圧力下1分間
加圧して成形試料を作製した。These were filled in a square press die and pressed under a pressure of 50 kg / cm 3 for 1 minute to prepare a molded sample.
試料は抵抗加熱電気炉に配置し600℃まで比較的急速に
加熱し、当該温度で試料表面−内部を均熱化すべく10分
保持し、次いで10℃/分の速度で昇温し、800℃〜1100
℃間の所定温度で所定時間保持し徐冷した。The sample is placed in a resistance heating electric furnace and heated relatively quickly to 600 ° C, held at that temperature for 10 minutes to evenly heat the surface of the sample, and then heated at a rate of 10 ° C / min to 800 ° C. ~ 1100
The temperature was maintained at a predetermined temperature between 0 ° C. for a predetermined time and gradually cooled.
得られた試料について以下の測定を行なった。The following measurements were performed on the obtained sample.
比重測定;比重ビンを用いた公知の測定手法による。Specific gravity measurement: According to a known measurement method using a specific gravity bin.
結晶の同定;主にX線回析および鏡下観察により、また
EPMA分析を併用した。Crystal identification; mainly by X-ray diffraction and observation under a mirror,
EPMA analysis was used together.
固相中の結晶量(体積率)の測定;複数試料の複数の任
意切断面について鏡下で結晶相面積率を測定し、平均し
て体積率を算出した。Measurement of the amount of crystals (volume ratio) in the solid phase: The crystal phase area ratio was measured under a mirror for a plurality of arbitrary cut surfaces of a plurality of samples and averaged to calculate the volume ratio.
熱衝撃試験(急熱急冷試験);所定温度に保持した電気
炉中に試料片を投入し、10分後取出して破損の有無を目
視した。うち破損の生じていない上限温度を急熱耐用温
度とした。Thermal shock test (quick heating and quenching test): A sample piece was placed in an electric furnace maintained at a predetermined temperature, and after 10 minutes, it was taken out and visually inspected for damage. Of these, the upper limit temperature at which no damage occurred was defined as the rapid heat endurance temperature.
次いで10℃の水中に投入急冷し、急熱にも破損せず、当
該急熱温度からの急冷でも亀裂が生じない前記急熱温度
の上限を急熱急冷耐用温度とした。Then, it was put into water at 10 ° C. and rapidly cooled, and it was not damaged by rapid heating, and the upper limit of the rapid heating temperature at which cracks did not occur even by rapid cooling from the rapid heating temperature was defined as the rapid heating and quenching durable temperature.
さらに別の原料構成例において、シリカ源としてSiO2分
の50%を珪砂から他の50%をパイレックスガラス粉末
(SiO282%、B2O311%)から供給し、他は前記同様石
灰、ソーダ原料を用いて混合、プレス成形、熱処理を行
ない、同様に測定した。なおこの場合泡ガラス中にはB2
O3が約4%含まれ、その分主にSiO2が減少する。In yet another raw material configuration example, a 50% silica sand of other 50% of SiO 2 minutes as the silica source is supplied from the Pyrex glass powder (SiO 2 82%, B 2 O 3 11%), the other is the same lime , Soda raw material was used for mixing, press molding and heat treatment, and the same measurement was performed. In this case, B 2 in the foam glass
O 3 is contained at about 4%, and SiO 2 is mainly reduced by that amount.
一方、比較例としてシリカ分のうち石英が40%混入し他
にガラス相、若干の輝石を含む火山性ガラス精製物(Si
O282%、Al2O312%、Fe2O30.7%、CaO0.9%、MgO0.4
%、Na2O1%、K2O2%(Ig loss1%))も同様に原料調
製、成形、熱処理し測定に供した。なお泡ガラス中には
Al2O3が約9%含まれ、その分主にSiO2が減少する。On the other hand, as a comparative example, a volcanic glass refined product (Si containing 40% of silica in the silica content and a glass phase and some pyroxene) (Si
O 2 82%, Al 2 O 3 12%, Fe 2 O 3 0.7%, CaO 0.9%, MgO 0.4
%, Na 2 O 1%, K 2 O 2% (Ig loss 1%)) were similarly prepared as raw materials, molded, heat treated, and subjected to measurement. In the foam glass
Al 2 O 3 is contained in about 9%, and SiO 2 mainly decreases by that amount.
また板ガラスカレットに発泡剤としての炭酸カルシウム
(CaO換算で0.5%)を混合し同様に処理したものについ
ても測定に供した。Further, a plate glass cullet mixed with calcium carbonate (0.5% in terms of CaO) as a foaming agent and treated in the same manner was also subjected to the measurement.
