JPH0673356A - Phenolic adhesive composition - Google Patents

Phenolic adhesive composition

Info

Publication number
JPH0673356A
JPH0673356A JP22696192A JP22696192A JPH0673356A JP H0673356 A JPH0673356 A JP H0673356A JP 22696192 A JP22696192 A JP 22696192A JP 22696192 A JP22696192 A JP 22696192A JP H0673356 A JPH0673356 A JP H0673356A
Authority
JP
Japan
Prior art keywords
resin
molecular weight
phenolic resin
phenolic
adhesive composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22696192A
Other languages
Japanese (ja)
Inventor
Kiyoto Doi
清人 土井
Atsushi Ito
敦 伊藤
Takeshi Ito
武志 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Toatsu Chemicals Inc
Original Assignee
Mitsui Toatsu Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Toatsu Chemicals Inc filed Critical Mitsui Toatsu Chemicals Inc
Priority to JP22696192A priority Critical patent/JPH0673356A/en
Publication of JPH0673356A publication Critical patent/JPH0673356A/en
Pending legal-status Critical Current

Links

Landscapes

  • Adhesives Or Adhesive Processes (AREA)

Abstract

PURPOSE:To obtain a phenolic adhesive compsn. excellent in quick curability and workability and useful in the bonding of wood in particular by blending a high-mol.-wt. phenolic resin adhesive with a low-mol. wt. phenolic, urea or like resin. CONSTITUTION:A high-mol.-wt. phenolic resin adhesive (a) is blended with at least one low-mol.-wt. resin (b) selected from among phenolic resins, urea resins, melamine resins, and amino resins. The a to b ratio is pref. (2-300): 100 in terms of solid content. It is pref. that at least 60% low-mol.-wt. phenolic resin be contained in the component (b). The component (a) is pref. a dispersion of a phenolic resin of at least 3,000 in average mol. wt. wherein the particle size of the phenolic resin is 0.3 to 10mum.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、優れた耐久性を有する
熱硬化性の新規なフェノール系樹脂接着剤に関するもの
である。更に詳しくは、木材、紙、プラチック、金属等
の接着剤として有用なものであると同時に優れた速硬化
性、作業性等をを有する新規なフェノール系樹脂接着剤
に関する。特に本発明の接着剤組成物は、木材接着に有
用であり、本発明の接着剤を使用して製造した合板は、
日本農林規格(JSA)の特類合板(72時間連続煮沸
後も充分な強度を有する)に合格し、日本工業規格(J
IS)のPタイプパーティクルボードを製造できる。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a novel thermosetting phenolic resin adhesive having excellent durability. More specifically, the present invention relates to a novel phenolic resin adhesive which is useful as an adhesive for wood, paper, plastics, metals and the like, and at the same time has excellent fast curing property and workability. In particular, the adhesive composition of the present invention is useful for wood adhesion, and plywood produced using the adhesive of the present invention is
Passed the special plywood of the Japan Agricultural Standards (JSA) (having sufficient strength even after continuous boiling for 72 hours), and the Japanese Industrial Standards (JSA)
IS) P type particle board can be manufactured.

【0002】[0002]

