JPH0673501A - High carbon steel wire rod or high carbon steel wire excellent in wire drawability and its production - Google Patents

High carbon steel wire rod or high carbon steel wire excellent in wire drawability and its production

Info

Publication number
JPH0673501A
JPH0673501A JP12298493A JP12298493A JPH0673501A JP H0673501 A JPH0673501 A JP H0673501A JP 12298493 A JP12298493 A JP 12298493A JP 12298493 A JP12298493 A JP 12298493A JP H0673501 A JPH0673501 A JP H0673501A
Authority
JP
Japan
Prior art keywords
steel wire
temperature
cooling
carbon steel
temperature range
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP12298493A
Other languages
Japanese (ja)
Other versions
JP2984888B2 (en
Inventor
Akifumi Kawana
章文 川名
Yukio Ochiai
征雄 落合
Hiroshi Oba
浩 大羽
Tsugunori Nishida
世紀 西田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP5122984A priority Critical patent/JP2984888B2/en
Publication of JPH0673501A publication Critical patent/JPH0673501A/en
Priority to PCT/JP1994/000576 priority patent/WO1994028189A1/en
Priority to DE69423619T priority patent/DE69423619T2/en
Priority to US08/545,675 priority patent/US5658402A/en
Priority to EP94912062A priority patent/EP0708183B1/en
Application granted granted Critical
Publication of JP2984888B2 publication Critical patent/JP2984888B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Strip Materials And Filament Materials (AREA)

Abstract

PURPOSE:To produce a high carbon steel wire rod or a high carbon steel wire excellent in wire drawability. CONSTITUTION:The high carbon steel wire rod or the high carbon steel wire excellent in wire drawability, which has a composition consisting of, by weight, 0.70-1.20% C, 0.15-1.00% Si, 0.30-0.90% Mn, further 0.006-0.100% Al and/or 0.01-0.35% Ti, P and S respectively limited to <=0.02% and <=0.01%, and the balance Fe with inevitable impurities and where the upper bainite structure prepared by means of two stage transformation comprises >=80% by area ratio and also a micro structure of <=Hv450, is produced. The composition can further contain 0.10-0.50% Cr as alloy component. By this method, the high carbon steel wire rod or high carbon steel wire excellent in wire drawability can be produced and the necessity of intermediate heat treatment in the secondary working stage can be obviated, and remarkable cost reduction, shortening of a term of works, and cost equipment reduction can be attained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、伸線加工性に優れた高
炭素鋼線材または鋼線とその製造方法に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high carbon steel wire rod or steel wire excellent in wire drawing workability and a method for producing the same.

【0002】[0002]

【従来の技術】通常線材または鋼線は、種々の最終製品
の用途に応じて、伸線加工が行われるが、この伸線加工
の前に予め伸線に適した線材あるいは鋼線にしておく必
要がある。従来その対策として、特公昭60−5621
5号公報に開示されているように、オーステナイト化温
度にあるC:0.2〜1.0%、Si<0.30%、M
n:0.30〜0.90%を含む鋼線材を、カリウム硝
酸塩系またはナトリウム硝酸塩を、単独又は複合して3
50〜600℃の温度に加熱溶融し、ガス体により攪拌
した溶融塩に浸漬して、800〜600℃間の冷却速度
を、15〜60℃/secにすることを特徴とする高強
度かつ強度ばらつきの小さい鋼線材の熱処理方法があ
る。
2. Description of the Related Art Usually, wire rods or steel wires are subjected to wire drawing according to the use of various final products. Before this wire drawing, wire rods or steel wires suitable for wire drawing are prepared beforehand. There is a need. Conventionally, as a countermeasure against it, Japanese Patent Publication No. 60-5621
As disclosed in Japanese Patent Publication No. 5: 5, C at an austenitizing temperature: 0.2 to 1.0%, Si <0.30%, M
n: 0.30 to 0.90% of a steel wire rod, potassium nitrate-based or sodium nitrate alone or in combination, 3
High strength and strength characterized by heating and melting at a temperature of 50 to 600 ° C. and immersing in a molten salt stirred by a gas body to set a cooling rate between 800 and 600 ° C. to 15 to 60 ° C./sec. There is a heat treatment method for steel wire rods with small variations.

【0003】[0003]

【発明が解決しようとする課題】しかし、前記特許公報
記載の熱処理方法により得られるパーライト組織の線材
では、伸線加工工程において高減面率における延性の劣
化、捻回試験での割れの発生(以下デラミネーションと
称する)が問題となっている。本発明は、前記の如き従
来技術の問題点を有利に解決することのできる伸線加工
性の優れた高炭素鋼線材または鋼線およびその製造方法
を提供することを目的とする。
However, in the wire rod having a pearlite structure obtained by the heat treatment method described in the above-mentioned patent publication, the ductility is deteriorated at a high area reduction rate in the wire drawing process, and cracks are generated in the twist test ( (Hereinafter referred to as delamination) is a problem. An object of the present invention is to provide a high carbon steel wire rod or steel wire having excellent wire drawing workability and a method for producing the same, which can advantageously solve the above-mentioned problems of the prior art.

【0004】[0004]

【課題を解決するための手段】本発明の要旨とするとこ
ろは下記のとおりである。 (1) 重量%で C:0.70〜1.20%、 Si:0.15〜1.00%、 Mn:0.30〜0.90%、 を含有し、さらに Al:0.006〜0.100%、 Ti:0.01〜0.35% のいずれか1種または2種を含有し、 P:0.02%以下、 S:0.01%以下 に制限され、残部がFeおよび不可避的不純物よりな
り、2段変態により得られた上部ベイナイト組織が面積
率で80%以上で、かつHvが450以下であるミクロ
組織を有することを特徴とする伸線加工性に優れた高炭
素鋼線材または鋼線。
The subject matter of the present invention is as follows. (1) C: 0.70 to 1.20% by weight%, Si: 0.15 to 1.00%, Mn: 0.30 to 0.90%, and further Al: 0.006 to. 0.100%, Ti: 0.01 to 0.35%, containing any one or two kinds, P: 0.02% or less, S: 0.01% or less, the balance being Fe and High carbon with excellent wire drawability, characterized by having an unavoidable impurity and having a microstructure in which an upper bainite structure obtained by two-step transformation has an area ratio of 80% or more and Hv of 450 or less. Steel wire rod or steel wire.