結果は第1表に示すようにシリカ源として珪砂、あるい
は石英量50%の珪砂+パイレックスガラスを用いたもの
は850℃以上(炭酸ソーダの溶解、反応温度以上)、110
0℃未満(液相温度未満)に熱処理、維持することによ
りかさ比重1.6以下に発泡膨張しNa2CaSi3O8、デビトラ
イトまたはウォラストナイトの針状結晶が固相中に少な
くとも20vol%以上析出している。また実施例10はウォ
ラストナイト(325メッシュ以下)と予め原料中に1%
混合分散したもので、例えば実施例7に対比しウォラス
トナイトがより多く析出していることがわかる。As shown in Table 1, the results obtained using silica sand or silica sand with 50% quartz + Pyrex glass as the silica source were 850 ° C or higher (sodium carbonate dissolution, reaction temperature or higher), 110
By heat-treating and maintaining below 0 ° C (below liquidus temperature), it expands and expands to a bulk specific gravity of 1.6 or less, and needle-like crystals of Na 2 CaSi 3 O 8 , devitrite or wollastonite precipitate at least 20 vol% in the solid phase. is doing. Example 10 is wollastonite (325 mesh or less) and 1% in the raw material in advance.
It can be seen that worstonite is precipitated in a larger amount as compared with Example 7, in the case of mixed and dispersed.
なお比較例1は炭酸ソーダが充分溶解反応し得ない温
度、比較例2は液相温度以上で熱処理を施したもので、
前者は結晶生成が不充分であり、後者はガラス化が進み
軟化したことを示す。Comparative Example 1 is a temperature at which sodium carbonate cannot sufficiently dissolve and react, and Comparative Example 2 is a heat treatment at a liquidus temperature or higher.
The former indicates insufficient crystal formation, and the latter indicates vitrification and softening.
比較例5の板ガラスカレット系を結晶化(2時間熱処
理)させたものは、デビトライト、ウォラストナイトが
析出しているがその量は%オーダー以下と僅少で急熱試
験においても明白な耐熱衝撃効果を示さない。また表示
しないがさらに1昼夜熱処理してもデビトライト、ウォ
ラストナイト、クリストバライトの結晶量は20%未満で
あり、クリストバライトが析出していることもあって熱
衝撃に対して脆い。In the crystallized plate glass cullet system of Comparative Example 5 (heat treatment for 2 hours), devitrite and wollastonite were precipitated, but the amount thereof was a little less than% order and the thermal shock effect was obvious even in the rapid heat test. Not shown. Although not shown, the crystal content of devitrite, wollastonite, and cristobalite is less than 20% even after heat treatment for another day and night, and it is brittle against thermal shock due to the precipitation of cristobalite.
これら実施例は比較例1、3、4に対比すると明らかな
ように優れた耐急熱急冷性(700℃以上)を示すが、破
断された部分について観察すると、例えば比較例3の板
ガラスカレット系がガラス特有の貝殻状破断面を呈して
いるのに対し、実施例は針状結晶が入込んだ凹凸の激し
い破断面を呈しており、ガラスを接続掛止する作用を有
することが推察される。また比較例4石英量40%の火山
性ガラス質物を用いたものは熱処理に際してアルミナ分
を多く含む粘稠液を形成し、結晶が析出し難く、約1%
のネフェリン、ウォラストナイトが認められるが明白な
耐熱衝撃性を示さない。These examples show excellent rapid thermal quenching resistance (700 ° C. or higher) as is clear when compared with Comparative Examples 1, 3 and 4, but when the broken portion is observed, for example, the flat glass cullet system of Comparative Example 3 is observed. Has a shell-like fracture surface peculiar to glass, whereas the Example has a severely uneven fracture surface with needle-shaped crystals inset, and it is presumed that it has a function of connecting and locking glass. . Comparative Example 4 The one using a volcanic vitreous substance having a quartz content of 40% formed a viscous liquid containing a large amount of alumina during heat treatment, and it was difficult for crystals to precipitate.
Nepheline and wollastonite are found, but they do not show obvious thermal shock resistance.
さらに実施例5、7と比較例3の試料について抗折強度
を測定したところ、後者の比較例が90kg/cm2であるのに
対し前二者の実施例は夫々170,200kg/cm2にも達してお
り結晶相が機械的強度の向上にも効果を発揮しているこ
とは明白であった。Further, when the bending strength of the samples of Examples 5 and 7 and Comparative Example 3 was measured, the latter Comparative Example was 90 kg / cm 2 , whereas the former two Examples were 170,200 kg / cm 2 respectively . It has been clear that the crystal phase has also been effective in improving the mechanical strength.
〔発明の効果〕 本発明によれば、比較的低温、短時間の熱処理により、
効率的かつ低コストで、非ガラス系元原料から針状結晶
を多く含む結晶質泡ガラスを製造でき、また該結晶質泡
ガラスは耐熱衝撃性、機械的強度等において優れるとい
う効果を奏する。 [Effects of the Invention] According to the present invention, by heat treatment at a relatively low temperature for a short time,
Efficient and low cost, a crystalline foam glass containing a large amount of needle-like crystals can be produced from a non-glass-based raw material, and the crystalline foam glass is excellent in thermal shock resistance, mechanical strength and the like.