【従来の技術】従来、熱硬化性樹脂である、フェノール
とホルムアルデヒドの縮合してなるフェノール樹脂や、
尿素とホルムアルデヒドの縮合してなる尿素樹脂は、接
着剤として工業上広く用いられている。一般に優れた耐
加水分解性や耐熱性等を要求される分野には、フェノー
ル樹脂が使用されてきたが、フェノール樹脂は硬化速度
が遅いという欠点を有する。硬化速度は生産性に著しく
大きな影響を及ぼすので、硬化速度を早める事は産業界
から強く求められ種々の方法が試みられてきた。例え
ば、高縮合度つまり高分子量のフェノール樹脂接着剤は
速硬化であるが、接着剤樹脂液の粘度が異常に高くな
り、使用に際しての作業性が極度に低下すると共に保存
安定性も劣悪なものだった。その上、水に対する溶解性
が低下するため、希釈や洗浄に際して有害な有機溶剤を
使用せねばならず火災の危険があり、作業環境、地球環
境に悪影響を及ぼす欠点があり、工業的に実用化は不可
能だった。他の方策として、硬化の速いアミノ系樹脂と
の混合、共縮合等が特公昭51−20540号、特開昭
50−76145号に開示されている。これら技術で
は、硬化の開始は早まるが、フェノール樹脂成分それ自
体のの硬化性は変わらない為、最終的な硬化に要する時
間は短縮されないと言う問題点がある。また高縮合度ノ
ボラックタイプフェノール樹脂粉末を、低縮合度レゾー
ルタイプフェノール樹脂水溶液に添加する方法が「木材
学会誌.No3,P186-192(1990)」に提案させたが、高縮合
度ノボラックタイプフェノール樹脂粉末の製造に際して
は乾燥工程が必要である為、多大なエネルギーを要し、
経済的に不利であると同時に、その硬化時間の短縮の効
果も不十分であり、その接着力も平凡である。また、ノ
ボラック粉末を樹脂に添加しても均一に分散させる事が
難しく、均一な強度が得られにくい。
2. Description of the Related Art Conventionally, a thermosetting resin, a phenol resin formed by condensation of phenol and formaldehyde,
Urea resin formed by condensation of urea and formaldehyde is widely used in the industry as an adhesive. Phenolic resins have generally been used in fields where excellent hydrolysis resistance, heat resistance, etc. are required, but the phenol resins have the drawback of slow curing speed. Since the curing rate significantly affects productivity, increasing the curing rate has been strongly demanded by the industry and various methods have been tried. For example, a high degree of condensation or high molecular weight phenolic resin adhesive cures quickly, but the viscosity of the adhesive resin liquid becomes abnormally high, the workability during use is extremely reduced, and the storage stability is also poor. was. In addition, since its solubility in water decreases, it is necessary to use a harmful organic solvent for dilution and cleaning, which poses a risk of fire and has the drawback of adversely affecting the work environment and global environment. Was impossible. Other measures are disclosed in JP-B-51-20540 and JP-A-50-76145, such as mixing and co-condensation with fast curing amino resins. In these techniques, the initiation of curing is accelerated, but the curability of the phenol resin component itself does not change, so that there is a problem that the time required for final curing cannot be shortened. In addition, a method of adding a high condensation degree novolak type phenolic resin powder to a low condensation degree resol type phenolic resin aqueous solution was proposed in "Mokuzai Gakkaishi. No. 3, P186-192 (1990)". A large amount of energy is required because a drying step is required when manufacturing the resin powder,
At the same time as being economically disadvantageous, the effect of shortening the curing time is insufficient, and the adhesive strength is mediocre. Further, even if the novolac powder is added to the resin, it is difficult to disperse it uniformly, and it is difficult to obtain uniform strength.

【0003】[0003]

【発明が解決しようとする課題】このように従来技術で
は「フェノール樹脂に対する速硬化性の付与」という問
題に関して実用的に満足な対応はできなかった。
As described above, the conventional techniques have not been able to practically satisfy the problem of "giving the phenol resin a fast curing property".

【0004】[0004]