【0005】(2) 合金成分として、さらにCr:
0.10〜0.50%を含有することを特徴とする前項
1記載の伸線加工性に優れた高炭素鋼線材または鋼線。 (3) 重量%で C:0.70〜1.20%、 Si:0.15〜1.00%、 Mn:0.30〜0.90%、 を含有し、さらに Al:0.006〜0.100%、 Ti:0.01〜0.35% のいずれか1種または2種を含有し、 P:0.02%以下、 S:0.01%以下 に制限され、残部がFeおよび不可避的不純物よりなる
鋼片を線材に圧延後、1100〜755℃の温度範囲か
ら60〜300℃/secの冷却速度で350〜500
℃の温度範囲に冷却し、この温度範囲に、ベイナイト変
態が開始しない範囲内でまたはベイナイト変態開始後で
かつベイナイト変態終了前の範囲内で、一定時間保定し
た後、昇温し、完全にベイナイト変態が終了するまで保
定することを特徴とする伸線加工性に優れた高炭素鋼線
材の製造方法。
(2) As an alloy component, Cr:
0.10 to 0.50% is contained, The high carbon steel wire rod or steel wire excellent in wire drawing workability of the preceding clause 1 characterized by the above-mentioned. (3) C: 0.70 to 1.20% by weight%, Si: 0.15 to 1.00%, Mn: 0.30 to 0.90%, and Al: 0.006 to. 0.100%, Ti: 0.01 to 0.35%, containing any one or two kinds, P: 0.02% or less, S: 0.01% or less, the balance being Fe and After rolling a steel slab consisting of inevitable impurities into a wire rod, 350 to 500 at a cooling rate of 60 to 300 ° C./sec from a temperature range of 1100 to 755 ° C.
After cooling to a temperature range of ℃, within this temperature range, within the range where bainite transformation does not start, or after starting bainite transformation and before ending bainite transformation, the temperature is raised for a certain time, and bainite is completely cooled. A method for producing a high-carbon steel wire rod excellent in wire drawing workability, characterized by holding until the transformation is completed.

【0006】(4) 出発鋼片が、合金成分としてさら
にCr:0.10〜0.50%を含有することを特徴と
する前項3記載の伸線加工性に優れた高炭素鋼線材の製
造方法。 (5) 出発鋼片を線材に圧延後、1100〜755℃
の温度範囲から60〜300℃/secの冷却速度で3
50〜500℃の温度範囲に冷却し、この温度範囲に1
秒以上、かつベイナイト変態が開始しない範囲内で下記
式(1)で定める時間X秒以下保定した後、10℃以
上、600−T1 (T1 :冷却後の保定温度)℃以下昇
温し、完全にベイナイト変態が終了するまで保定するこ
とを特徴とする前項3または4記載の伸線加工性に優れ
た高炭素鋼線材の製造方法。
(4) Production of a high carbon steel wire rod excellent in wire drawing workability as described in the above item 3, wherein the starting steel slab further contains Cr: 0.10 to 0.50% as an alloy component. Method. (5) After rolling the starting steel strip into a wire rod, 1100 to 755 ° C
3 at a cooling rate of 60 to 300 ° C / sec from the temperature range of
Cool to a temperature range of 50-500 ° C, and
After holding for X seconds or more and for a time of not more than X seconds defined by the following formula (1) within a range where bainite transformation does not start, increase the temperature by 10 ° C or more and 600-T 1 (T 1 : holding temperature after cooling) ° C or less. The method for producing a high carbon steel wire rod having excellent wire drawability according to the above item 3 or 4, wherein the bainite transformation is retained until the bainite transformation is completely completed.

【0007】 X=exp(16.03−0.0307×T1)……(1) T1 :冷却後の保定温度 (6) 出発鋼片を線材に圧延後、1100〜755℃
の温度範囲から60〜300℃/secの冷却速度で3
50〜500℃の温度範囲に冷却し、この温度範囲にベ
イナイト変態開始後、ベイナイト変態が終了する以前、
すなわち下記式(2)で定める時間Y秒以下保定した
後、10℃以上、600−T1 (T1 :冷却後の保定温
度)℃以下昇温し、完全にベイナイト変態が終了するま
で保定することを特徴とする前項3または4記載の伸線
加工性に優れた高炭素鋼線材の製造方法。
X = exp (16.03-0.0307 × T 1 ) ... (1) T 1 : retention temperature after cooling (6) After rolling the starting steel piece into a wire rod, 1100 to 755 ° C.
3 at a cooling rate of 60 to 300 ° C / sec from the temperature range of
After cooling to a temperature range of 50 to 500 ° C. and starting the bainite transformation within this temperature range, before the bainite transformation ends,
That is, after being held for a time Y seconds or less defined by the following formula (2), the temperature is raised to 10 ° C. or more and 600-T 1 (T 1 : a holding temperature after cooling) ° C. or less and held until the bainite transformation is completed. The method for producing a high carbon steel wire rod having excellent wire drawability according to the above item 3 or 4, characterized in that.

【0008】 Y=exp(19.83−0.0329×T1)……(2) T1 :冷却後の保定温度 (7) 重量%で C:0.70〜1.20%、 Si:0.15〜1.00%、 Mn:0.30〜0.90%、 を含有し、さらに Al:0.006〜0.100%、 Ti:0.01〜0.35% のいずれか1種または2種を含有し、 P:0.02%以下、 S:0.01%以下 に制限され、残部がFeおよび不可避的不純物よりなる
鋼線を1100〜755℃の加熱温度範囲から60〜3
00℃/secの冷却速度で350〜500℃の温度範
囲に冷却し、この温度範囲に、ベイナイト変態が開始し
ない範囲内でまたはベイナイト変態開始後でかつベイナ
イト変態終了前の範囲内で、一定時間保定した後、昇温
し、完全にベイナイト変態が終了するまで保定すること
を特徴とする伸線加工性に優れた高炭素鋼鋼線の製造方
法。
Y = exp (19.83-0.0329 × T 1 ) ... (2) T 1 : holding temperature after cooling (7) C: 0.70 to 1.20% by weight, Si: 0.15 to 1.00%, Mn: 0.30 to 0.90%, and further, Al: 0.006 to 0.100%, Ti: 0.01 to 0.35%. A steel wire containing one or two kinds, P: 0.02% or less, S: 0.01% or less, and the balance being Fe and inevitable impurities from the heating temperature range of 1100 to 755 ° C. and 60 to Three
It is cooled to a temperature range of 350 to 500 ° C. at a cooling rate of 00 ° C./sec, and within this temperature range, within a range in which bainite transformation does not start or after bainite transformation starts and before bainite transformation ends, for a certain time. A method for producing a high-carbon steel wire excellent in wire drawing workability, which comprises holding the material and then raising the temperature and holding until the bainite transformation is completed.

【0009】(8) 出発鋼線が、合金成分としてさら
にCr:0.10〜0.50%を含有することを特徴と
する前項7記載の伸線加工性に優れた高炭素鋼鋼線の製
造方法。 (9) 出発鋼線を1100〜755℃の加熱温度範囲
から60〜300℃/secの冷却速度で350〜50
0℃の温度範囲に冷却し、この温度範囲に1秒以上、か
つベイナイト変態が開始しない範囲内で下記式(1)で
定める時間X秒以下保定した後、10℃以上、600−
1 (T1 :冷却後の保定温度)℃以下昇温し、完全に
ベイナイト変態が終了するまで保定することを特徴とす
る前項6または7記載の伸線加工性に優れた高炭素鋼鋼
線の製造方法。
(8) The starting steel wire further comprises Cr: 0.10 to 0.50% as an alloy component, which is a high carbon steel wire excellent in wire drawing workability as described in 7 above. Production method. (9) The starting steel wire is heated in the range of 1100 to 755 ° C. to 350 to 50 at a cooling rate of 60 to 300 ° C./sec.
After cooling to a temperature range of 0 ° C. and holding in this temperature range for 1 second or longer and for a time X seconds or shorter defined by the following formula (1) within a range in which bainite transformation does not start, 10 ° C. or higher, 600−
T 1 (T 1 : retention temperature after cooling) ° C. or less and hold until complete bainite transformation is completed, high carbon steel having excellent wire drawability according to item 6 or 7 above Wire manufacturing method.