Claims (2)
るソーダ石灰系結晶質泡ガラスの製法において、SiO2分
の50wt%以上が結晶質シリカからなるシリカ系原料、石
灰系原料、ソーダ系原料および発泡剤からなる粉体混合
物または混合スラッジを成形する段階、該成形体をソー
ダ系原料の溶解温度以上に加熱する段階、当該温度以上
ないし液相温度未満の温度範囲の適宜温度に加熱維持
し、発泡させ、かつ針状結晶を析出せしめる段階よりな
ることを特徴とする結晶質泡ガラスの製法。1. A method for producing a soda-lime crystalline foam glass containing needle-shaped crystals in an amount of 20 vol% or more of the total solid phase, a silica-based raw material in which 50 wt% or more of SiO 2 content is crystalline silica, a lime-based raw material, Forming a powder mixture or mixed sludge comprising a soda-based raw material and a foaming agent, heating the formed body to a temperature above the melting temperature of the soda-based raw material, to an appropriate temperature in the temperature range above or below the liquidus temperature. A process for producing crystalline foam glass, which comprises the steps of maintaining heating, foaming, and precipitating acicular crystals.
はウォラストナイトの1種以上からなることを特徴とす
る請求項1記載の結晶質泡ガラスの製法。2. The method for producing a crystalline foam glass according to claim 1, wherein the acicular crystals are one or more of Na 2 CaSi 3 O 8 , devitrite and wollastonite.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63173185A JPH0674155B2 (en) | 1988-07-12 | 1988-07-12 | Manufacturing method of crystalline foam glass |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63173185A JPH0674155B2 (en) | 1988-07-12 | 1988-07-12 | Manufacturing method of crystalline foam glass |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0222145A JPH0222145A (en) | 1990-01-25 |
JPH0674155B2 true JPH0674155B2 (en) | 1994-09-21 |
Family
ID=15955669
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP63173185A Expired - Lifetime JPH0674155B2 (en) | 1988-07-12 | 1988-07-12 | Manufacturing method of crystalline foam glass |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0674155B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100484892B1 (en) * | 2002-08-28 | 2005-04-28 | 재단법인서울대학교산학협력재단 | Self-foamed Porous Ceramic Compositions and Method for Making Porous Ceramic Using the Same |
CN115893846A (en) * | 2022-11-15 | 2023-04-04 | 中国科学院过程工程研究所 | Production method of photovoltaic silicon slag microcrystalline thin plate |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5820714A (en) * | 1981-07-22 | 1983-02-07 | Nippon Sheet Glass Co Ltd | Preparation of fibrous wollatonite crystal |
JPS6374936A (en) * | 1986-09-17 | 1988-04-05 | Kubota Ltd | Crystallized glass and production thereof |
-
1988
- 1988-07-12 JP JP63173185A patent/JPH0674155B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH0222145A (en) | 1990-01-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0076692B1 (en) | Alkali metal, calcium fluorosilicate glass-ceramics and production thereof | |
EP0126572B1 (en) | Potassium fluorrichterite glass-ceramic and method | |
US3445252A (en) | Alpha- and beta-cristobalite glassceramic articles and methods | |
US5089445A (en) | Fusion sealing materials | |
US4666867A (en) | Hydrogen-containing glass microfoams and gas-ceramics | |
JP2010132541A (en) | Method for producing alkali-free glass | |
JP2001180967A (en) | Manufacturing method of glass composition | |
EP0494357A1 (en) | Glass-ceramic-bonded ceramic composites | |
US4861734A (en) | Alkaline earth aluminoborate glass-ceramics | |
US5422320A (en) | Alkaline earth metal silicate compositions for use in glass manufacture | |
US5711779A (en) | Method for forming zinc phosphate based glasses | |
JP3269416B2 (en) | Crystallized glass and method for producing the same | |
JPH0674155B2 (en) | Manufacturing method of crystalline foam glass | |
US3007804A (en) | Ceramic material | |
US4022627A (en) | Crystallizable glasses and nephetine glass-ceramics containing ZrO2 and ZnO | |
JPH0446908B2 (en) | ||
US3846143A (en) | Source composition for alkali metal oxides and aluminum oxide | |
US4246034A (en) | Devitrifying solder sealing glasses | |
CN108623154B (en) | Surface-strengthened transparent glass | |
JPH03199136A (en) | Production of pyroxene-line crystallized glass | |
JPH02145456A (en) | Crystalline glass and production thereof | |
JP3082862B2 (en) | Sealing material | |
US3231399A (en) | Semicrystalline ceramic bodies and method | |
CA1250600A (en) | Hydrogen-containing glass microfoams and gas-ceramics | |
JPS58199742A (en) | Calcium fluoride phlogopite glass-ceramic |