【課題を解決するための手段】本発明者らは、使用の際
の作業性、環境問題等に充分に考慮しつつ、フェノール
樹脂の速硬化の達成を目的として、フェノール樹脂の分
子量分布と、硬化性・粘度の関係について鋭意検討の結
果、樹脂液中の高分子量成分の量と低分子量成分の量及
び各成分の微妙な組成比を見いだした。すなわち、特定
反応モル比の、図1に示されるような分子量分布を有す
るフェノール系樹脂が、従来技術の問題点を解決出来
る。さらに、この特定分子量分布のフェノール系樹脂
は、特定高縮合度のフェノール系樹脂接着剤と特定低分
子量フェノール系樹脂水溶液を混合することにより得ら
れる事を見いだし本発明を完成するに至った。すなわ
ち、本発明は、(a)高分子量のフェノール系樹脂と、(b)
低分子量のフェノール樹脂、尿素樹脂、メラミン樹脂ま
たはアミノ基を有する樹脂組成物からなる郡から選ばれ
た1種または2種以上とを混合してなるフェノール系接
着剤である。
Means for Solving the Problems The inventors of the present invention have considered the molecular weight distribution of a phenolic resin for the purpose of achieving rapid curing of the phenolic resin, with due consideration given to workability during use, environmental problems and the like. As a result of diligent studies on the relationship between curability and viscosity, the amounts of high-molecular weight components and low-molecular weight components in the resin liquid and the subtle composition ratio of each component were found. That is, a phenolic resin having a specific reaction molar ratio and a molecular weight distribution as shown in FIG. 1 can solve the problems of the prior art. Further, they have found that the phenolic resin having the specific molecular weight distribution can be obtained by mixing a phenolic resin adhesive having a specific degree of condensation and an aqueous solution of a specific low molecular weight phenolic resin, and thus completed the present invention. That is, the present invention, (a) a high molecular weight phenolic resin, (b)
It is a phenol-based adhesive which is a mixture of one or more selected from the group consisting of low molecular weight phenolic resins, urea resins, melamine resins and resin compositions having amino groups.

【0005】本発明のフェノール系接着剤の優れた作用
効果は、樹脂液中の高分子量成分の量と低分子量成分の
量、及び各成分の微妙な組成比に基づき発揮される。
(a)高分子量のフェノール系樹脂とは、分子量3000
以上のフェノール系樹脂微粒子の水分散液(高分子量フ
ェノール系樹脂分散液)が望ましく乳白色の外観を呈
し、高縮合度フェノール系樹脂水溶液を乳化させて得ら
れる。高縮合度フェノール系樹脂水溶液とはホルムアル
デヒドとフェノールを、アルカリ性でモル比1.5〜2.
8で反応させて得られる。反応系をアルカリ性にするア
ルカリ性物質としては、水酸化ナトリウム、水酸化カリ
ウム、水酸化カルシウム、水酸化バリウム、アンモニ
ア、各種アミン類等が例示できる。フェノールとホルム
アルデヒドの反応モル比が1.5以下の場合は接着強度
が不十分になり、2.8以上では有害な残存ホルムアル
デヒドが多くなりまた水分散化が困難になる。(a)は溶
液状でも構わないが、(b)のと混合時にやや粘度が高く
なる。高分子量のフェノール系樹脂分散液は、高縮合度
フェノール系樹脂水溶液に高速撹拌下酸性物質を滴下す
る方法等で得られる。この酸性物質の添加に先立って、
PVA等の分散安定剤を添加すれば極めて容易に小粒径
の分散液が得られ、また分散液の保存安定性も向上す
る。酸性物質とは塩酸、蟻酸、マレイン酸、パラトルエ
ンスルホン酸等の無機及び有機酸である。PVAは分子
量1000以上の部分けん化タイプが望ましい。PVA
のけん化度は60〜95モル%程度が望ましい。高分子
量のフェノール系樹脂分散液は樹脂の粒径が0.3〜1
0マイクルメーターの範囲にあればフェノール・アミノ
化合物共縮合樹脂を含有しても構わない。アミノ化合物
は尿素・メラミンが望ましい。フェノール樹脂はこれら
アミノ系樹脂との共縮合化により水乳化性が向上する。
The excellent action and effect of the phenolic adhesive of the present invention is exhibited based on the amounts of the high molecular weight component and the low molecular weight component in the resin liquid, and the delicate composition ratio of each component.
(a) High molecular weight phenolic resin has a molecular weight of 3000
The above aqueous dispersion of phenolic resin fine particles (high molecular weight phenolic resin dispersion) desirably has a milky white appearance and is obtained by emulsifying a highly condensed phenolic resin aqueous solution. The high-condensation phenolic resin aqueous solution is formaldehyde and phenol in an alkaline molar ratio of 1.5 to 2.
It is obtained by reacting with 8. Examples of the alkaline substance that makes the reaction system alkaline include sodium hydroxide, potassium hydroxide, calcium hydroxide, barium hydroxide, ammonia, and various amines. When the reaction molar ratio of phenol and formaldehyde is 1.5 or less, the adhesive strength becomes insufficient, and when it is 2.8 or more, harmful residual formaldehyde increases and water dispersion becomes difficult. Although (a) may be in the form of a solution, it has a slightly higher viscosity when mixed with (b). The high molecular weight phenolic resin dispersion can be obtained by, for example, dropping an acidic substance into a highly condensed phenolic resin aqueous solution with high speed stirring. Prior to the addition of this acidic substance,
When a dispersion stabilizer such as PVA is added, a dispersion having a small particle size can be obtained very easily, and the storage stability of the dispersion is improved. The acidic substance is an inorganic or organic acid such as hydrochloric acid, formic acid, maleic acid, or paratoluenesulfonic acid. PVA is preferably a partially saponified type having a molecular weight of 1000 or more. PVA
The degree of saponification is preferably about 60 to 95 mol%. The high molecular weight phenolic resin dispersion has a resin particle size of 0.3 to 1
A phenol / amino compound co-condensation resin may be contained as long as it is in the range of 0 micrometer. The amino compound is preferably urea / melamine. The water-emulsifying property of the phenol resin is improved by cocondensation with these amino resins.