【0010】 X=exp(16.03−0.0307×T1)……(1) T1 :冷却後の保定温度 (10) 出発鋼線を1100〜755℃の加熱温度範
囲から60〜300℃/secの冷却速度で350〜5
00℃の温度範囲に冷却し、この温度範囲にベイナイト
変態開始後、ベイナイト変態が終了する以前、すなわち
下記式(2)で定める時間Y秒以下保定した後、10℃
以上、600−T1 (T1 :冷却後の保定温度)℃以下
昇温し、完全にベイナイト変態が終了するまで保定する
ことを特徴とする前項6または7記載の伸線加工性に優
れた高炭素鋼鋼線の製造方法。
X = exp (16.03−0.0307 × T 1 ) ... (1) T 1 : retention temperature after cooling (10) The starting steel wire is heated from the heating temperature range of 1100 to 755 ° C. to 60 to 300. 350-5 at a cooling rate of ° C / sec
After cooling to a temperature range of 00 ° C and starting the bainite transformation within this temperature range, before the bainite transformation ends, that is, after holding for a time Y seconds or less defined by the following formula (2), 10 ° C
As described above, the wire drawing workability described in the above item 6 or 7 is excellent, in which the temperature is raised to 600-T 1 (T 1 : retention temperature after cooling) ° C. or less and retained until the bainite transformation is completely completed. Manufacturing method of high carbon steel wire.

【0011】 Y=exp(19.83−0.0329×T1)……(2) T1 :冷却後の保定温度Y = exp (19.83-0.0329 × T 1 ) ... (2) T 1 : holding temperature after cooling

【0012】以下、本発明を詳細に説明する。The present invention will be described in detail below.

【0013】[0013]

【作用】本発明におけるベイナイト線材および鋼線の化
学成分の限定理由について述べる。Cは鋼の強度と延性
を支配する基本的な元素であり、高炭素化するほど強度
が向上する。下限は焼入性と強度を確保するために0.
70%とした。上限は初析セメンタイトの発生を防止す
るために1.20%とした。
The reason for limiting the chemical composition of the bainite wire rod and the steel wire in the present invention will be described. C is a basic element that controls the strength and ductility of steel, and the higher the carbon content, the higher the strength. The lower limit is 0 to ensure hardenability and strength.
It was 70%. The upper limit was 1.20% to prevent the occurrence of pro-eutectoid cementite.

【0014】Siは鋼の脱酸剤として0.15%以上加
える。また鋼を固溶強化する元素であると共に、鋼線の
リラクセーションロスを低減できる元素である。しか
し、スケール生成量を減少させ、メカニカルデスケーリ
ング性を悪くするほか、線材のボンデ潤滑性をやや低下
させる。そのために上限は1.00%とした。Mnは脱
酸剤として0.30%以上加える。また鋼に固溶して強
化する元素であるが、添加量を増加させると線材中心部
において偏析を生じ易くなる。偏析部は焼入性が向上
し、変態終了時間が長時間側にずれるため、未変態部が
マルテンサイトとなり、伸線加工中の断線につながる。
そこで、上限は0.90%とした。
Si is added as a deoxidizing agent for steel in an amount of 0.15% or more. Further, it is an element that strengthens the solid solution of steel and can reduce the relaxation loss of the steel wire. However, it reduces the amount of scale generation, deteriorates the mechanical descaling property, and slightly lowers the bonder lubrication property of the wire. Therefore, the upper limit was made 1.00%. 0.30% or more of Mn is added as a deoxidizing agent. Further, it is an element that forms a solid solution in steel and strengthens it, but if the amount of addition is increased, segregation easily occurs at the center of the wire. Since the segregated portion has improved hardenability and the transformation end time shifts to the long side, the untransformed portion becomes martensite, which leads to disconnection during wire drawing.
Therefore, the upper limit is set to 0.90%.

【0015】Alは脱酸作用をするほか、鋼中のNを固
定し、細粒オーステナイトにするために最も経済的な元
素である。上限は非金属介在物の増加を考慮し0.10
0%とし、下限はAlの効果が表れる0.006%とし
た。Tiは現在すでにTi脱酸鋼、主としてプレイン炭
素のオーステナイト結晶粒の調整作用に利用されてい
る。上限はTi介在物の増加を抑えることと、鋼中への
離固溶炭窒化物の生成を抑えるため、0.35%とし
た。下限はこれらの作用が効果的である0.01%とし
た。
Al is the most economical element for not only deoxidizing but also fixing N in steel to make fine-grained austenite. The upper limit is 0.10 considering the increase of non-metallic inclusions.
The lower limit is 0%, and the lower limit is 0.006% at which the effect of Al appears. Ti is already used for controlling the austenite grains of Ti deoxidized steel, mainly plain carbon. The upper limit was set to 0.35% in order to suppress the increase of Ti inclusions and to suppress the formation of dissolved carbonitride in the steel. The lower limit was set to 0.01% where these actions are effective.

【0016】なお、本発明においては、AlおよびTi
の1種または2種が添加され得る。SおよびPは結晶粒
界に析出し、鋼の特性を劣化させるため、できる限り低
く抑える必要がある。そのためSの上限を0.01%と
し、Pの上限を0.02%とした。
In the present invention, Al and Ti are used.
One or two of the above can be added. Since S and P precipitate at grain boundaries and deteriorate the properties of steel, it is necessary to keep S and P as low as possible. Therefore, the upper limit of S is set to 0.01% and the upper limit of P is set to 0.02%.

【0017】Crは鋼の強度を増加させるために必要に
応じて添加される元素であり、添加量が増えるに従って
強度は増加する。しかし、焼入性も向上し、変態終了線
が長時間側に移動する。これにより、熱処理に必要な時
間も長くなるため、上限を0.50%とし、また下限は
強度を増すために0.10%とした。
Cr is an element added as necessary to increase the strength of steel, and the strength increases as the amount of addition increases. However, the hardenability is also improved, and the transformation end line moves to the long side. As a result, the time required for heat treatment also becomes longer, so the upper limit was made 0.50%, and the lower limit was made 0.10% to increase strength.