【0006】高分子量のフェノール系樹脂分散液の製造
は、高縮合度フェノール系樹脂水溶液の製造と別個に行
っても構わないし連続して行ってもかまわないが、工業
的生産性を考慮すれば連続して行う事が望ましい。分子
量の調整は予め所定分子量まで縮合させる方法に依って
も良いし縮合を分散後に行う方法でもよい。高分子量の
フェノール系樹脂の分子量が3000以下では(b)成分
と混合時に溶解する量が多くなり混合液の粘度が高くな
り混合液の作業性が低下する。分子量の上限は特に無い
が10000以下が望ましい。10000以上の場合は
接着力がやや低下する。分子量の測定はGPC分析によ
り容易に達成される。高縮合度フェノール系樹脂分散液
中のフェノール系樹脂の粒径は、0.3〜10マイクロ
メーターの範囲が望ましい。0.3マイクロマーター以
下にすることは特別な設備の為の多大な設備投資が必要
であり経済的に不利である。10マイクロメーター以上
では分散粒子の沈降が起こりやすく樹脂の経時安定性が
不十分になると同時に接着強度も不十分になりやすい。
(b)低分子量のフェノール樹脂、尿素樹脂、メラミン樹
脂またはアミノ基を含有する樹脂の分子量は、低分子
量、すなわち具体的には1000以下であることが望ま
しい。1000以上の場合は接着剤樹脂液の粘度が高く
なり易く、また保存安定性が短くなるという問題点があ
る。(b)は低分子量のフェノール樹脂、尿素樹脂、メラ
ミン樹脂またはアミノ基を含有する樹脂から選ばれた1
種または2種以上であり、フェノール樹脂は必須の成分
であり、フェノール樹脂が固形分の比率で60〜100
%の比率であることが望ましく、更に望ましくは70〜
100%である。フェノール樹脂の比率が60%以下の
場合は接着耐久性が低下する。このフェノール樹脂は、
フェノールとホルムアルデヒドを1:1.8〜2.8の
モル比でpH9〜13で反応させて得られる。
The high molecular weight phenolic resin dispersion may be produced separately or continuously from the production of the highly condensed phenolic resin aqueous solution, but if industrial productivity is taken into consideration. It is desirable to do it continuously. The molecular weight may be adjusted by a method of preliminarily condensing to a predetermined molecular weight or a method of performing the condensation after dispersion. When the molecular weight of the high molecular weight phenolic resin is 3,000 or less, the amount of the component (b) dissolved at the time of mixing increases, the viscosity of the mixed solution increases, and the workability of the mixed solution decreases. There is no particular upper limit for the molecular weight, but 10,000 or less is desirable. When it is 10000 or more, the adhesive strength is slightly lowered. Measurement of molecular weight is easily accomplished by GPC analysis. The particle size of the phenol resin in the highly condensed phenol resin dispersion is preferably in the range of 0.3 to 10 micrometers. Setting it to 0.3 micrometer or less is economically disadvantageous because it requires a large capital investment for special equipment. If it is 10 micrometers or more, the dispersed particles are liable to settle, and the stability of the resin over time becomes insufficient, and at the same time, the adhesive strength tends to become insufficient.
(b) The low molecular weight phenol resin, urea resin, melamine resin or resin containing an amino group preferably has a low molecular weight, specifically, 1,000 or less. When it is 1000 or more, there is a problem that the viscosity of the adhesive resin liquid tends to be high and the storage stability is shortened. (b) is selected from low molecular weight phenol resin, urea resin, melamine resin or resin containing amino group 1
There are two or more kinds, and the phenol resin is an essential component, and the phenol resin has a solid content ratio of 60 to 100.
%, And more preferably 70 to
It is 100%. If the ratio of the phenol resin is 60% or less, the adhesion durability is lowered. This phenolic resin is
It is obtained by reacting phenol and formaldehyde at a molar ratio of 1: 1.8 to 2.8 at pH 9 to 13.