【0018】本発明の製造方法の限定理由は以下に述べ
るとおりである。線材圧延後または鋼線加熱後の冷却開
始温度(T0)は変態後の組織に影響を与える。下限は
平衡変態開始温度であるオーステナイト変態点(755
℃)以上とした。上限はオーステナイト結晶粒の異常成
長を抑えるために1100℃とした。
The reasons for limiting the manufacturing method of the present invention are as follows. The cooling start temperature (T 0 ) after the wire rod is rolled or the steel wire is heated affects the structure after transformation. The lower limit is the austenite transformation point (755
℃) or more. The upper limit was set to 1100 ° C in order to suppress abnormal growth of austenite crystal grains.

【0019】線材圧延後または鋼線加熱後における冷却
速度(V1)はパーライト変態の開始を抑制するための
重要な因子である。このことを本発明者等は実験的に求
めた。初期冷却速度が60℃/sec未満で緩冷した場
合、パーライト変態のノーズ位置より高温側で変態が開
始し、パーライト組織が生成するため完全なベイナイト
組織が得られない。ベイナイト組織の生成温度は500
℃以下であるが、完全なベイナイト組織を生成させるた
めには冷却初期に急激に冷却する必要がある。そこで冷
却速度(V1)の下限を60℃/secとし、上限は工
業的に可能な300℃/secとした。
The cooling rate (V 1 ) after rolling the wire or heating the steel wire is an important factor for suppressing the initiation of pearlite transformation. The present inventors experimentally obtained this. When the initial cooling rate is slower than 60 ° C./sec, when the material is slowly cooled, the transformation starts on the higher temperature side than the nose position of the pearlite transformation, and the pearlite structure is generated, so that the complete bainite structure cannot be obtained. Bainite structure formation temperature is 500
Although it is below ℃, it is necessary to cool rapidly at the initial stage of cooling in order to generate a complete bainite structure. Therefore, the lower limit of the cooling rate (V 1 ) is set to 60 ° C./sec, and the upper limit is set to 300 ° C./sec which is industrially possible.

【0020】冷却後の恒温保持温度(T1)は生成する
組織を決定する重要な因子である。保持温度が500℃
超では線材または鋼線中心部にパーライト組織が生成す
るため、引張強さが上昇し伸線加工性が劣化する。また
保持温度が350℃未満ではベイナイト組織中のセメン
タイトの粒状化が始まることにより、引張強さが上昇
し、伸線加工性が劣化する。このため恒温変態温度の上
限を500℃、下限を350℃とした。
The isothermal holding temperature (T 1 ) after cooling is an important factor that determines the tissue to be formed. Holding temperature is 500 ℃
If it exceeds the above range, a pearlite structure is generated in the central part of the wire or steel wire, so that the tensile strength increases and wire drawability deteriorates. When the holding temperature is lower than 350 ° C, the cementite in the bainite structure starts to be granulated, so that the tensile strength increases and the wire drawability deteriorates. Therefore, the upper limit of the isothermal transformation temperature is 500 ° C and the lower limit is 350 ° C.

【0021】350〜500℃に一定時間以内保持する
ことにより過冷オーステナイト組織が得られる。その後
温度を上昇させることにより出現するベイナイト組織
は、等温変態に比較し、セメンタイトの析出が粗くな
る。このため2段変態させた上部ベイナイト組織は軟質
化する。完全2段変態の場合は、350〜500℃の温
度範囲での必要な過冷時間(t 1)は、過冷オーステナ
イト組織を生成するのに必要な時間以上で、かつ上限は
ベイナイト変態が開始する以前までとする。好ましくは
1秒以上かつ下記式で示すX秒以下とする。
Hold at 350 to 500 ° C. for a fixed time
As a result, a supercooled austenite structure is obtained. afterwards
Bainite structure that emerges with increasing temperature
Shows that the precipitation of cementite is coarser than that of the isothermal transformation.
It Therefore, the upper bainite structure transformed by two steps is soft
Turn into. In the case of complete two-step transformation, a temperature of 350 to 500 ° C
Degree of required supercooling time (t 1) Is a supercooled austena
It is more than the time required to generate
Before the start of the bainite transformation. Preferably
It is 1 second or more and X seconds or less shown by the following formula.

【0022】X=exp(16.03−0.0307×
1 )(T1 :冷却後の保定温度) 過冷後、2段変態させる場合の昇温温度幅(ΔT)は、
下限を2段変態による軟質化効果が現れる10℃とし、
上限は昇温後の温度を600℃以下にする必要があるた
め下記式に示すΔT以下とする。 ΔT=600−T1 (T1 :冷却後の保定温度) 昇温後の保定時間(t2)は完全に変態が完了する迄と
する。
X = exp (16.03-0.0307 ×)
T 1 ) (T 1 : retention temperature after cooling) The temperature rise range (ΔT) in the case of two-step transformation after supercooling is
The lower limit is set to 10 ° C where the softening effect due to the two-step transformation appears,
Since the upper limit needs to be 600 ° C. or lower after the temperature is raised, it is set to ΔT or less shown in the following formula. ΔT = 600−T 1 (T 1 : retention temperature after cooling) The retention time (t 2 ) after the temperature rise is until the transformation is completely completed.

【0023】混合2段変態の場合は、350〜500℃
の温度範囲での必要な過冷時間(t 1)は、ベイナイト
変態開始後下記式で示すY秒以下とする。 Y=exp(19.83−0.0329×T1
(T1 :冷却後の保定温度) 過冷後、2段変態させる場合の昇温温度幅(ΔT)は完
全2段変態の場合と同様に、下限を2段変態による軟質
化効果が現れる10℃とし、上限は昇温後の温度を60
0℃以下にする必要があるため下記式に示すΔT以下と
する。
In the case of mixed two-step transformation, 350 to 500 ° C.
Required supercooling time (t 1) Is bainite
After the start of transformation, it is set to Y seconds or less shown by the following formula. Y = exp (19.83-0.0329 × T1)
(T1: Holding temperature after cooling) After supercooling, the temperature rise width (ΔT) in the case of two-step transformation is complete
As with all 2-step transformation, the lower limit is soft due to 2-step transformation
The temperature is 10 ° C, and the upper limit is 60 ° C.
Since it is necessary to keep the temperature below 0 ° C,
To do.

【0024】 ΔT=600−T1 (T1 :冷却後の保定温度) 恒温保定温度500℃超で処理したパーライト線材また
は鋼線は線材または鋼線中心部にパーライト組織が生成
する。パーライト組織はセメンタイトとフェライトが層
状構造を有しているため、加工硬化には大きな寄与をも
たらすが、延性の低下が妨げない。このため高減面率領
域において引張強さが上昇しするとともに捻回特性が劣
化し、デラミネーションの発生をまねく。
ΔT = 600−T 1 (T 1 : retention temperature after cooling) In a pearlite wire or steel wire treated at a constant temperature of more than 500 ° C., a pearlite structure is formed at the center of the wire or steel wire. Since the pearlite structure has a layered structure of cementite and ferrite, it contributes greatly to work hardening, but the decrease in ductility does not prevent it. For this reason, in the high surface area reduction region, the tensile strength increases and the twisting characteristic deteriorates, which causes delamination.