【0007】(b)中のアミノ基を含有する樹脂とは、尿
素、メラミン、チオ尿素、を含有する共縮合樹脂であ
り、メラミンフェノール共縮合樹脂、尿素メラミン共縮
合樹脂等を例示できる。(b)の各樹脂の混合は通常の方
法で行えばよく、添加の順序は特に限定されない。(b)
のpHは、7〜12の範囲にあることが望ましい。7以
下では(b)の保存安定性が不十分になる。12以上で
は、接着力に寄与しないアルカリ性物質の多量の添加が
必要になり好ましくない。本発明のフェノール系樹脂接
着剤は、(a)と(b)を混合して得られる。低分子量のもの
と高分子量のものを混合することにより図1の様な2個
の山を有する分子量分布を持つ組成物になる。(a)と
(b)の混合比率は固形分の比率で2〜300:100が
望ましく、更に望ましくは5〜100:100である。
2以下では硬化速度が遅く、300以上では高粘度にな
りやすい。(a)と(b)の混合は通常の方法で行えばよく、
添加の順序は特に限定されない。得られたフェノール系
接着剤は淡赤色の乳濁液であり、粘度は20〜2000
cp、固形分40〜60%であり、常温で安定であり、
水の添加により凝集物等を生じる事がなく、接着剤を使
用する機器の洗浄に際しても何等問題無い。(a)と(b)の
混合物のpHは5〜10の範囲が望ましい。5以下では
混合樹脂の保存安定性が充分でない。(a)と(b)の混合時
(a)の一部が溶解するが10以上では高分子量フェノー
ル樹脂の溶解量が多くなり粘度が高くなり、使用の際に
支障をきたしやすい。必要に応じて本発明のフェノール
系接着剤に充填剤、増量剤、防腐剤、着色剤、硬化剤等
の添加剤を加えることが出来る。
The resin containing an amino group in (b) is a co-condensation resin containing urea, melamine and thiourea, and examples thereof include melamine phenol co-condensation resin and urea melamine co-condensation resin. The mixing of the resins of (b) may be carried out by an ordinary method, and the order of addition is not particularly limited. (b)
The pH is preferably in the range of 7-12. When it is 7 or less, the storage stability of (b) becomes insufficient. If it is 12 or more, a large amount of an alkaline substance that does not contribute to the adhesive force needs to be added, which is not preferable. The phenolic resin adhesive of the present invention is obtained by mixing (a) and (b). By mixing a low molecular weight one and a high molecular weight one, a composition having a molecular weight distribution having two peaks as shown in FIG. 1 is obtained. (A) and
The mixing ratio of (b) is preferably 2 to 300: 100, more preferably 5 to 100: 100 in terms of solid content.
When it is 2 or less, the curing speed is slow, and when it is 300 or more, the viscosity tends to be high. The mixing of (a) and (b) may be carried out by a usual method,
The order of addition is not particularly limited. The obtained phenolic adhesive is a pale red emulsion and has a viscosity of 20 to 2000.
cp, solid content 40-60%, stable at room temperature,
The addition of water does not cause agglomerates and the like, and there is no problem in cleaning equipment using an adhesive. The pH of the mixture of (a) and (b) is preferably in the range of 5-10. When it is 5 or less, the storage stability of the mixed resin is not sufficient. When (a) and (b) are mixed
A part of (a) dissolves, but when it is 10 or more, the amount of the high molecular weight phenolic resin dissolved increases and the viscosity increases, which is likely to cause trouble during use. If necessary, additives such as a filler, a filler, a preservative, a coloring agent and a curing agent can be added to the phenolic adhesive of the present invention.

【0008】本発明に依れば、従来のフェノール系樹脂
で達成できなかった硬化の早い耐久性、耐加水分解性に
優れ、被着体の水分量に影響されにくい接着剤組成物を
得ることができる。すなわち、公知の接着剤では、被着
体である木材の含水率が高くなると硬化速度が遅くなり
接着硬化に長い圧締時間と高温を必要とするだけでな
く、木材に対する接着力持低下し、適用する木材の含水
率許容性が狭い等の欠点がある。具体的には2〜5%程
度の含水率まで乾燥した単板を用いて130〜135℃
の熱圧温度で合板厚さ1mmあたり40秒程度の長い熱圧
時間を必要とした。これに対し本発明のフェノール系接
着剤は当初予測できなかったが15〜20%の様な高含
水率の合板製造用単板を被着体として用いる事が出来る
と共に、110〜120℃の低い温度の熱圧温度で合板
厚さ1mmあたり20秒程度の短い熱圧時間でも充分な接
着強度を得られた。この事により合板製造工程の単板乾
燥におけるドライヤー処理能力及び熱圧硬化におけるホ
ットプレスの運転効率が向上し、合板製造の生産性を増
大することが出来ると同時に従来避けられなかった単板
の乾燥不足に起因する接着不良の発生を抑えることが出
来る等、優れた接着性能を有する。さらに、本発明のフ
ェノール系樹脂は未反応のホルムアルデヒドやフェノー
ル含有量が少ないので例えば作業環境におけるホルムア
ルデヒド臭気の発生が少ないという利点を有する。また
(a)が分散液の場合はエマルション粒子が被着体粒子
表面に残留し易いので内部への過浸透が防止でき接着剤
塗布量を実質的に減少できる。本発明を一層具体的に示
すために次に実施例を示すが、本発明はこれらの実施例
により何ら限定されるものではない。
According to the present invention, it is possible to obtain an adhesive composition which is excellent in quick-curing durability and hydrolysis resistance, which has not been achieved by conventional phenolic resins, and which is hardly affected by the water content of an adherend. You can That is, in the known adhesive, when the water content of the adherend becomes high, the curing rate becomes slow, and not only a long pressing time and high temperature are required for the adhesive curing, but also the adhesive strength to the wood is reduced, There is a defect that the water content tolerance of the wood to be used is narrow. Specifically, using a single plate that has been dried to a water content of about 2 to 5%, the temperature is 130 to 135 ° C.
At a hot pressing temperature of about 40 seconds per 1 mm of plywood thickness, a long hot pressing time was required. On the other hand, although the phenolic adhesive of the present invention could not be predicted at the beginning, a veneer for producing plywood having a high water content of 15 to 20% can be used as an adherend and the temperature is low at 110 to 120 ° C. Sufficient adhesive strength was obtained even at a short hot pressing time of about 20 seconds per mm of plywood thickness at the hot pressing temperature. As a result, the dryer processing capacity in drying veneers in the plywood manufacturing process and the operating efficiency of the hot press in hot-pressing can be improved, and the productivity in plywood manufacturing can be increased. It has excellent adhesion performance, such as suppressing the occurrence of poor adhesion due to lack. Further, the phenolic resin of the present invention has a small amount of unreacted formaldehyde and phenol, and therefore has an advantage of generating less formaldehyde odor in a working environment. When (a) is a dispersion liquid, emulsion particles are likely to remain on the surface of adherend particles, so that over-penetration into the interior can be prevented and the amount of adhesive applied can be substantially reduced. Examples are shown below to more specifically show the present invention, but the present invention is not limited to these examples.