【0025】これに対して、本発明に従い2段変態させ
たベイナイト線材または鋼線は、フェライト中に粗いセ
メンタイトが分散している状態にあるため加工硬化を抑
えられる。これにより高減面率領域までデラミネーショ
ンの発生を抑制でき、伸線加工が可能である。ベイナイ
ト組織の面積率の測定法は、断面内の組織観察から格子
点法により求める。面積率はベイナイト組織の生成状況
を示す重要な指標であり、伸線加工性に影響を与える。
面積率の下限は2段変態効果が顕著に現れる80%とし
た。
On the other hand, the bainite wire or steel wire transformed in two stages according to the present invention is in a state in which coarse cementite is dispersed in ferrite, so that work hardening can be suppressed. As a result, it is possible to suppress the occurrence of delamination even in a high area reduction ratio area, and it is possible to perform wire drawing. The area ratio of the bainite structure is measured by observing the structure in the cross section by the lattice point method. The area ratio is an important index indicating the formation state of bainite structure and affects the wire drawability.
The lower limit of the area ratio was set to 80% at which the two-step transformation effect remarkably appears.

【0026】上部ベイナイト組織のビッカース硬度はそ
の試料の特性を示すのに重要な因子である。冷却過程及
び昇温過程を施した2段変態させたベイナイト線材また
は鋼線は、等温変態させた場合に比較し、セメンタイト
の析出が粗くなる。このため2段変態させた上部ベイナ
イト組織は軟質化する。ビッカース硬度の上限はC量の
影響を考え450以下とした。
The Vickers hardness of the upper bainite structure is an important factor for showing the characteristics of the sample. The bainite wire rod or steel wire subjected to the two-step transformation that has undergone the cooling process and the temperature raising process has coarser precipitation of cementite, as compared with the case where the isothermal transformation is performed. For this reason, the upper bainite structure that has undergone the two-step transformation is softened. The upper limit of the Vickers hardness was set to 450 or less considering the influence of the C content.

【0027】[0027]

【実施例】【Example】

実施例1 表1に供試鋼の化学成分を示す。表1のA〜Dは本発明
鋼の例、E〜Jは比較鋼の例である。E鋼はC量が上限
以上、F鋼はMn量が上限以上である。
Example 1 Table 1 shows the chemical composition of the test steel. A to D in Table 1 are examples of the steels of the present invention, and E to J are examples of comparative steels. The E steel has a C content of at least the upper limit, and the F steel has a Mn content of at least the upper limit.

【0028】連続鋳造設備により300×500mmと
した鋳片を122mm角断面の鋼片に圧延した。これら
の鋼片を線材圧延後、表2に示す条件で直接溶融塩(D
LP)冷却を行なった。これらの線材を平均減面率17
%で1.00mmφまで伸線し引張試験、捻回試験を行
なった。
A slab of 300 × 500 mm was rolled by a continuous casting facility into a steel slab having a 122 mm square cross section. After rolling these steel pieces into a wire rod, the molten salt (D
LP) cooling was performed. The average area reduction rate of these wires is 17
% To 1.00 mmφ and a tensile test and a twist test were performed.

【0029】引張試験はJISZ2201の2号試験片
を用い、JISZ2241記載の方法で行なった。捻回
試験は試験片長さ100d+100に切断後、チャック
間距離100d、回転速度10rpmで破断するまで回
転させた。dは鋼線の直径を表わす。このようにして得
られた特性値を表2に合わせて示す。
The tensile test was carried out by using the JISZ2201 No. 2 test piece according to the method described in JISZ2241. In the twist test, the test piece was cut to a length of 100d + 100, and then rotated at a distance between chucks of 100d and a rotation speed of 10 rpm until it was broken. d represents the diameter of the steel wire. The characteristic values thus obtained are also shown in Table 2.

【0030】No.1〜No.4は本発明鋼である。N
o.5〜No.10は比較鋼である。比較例No.5は
冷却速度が遅すぎたためにパーライト組織が生成し、伸
線加工性が低下し、伸線途中で断線が生じた。比較例N
o.6は昇温温度が低すぎたため2段変態させたベイナ
イト組織が生成せず、伸線加工性が低下し、伸線途中で
断線が生じた。
No. 1-No. No. 4 is the steel of the present invention. N
o. 5 to No. 10 is a comparative steel. Comparative Example No. In No. 5, since the cooling rate was too slow, a pearlite structure was generated, wire drawability was deteriorated, and wire breakage occurred during wire drawing. Comparative Example N
o. In No. 6, since the temperature rising temperature was too low, a bainite structure transformed into two steps was not generated, wire drawability deteriorated, and wire breakage occurred during wire drawing.

【0031】比較例No.7は恒温変態時間が十分確保
されなかったためマルテンサイトが発生し、伸線加工性
が低下し、伸線途中で断線が生じた。比較例No.8は
過冷却処理時間が長かったため2段変態させたベイナイ
ト組織が生成する割合が低下し、伸線加工性が低下し、
伸線途中で断線が生じた。比較例No.9はC量が高す
ぎたため初析セメンタイトが発生し、伸線加工性が低下
した。
Comparative Example No. In No. 7, since the constant temperature transformation time was not sufficiently secured, martensite occurred, wire drawability was deteriorated, and wire breakage occurred during wire drawing. Comparative Example No. In No. 8, since the supercooling treatment time was long, the proportion of the bainite structure transformed by the two-step transformation was lowered, and the wire drawability was lowered.
A wire break occurred during wire drawing. Comparative Example No. In No. 9, since the C content was too high, pro-eutectoid cementite was generated and the wire drawing workability was deteriorated.

【0032】比較例No.10はMn量が高すぎたため
中心偏析に伴うミクロマルテンサイトが発生し伸線加工
性が低下した。
Comparative Example No. In No. 10, since the Mn content was too high, micro martensite was generated due to center segregation, and wire drawability was deteriorated.

【0033】[0033]

【表1】 [Table 1]

【0034】[0034]

【表2】 [Table 2]

【0035】実施例2 表3に供試鋼の化学成分を示す。表3のA〜Dは本発明
鋼の例、E〜Jは比較鋼の例である。E鋼はC量が上限
以上、F鋼はMn量が上限以上である。連続鋳造設備に
より300×500mmとした鋳片を122mm角断面
の鋼片から鋼線を製造した。
Example 2 Table 3 shows the chemical composition of the sample steel. In Table 3, A to D are examples of the steels of the present invention, and E to J are examples of comparative steels. The E steel has a C content of at least the upper limit, and the F steel has a Mn content of at least the upper limit. With a continuous casting facility, a steel slab having a size of 300 × 500 mm was manufactured from a steel slab having a 122 mm square cross section.

【0036】これらの鋼線を加熱後、表4に示す条件で
直接溶融塩(DLP)冷却を行なった。これらの鋼線を
平均減面率17%で1.00mmφまで伸線し引張試
験、捻回試験を行った。引張試験はJISZ2201の
2号試験片を用い、JISZ2241記載の方法で行っ
た。
After heating these steel wires, direct molten salt (DLP) cooling was performed under the conditions shown in Table 4. These steel wires were drawn to 1.00 mmφ with an average surface reduction rate of 17% and subjected to a tensile test and a twist test. The tensile test was carried out by using the JISZ2201 No. 2 test piece according to the method described in JISZ2241.

【0037】捻回試験は試験片長さ100d+100に
切断後、チャック間距離100d、回転速度10rpm
で破断するまで回転させた。dは鋼線の直径を表わす。
このようにして得られた特性値を表4に併せて示す。N
o.1〜No.4は本発明鋼である。No.5〜No.
10は比較鋼である。
In the twisting test, the length of the test piece was cut to 100d + 100, the distance between chucks was 100d, and the rotation speed was 10 rpm.
It was rotated until it broke. d represents the diameter of the steel wire.
The characteristic values thus obtained are also shown in Table 4. N
o. 1-No. No. 4 is the steel of the present invention. No. 5 to No.
10 is a comparative steel.

【0038】比較例No.5は冷却速度が遅すぎたため
にパーライト組織が生成し、伸線加工性が低下し、伸線
途中で断線が生じた。比較例No.6は昇温温度が低す
ぎたため2段変態させたベイナイト組織が生成せず、伸
線加工性が低下し、伸線途中で断線が生じた。比較例N
o.7は恒温変態時間が十分確保されなかったためマル
テンサイトが発生し、伸線加工性が低下し、伸線途中で
断線が生じた。
Comparative Example No. In No. 5, since the cooling rate was too slow, a pearlite structure was generated, wire drawability was deteriorated, and wire breakage occurred during wire drawing. Comparative Example No. In No. 6, since the temperature rising temperature was too low, a bainite structure transformed into two steps was not generated, wire drawability deteriorated, and wire breakage occurred during wire drawing. Comparative Example N
o. In No. 7, since the constant temperature transformation time was not sufficiently secured, martensite occurred, wire drawability was deteriorated, and wire breakage occurred during wire drawing.

【0039】比較例No.8は過冷却処理時間が長かっ
たため2段変態させたベイナイト組織が生成する割合が
低下し、伸線加工性が低下し、伸線途中で断線が生じ
た。比較例No.9はC量が高すぎたため初析セメンタ
イトが発生し、伸線加工性が低下した。比較例No.1
0はMn量が高すぎたため中心偏析に伴うミクロマルテ
ンサイトが発生し伸線加工性が低下した。
Comparative Example No. In No. 8, since the supercooling treatment time was long, the proportion of the bainite structure transformed into the two-stage transformation decreased, the wire drawing workability deteriorated, and wire breakage occurred during wire drawing. Comparative Example No. In No. 9, since the C content was too high, pro-eutectoid cementite was generated and the wire drawing workability was deteriorated. Comparative Example No. 1
In the case of 0, the Mn content was too high, so that micro martensite was generated due to center segregation and the wire drawability was deteriorated.

【0040】[0040]

【表3】 [Table 3]

【0041】[0041]

【表4】 [Table 4]

【0042】[0042]

【発明の効果】以上述べた如く本発明に従った高炭素鋼
線材または鋼線は、従来材にくらべてより一段と高減面
率まで伸線が可能で、耐デラミネーション特性も改善さ
れている。また本発明によれば伸線加工性が優れた高炭
素鋼線材または鋼線の製造が可能になり、2次加工工程
における中間熱処理が省略でき、大幅なコストダウン、
工期短縮、設備費削減が図れる。
As described above, the high carbon steel wire or steel wire according to the present invention can be drawn to a much higher area reduction rate than the conventional material and the delamination resistance is also improved. . Further, according to the present invention, it is possible to manufacture a high carbon steel wire rod or steel wire having excellent wire drawing workability, omit intermediate heat treatment in the secondary working step, and significantly reduce the cost.
The work period can be shortened and the facility cost can be reduced.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の熱処理パターンを示す図である。FIG. 1 is a diagram showing a heat treatment pattern of the present invention.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 西田 世紀 千葉県君津市君津1番地 新日本製鐵株式 会社君津製鐵所内 ─────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Nishida Century 1 Kimitsu, Kimitsu-shi, Chiba Shin Nippon Steel Co., Ltd. Kimitsu Steel Co., Ltd.