【0009】[0009]

【実施例】【Example】

参考例1 (高分子量フェノール系樹脂の製造)還流冷却器、温度
計、撹拌器、滴下ロートを備えた反応フラスコにフェノ
ール941g、37% ホルマリン1623g,25%
NaOH 80gを仕込み冷却しながら溶解させた後撹
拌しつつ加熱して85℃で180分反応後、PVA80
gを溶解せしめ更に反応を45分継続した後冷却した。
上記反応液に3N塩酸を徐々に滴下し系内のpHを5.
5に調整し固形分が50%の均一で白色の分散液を得
た。粒子径は1.5マイクロメーター、平均分子量は下
記の方法(以下同じ)で測定したところ、3500であ
った。 F/P=2.0である。室温(25℃)で2ヶ月間安定で沈澱
等を生じなかった。 (H−1と略記する) 分子量の測定 GPC装置:システム11 (昭和電工製) カラム:KD-803 50℃ 溶離液:DMF 溶離速度:1ml/min 検出器:RI
Reference Example 1 (Production of high molecular weight phenolic resin) Phenol 941 g, 37% Formalin 1623 g, 25% in a reaction flask equipped with a reflux condenser, thermometer, stirrer and dropping funnel.
80 g of NaOH was charged and dissolved while cooling, then heated with stirring and reacted at 85 ° C. for 180 minutes, then PVA80
g was dissolved, the reaction was continued for 45 minutes, and then cooled.
3N hydrochloric acid was gradually added dropwise to the above reaction solution to adjust the pH of the system to 5.
It was adjusted to 5 to obtain a uniform white dispersion liquid having a solid content of 50%. The particle size was 1.5 micrometers, and the average molecular weight was 3500 as measured by the following method (the same applies hereinafter). F / P = 2.0. It was stable at room temperature (25 ° C) for 2 months and did not cause precipitation. (Abbreviated as H-1) Measurement of molecular weight GPC device: System 11 (Showa Denko) Column: KD-803 50 ° C Eluent: DMF Elution rate: 1 ml / min Detector: RI