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】 重量%で C:0.70〜1.20%、 Si:0.15〜1.00%、 Mn:0.30〜0.90%、 を含有し、さらに Al:0.006〜0.100%、 Ti:0.01〜0.35% のいずれか1種または2種を含有し、 P:0.02%以下、 S:0.01%以下 に制限され、残部がFeおよび不可避的不純物よりな
り、2段変態により得られた上部ベイナイト組織が面積
率で80%以上で、かつHvが450以下であるミクロ
組織を有することを特徴とする伸線加工性に優れた高炭
素鋼線材または鋼線。
1. C: 0.70 to 1.20% by weight%, Si: 0.15 to 1.00%, Mn: 0.30 to 0.90%, and Al: 0. 006 to 0.100%, Ti: 0.01 to 0.35%, and any one or two of them are contained. P: 0.02% or less, S: 0.01% or less, and the balance is An upper bainite structure obtained by two-step transformation having an area ratio of 80% or more and Hv of 450 or less, which consists of Fe and unavoidable impurities, has a microstructure and is excellent in wire drawing workability. High carbon steel wire rod or steel wire.
【請求項2】 合金成分として、さらにCr:0.10
〜0.50%を含有することを特徴とする請求項1記載
の伸線加工性に優れた高炭素鋼線材または鋼線。
2. As an alloy component, Cr: 0.10 is further added.
% Of 0.50%, The high carbon steel wire rod or steel wire excellent in wire drawing workability according to claim 1.
【請求項3】 重量%で C:0.70〜1.20%、 Si:0.15〜1.00%、 Mn:0.30〜0.90%、 を含有し、さらに Al:0.006〜0.100%、 Ti:0.01〜0.35% のいずれか1種または2種を含有し、 P:0.02%以下、 S:0.01%以下 に制限され、残部がFeおよび不可避的不純物よりなる
鋼片を線材に圧延後、1100〜755℃の温度範囲か
ら60〜300℃/secの冷却速度で350〜500
℃の温度範囲に冷却し、この温度範囲に、ベイナイト変
態が開始しない範囲内でまたはベイナイト変態開始後で
かつベイナイト変態終了前の範囲内で、一定時間保定し
た後、昇温し、完全にベイナイト変態が終了するまで保
定することを特徴とする伸線加工性に優れた高炭素鋼線
材の製造方法。
3. By weight%, C: 0.70 to 1.20%, Si: 0.15 to 1.00%, Mn: 0.30 to 0.90%, and Al: 0. 006 to 0.100%, Ti: 0.01 to 0.35%, and any one or two of them are contained. P: 0.02% or less, S: 0.01% or less, and the balance is After rolling a steel slab composed of Fe and inevitable impurities into a wire rod, 350 to 500 at a cooling rate of 60 to 300 ° C./sec from a temperature range of 1100 to 755 ° C.
After cooling to a temperature range of ℃, within this temperature range, within the range where bainite transformation does not start, or after starting bainite transformation and before ending bainite transformation, the temperature is raised for a certain time, and bainite is completely cooled. A method for producing a high-carbon steel wire rod excellent in wire drawing workability, characterized by holding until the transformation is completed.
【請求項4】 出発鋼片が、合金成分としてさらにC
r:0.10〜0.50%を含有することを特徴とする
請求項3記載の伸線加工性に優れた高炭素鋼線材の製造
方法。
4. The starting steel billet further contains C as an alloy component.
r: 0.10 to 0.50% is contained, The manufacturing method of the high carbon steel wire rod excellent in wire drawing workability of Claim 3 characterized by the above-mentioned.
【請求項5】 出発鋼片を線材に圧延後、1100〜7
55℃の温度範囲から60〜300℃/secの冷却速
度で350〜500℃の温度範囲に冷却し、この温度範
囲に1秒以上、かつベイナイト変態が開始しない範囲内
で下記式(1)で定める時間X秒以下保定した後、10
℃以上、600−T1 (T1 :冷却後の保定温度)℃以
下昇温し、完全にベイナイト変態が終了するまで保定す
ることを特徴とする請求項3または4記載の伸線加工性
に優れた高炭素鋼線材の製造方法。 X=exp(16.03−0.0307×T1)……(1) T1 :冷却後の保定温度
5. After rolling the starting steel strip into a wire rod, 1100 to 7
From the temperature range of 55 ° C. to the temperature range of 350 to 500 ° C. at a cooling rate of 60 to 300 ° C./sec, and within this temperature range for 1 second or more and within the range where bainite transformation does not start, the following formula (1) is used. After holding for less than X seconds, 10
The wire drawing workability according to claim 3 or 4, wherein the temperature is raised to not less than 600 ° C and not more than 600-T 1 (T 1 : holding temperature after cooling) ° C, and held until the bainite transformation is completely completed. Excellent high carbon steel wire manufacturing method. X = exp (16.03-0.0307 × T 1 ) ... (1) T 1 : holding temperature after cooling
【請求項6】 出発鋼片を線材に圧延後、1100〜7
55℃の温度範囲から60〜300℃/secの冷却速
度で350〜500℃の温度範囲に冷却し、この温度範
囲にベイナイト変態開始後、ベイナイト変態が終了する
以前、すなわち下記式(2)で定める時間Y秒以下保定
した後、10℃以上、600−T1 (T1 :冷却後の保
定温度)℃以下昇温し、完全にベイナイト変態が終了す
るまで保定することを特徴とする請求項3または4記載
の伸線加工性に優れた高炭素鋼線材の製造方法。 Y=exp(19.83−0.0329×T1)……(2) T1 :冷却後の保定温度
6. After rolling the starting slab into a wire rod, 1100 to 7
After cooling from the temperature range of 55 ° C. to the temperature range of 350 to 500 ° C. at a cooling rate of 60 to 300 ° C./sec, after the bainite transformation starts in this temperature range, before the bainite transformation ends, that is, by the following formula (2). After holding for a predetermined time of Y seconds or less, the temperature is raised to 10 ° C. or more and 600-T 1 (T 1 : a holding temperature after cooling) ° C. or less and held until the bainite transformation is completely completed. 3. The method for producing a high carbon steel wire rod according to 3 or 4 which is excellent in wire drawing workability. Y = exp (19.83-0.0329 × T 1 ) ... (2) T 1 : holding temperature after cooling
【請求項7】 重量%で C:0.70〜1.20%、 Si:0.15〜1.00%、 Mn:0.30〜0.90%、 を含有し、さらに Al:0.006〜0.100%、 Ti:0.01〜0.35% のいずれか1種または2種を含有し、 P:0.02%以下、 S:0.01%以下 に制限され、残部がFeおよび不可避的不純物よりなる
鋼線を1100〜755℃の加熱温度範囲から60〜3
00℃/secの冷却速度で350〜500℃の温度範
囲に冷却し、この温度範囲に、ベイナイト変態が開始し
ない範囲内でまたはベイナイト変態開始後でかつベイナ
イト変態終了前の範囲内で、一定時間保定した後、昇温
し、完全にベイナイト変態が終了するまで保定すること
を特徴とする伸線加工性に優れた高炭素鋼鋼線の製造方
法。
7. The composition contains C: 0.70 to 1.20%, Si: 0.15 to 1.00%, Mn: 0.30 to 0.90% in weight%, and Al: 0. 006 to 0.100%, Ti: 0.01 to 0.35%, and any one or two of them are contained. P: 0.02% or less, S: 0.01% or less, and the balance is A steel wire composed of Fe and unavoidable impurities is heated from a heating temperature range of 1100 to 755 ° C. to 60 to 3
It is cooled to a temperature range of 350 to 500 ° C. at a cooling rate of 00 ° C./sec, and within this temperature range, within a range in which bainite transformation does not start or after bainite transformation starts and before bainite transformation ends, for a certain time. A method for producing a high-carbon steel wire excellent in wire drawing workability, which comprises holding the material and then raising the temperature and holding until the bainite transformation is completed.
【請求項8】 出発鋼線が、合金成分としてさらにC
r:0.10〜0.50%を含有することを特徴とする
請求項7記載の伸線加工性に優れた高炭素鋼線材の製造
方法。
8. The starting steel wire further comprises C as an alloy component.
r: 0.10 to 0.50% is contained, The manufacturing method of the high carbon steel wire rod excellent in the wire drawing workability of Claim 7 characterized by the above-mentioned.
【請求項9】 出発鋼線を1100〜755℃の加熱温
度範囲から60〜300℃/secの冷却速度で350
〜500℃の温度範囲に冷却し、この温度範囲に1秒以
上、かつベイナイト変態が開始しない範囲内で下記式
(1)で定める時間X秒以下保定した後、10℃以上、
600−T1 (T1 :冷却後の保定温度)℃以下昇温
し、完全にベイナイト変態が終了するまで保定すること
を特徴とする請求項7または8記載の伸線加工性に優れ
た高炭素鋼鋼線の製造方法。 X=exp(16.03−0.0307×T1)……(1) T1 :冷却後の保定温度
9. The starting steel wire is heated from a heating temperature range of 1100 to 755 ° C. to 350 at a cooling rate of 60 to 300 ° C./sec.
After cooling to a temperature range of 500 ° C to 500 ° C and holding in this temperature range for 1 second or more and for a time X seconds or less defined by the following formula (1) within a range in which bainite transformation does not start, 10 ° C or more,
The temperature is raised to 600-T 1 (T 1 : retention temperature after cooling) ° C. or less, and retention is carried out until the bainite transformation is completely completed. Manufacturing method of carbon steel wire. X = exp (16.03-0.0307 × T 1 ) ... (1) T 1 : holding temperature after cooling
【請求項10】 出発鋼線を1100〜755℃の加熱
温度範囲から60〜300℃/secの冷却速度で35
0〜500℃の温度範囲に冷却し、この温度範囲にベイ
ナイト変態開始後、ベイナイト変態が終了する以前、す
なわち下記式(2)で定める時間Y秒以下保定した後、
10℃以上、600−T1 (T1 :冷却後の保定温度)
℃以下昇温し、完全にベイナイト変態が終了するまで保
定することを特徴とする請求項7または8記載の伸線加
工性に優れた高炭素鋼鋼線の製造方法。 Y=exp(19.83−0.0329×T1)……(2) T1 :冷却後の保定温度
10. The starting steel wire is heated from a heating temperature range of 1100 to 755 ° C. to 35 ° C. at a cooling rate of 60 to 300 ° C./sec.
After cooling to a temperature range of 0 to 500 ° C., after starting the bainite transformation in this temperature range, before the bainite transformation ends, that is, after holding for a time Y seconds or less defined by the following formula (2),
10 ° C or higher, 600-T 1 (T 1 : retention temperature after cooling)
The method for producing a high carbon steel wire excellent in wire drawing workability according to claim 7 or 8, wherein the temperature is raised to not higher than 0 ° C and the temperature is maintained until the bainite transformation is completed. Y = exp (19.83-0.0329 × T 1 ) ... (2) T 1 : holding temperature after cooling
JP5122984A 1992-06-23 1993-05-25 High carbon steel wire or steel wire excellent in wire drawability and method for producing the same Expired - Lifetime JP2984888B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP5122984A JP2984888B2 (en) 1992-06-23 1993-05-25 High carbon steel wire or steel wire excellent in wire drawability and method for producing the same
PCT/JP1994/000576 WO1994028189A1 (en) 1993-05-25 1994-04-06 High-carbon steel rod wire or steel wire excellent in workability in wire drawing and process for producing the same
DE69423619T DE69423619T2 (en) 1993-05-25 1994-04-06 HIGH-CARBON STEEL OR STEEL WIRE WITH EXCELLENT DRAWING PROPERTIES AND PRODUCTION METHODS
US08/545,675 US5658402A (en) 1993-05-25 1994-04-06 High-carbon steel wire rod and wire excellent in drawability and methods of producing the same
EP94912062A EP0708183B1 (en) 1993-05-25 1994-04-06 High-carbon steel rod wire or steel wire excellent in workability in wire drawing and process for producing the same

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP16497492 1992-06-23
JP4-164974 1992-07-08
JP18137092 1992-07-08
JP4-181370 1992-07-08
JP5122984A JP2984888B2 (en) 1992-06-23 1993-05-25 High carbon steel wire or steel wire excellent in wire drawability and method for producing the same

Publications (2)

Publication Number Publication Date
JPH0673501A true JPH0673501A (en) 1994-03-15
JP2984888B2 JP2984888B2 (en) 1999-11-29

Family

ID=27314593

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5122984A Expired - Lifetime JP2984888B2 (en) 1992-06-23 1993-05-25 High carbon steel wire or steel wire excellent in wire drawability and method for producing the same

Country Status (1)

Country Link
JP (1) JP2984888B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160114697A (en) 2014-03-06 2016-10-05 신닛테츠스미킨 카부시키카이샤 High-carbon steel wire having superior wire drawing properties and method for producing same
CN113458155A (en) * 2021-06-03 2021-10-01 包头钢铁(集团)有限责任公司 Production method for reducing strength of welding wire steel wire rod
CN114472511A (en) * 2022-03-07 2022-05-13 包头钢铁(集团)有限责任公司 Production method for softening and improving mixed crystals of gas shielded welding wire steel wire rod on line

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160114697A (en) 2014-03-06 2016-10-05 신닛테츠스미킨 카부시키카이샤 High-carbon steel wire having superior wire drawing properties and method for producing same
CN113458155A (en) * 2021-06-03 2021-10-01 包头钢铁(集团)有限责任公司 Production method for reducing strength of welding wire steel wire rod
CN114472511A (en) * 2022-03-07 2022-05-13 包头钢铁(集团)有限责任公司 Production method for softening and improving mixed crystals of gas shielded welding wire steel wire rod on line

Also Published As

Publication number Publication date
JP2984888B2 (en) 1999-11-29

Similar Documents

Publication Publication Date Title
JP3554505B2 (en) Hot-rolled wire rod / steel bar for machine structure and manufacturing method thereof
JPH07188834A (en) High strength steel sheet having high ductility and its production
JP3572993B2 (en) Steel wire, steel wire, and method of manufacturing the same
US5662747A (en) Bainite wire rod and wire for drawing and methods of producing the same
JP2984889B2 (en) High carbon steel wire or steel wire excellent in wire drawability and method for producing the same
JP3388418B2 (en) Method for producing high carbon steel wire or steel wire excellent in wire drawing workability
US5650027A (en) High-carbon steel wire rod and wire excellent in drawability and methods of producing the same
JP3018268B2 (en) High carbon steel wire or steel wire excellent in wire drawability and method for producing the same
EP0708183B1 (en) High-carbon steel rod wire or steel wire excellent in workability in wire drawing and process for producing the same
JPH11131187A (en) Rapidly graphitizable steel and its production
JP2984888B2 (en) High carbon steel wire or steel wire excellent in wire drawability and method for producing the same
JP2984887B2 (en) Bainite wire or steel wire for wire drawing and method for producing the same
US5647918A (en) Bainite wire rod and wire for drawing and methods of producing the same
JP3216404B2 (en) Method of manufacturing wire for reinforced high strength steel wire
JP2984885B2 (en) Bainite wire or steel wire for wire drawing and method for producing the same
JP3300932B2 (en) Manufacturing method of high strength steel wire
JP2742967B2 (en) Manufacturing method of bainite wire rod
JPH083649A (en) Production of high carbon steel wire rod or steel wire excellent in wire drawability
WO1994023083A1 (en) Bainite rod wire or steel wire for wire drawing and process for producing the same
JP2984886B2 (en) Bainite wire or steel wire for wire drawing and method for producing the same
JPH0774383B2 (en) Method for producing steel sheet with excellent resistance to hydrogen-induced cracking
KR100276298B1 (en) The manufacturing method of wire drawing used wire rod contained manganes
JPH07268487A (en) Production of high carbon steel wire rod or steel wire excellent in wiredrawability
JPH07268466A (en) Production of bainitic wire rod or steel wire for wiredrawing
JPH07268465A (en) Production of bainitic wire rod or steel wire for wiredrawing

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19990803

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071001

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081001

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091001

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101001

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101001

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111001

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111001

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121001

Year of fee payment: 13