【0010】参考例2 (高分子量フェノール系樹脂の製造)参考例1と同様の
装置にフェノール941g、37% ホルマリン162
3g、25%NaOH 80gを仕込み冷却しながら溶
解させた後撹拌しつつ加熱して85℃で120分反応
後、PVA80gを溶解せしめ更に反応を45分継続し
た後冷却した。上記反応液に3N塩酸を徐々に滴下し系
内のpHを5.5に調整し固形分が50%の均一で白色
の分散液を得た。粒子径は1.2マイクロメーター、平
均分子量は2500だった。室温(25℃)で50日程
度安定で沈澱等を生じなかった。(H−2と略記する) 参考例3 (低分子量フェノール樹脂の製造)参考例1と同様の装
置にフェノール941g、37%ホルマリン1783
g、NaOH90gを仕込み、冷却しながら溶解させた
後、撹拌しつつ加熱して80℃で30分反応後冷却し
た。生成液は赤褐色透明で、室温(25℃)で2ヶ月間
安定で沈澱、濁り等を生じなかった。分子量は800だ
った。(L−1と略記する) 参考例4 (低分子量フェノール樹脂の製造)参考例1と同様の装
置にフェノール941g、37%ホルマリン1783
g、NaOH90gを仕込み、冷却しながら溶解させた
後、撹拌しつつ加熱して80℃で60分反応後冷却し
た。生成液は赤褐色透明で、室温(25℃)で1ヶ月後
増粘した。分子量は1500だった。(L−2と略記す
る) 参考例5 (高分子量フェノール系樹脂の製造)参考例1と同様の
装置にフェノール941g、37% ホルマリン162
3g,30%NaOH 80gを仕込み冷却しながら溶
解させた後撹拌しつつ加熱して85℃で180分反応
後、PVA20gを溶解せしめ更に反応を15分継続し
た後冷却した。上記反応液にパラトルエンスルホン酸溶
液を徐々に滴下し系内のpHを6.5に調整し固形分が
50%の均一で白色の分散液を得た。粒子径は20マイ
クロメーター、平均分子量は3500だった。室温(2
5℃)で1ヶ月間で沈澱等を生じた。(H−4と略記す
る) 参考例6 (高分子量フェノール系樹脂の製造)参考例1と同様の
方法でフェノールとホルムアルデヒドの仕込量を変えて
樹脂を製造した。固形分が50%の均一で白色の分散液
を得た。粒子径は1.5マイクロメーター、平均分子量
は2800だった。F/P=1.25だった。室温(25℃)で
1ヶ月間で沈澱等を生じた。(H−4と略記する) 参考例7 (高分子量000 ノール系樹脂の製造)参考例1と同様の
方法でフェノールとホルムアルデヒドの仕込量を変えて
樹脂を製造した。固形分が50%の均一で白色の分散液
を得た。粒子径は2.1マイクロメーター、平均分子量
は3200だった。F/P=3.0だった。室温(25℃)で
1ヶ月間で沈澱等を生じた。(H−5と略記する) 参考例8 (低分子量メラミン樹脂の製造)参考例1と同様の装置
にメラミン1260g、37%ホルマリン2027g、
NaOH5gメタノール100gを仕込み、撹拌しつつ
加熱して80℃で30分反応後冷却した。生成液は無色
透明で、室温(25℃)で2ヶ月間安定で沈澱、濁り等
を生じなかった。分子量は800で、粘度50cpだっ
た(L−3と略記する) 参考例9 (高分子量フェノール系樹脂の製造)参考例1と同様の
装置に反応フラスコにフェノール941g、37% ホ
ルマリン1700g,25%NaOH 100gを仕込
み冷却しながら溶解させた後撹拌しつつ加熱して85℃
で180分反応後、冷却し70℃で更に反応を45分継
続した後冷却し、固形分が約50%の赤褐色透明の樹脂
液を得た。平均分子量は3250だった。F/P=2.1であ
る。室温(25℃)で2ヶ月間安定で沈澱・濁り等を生
じなかった。(H−6と略記する) 実施例1〜9、比較例1〜13 [合板の製造]参考例1〜9で合成した接着剤を表1〜
5に示す条件で混合し、下記の条件で合板を作製した。
作製した合板は、構造用合板の日本農林規格に記載され
た72時間の連続煮沸による試験で接着力を測定した。
尚JASの合格値は7kg/cm2以上である。 a 配合条件:樹脂100g+小麦粉15g b 単 板:含水率13〜16%、2mm厚のラワン単
板。 c 構 成:3プライ合板 d 冷 圧:20分、10kg/cm2 e 熱 圧:120℃、2分 H−1、L−1を表1に示す条件で混合し合板を作製し
た。(a)の反応モル比と接着強度の結果を表1に示す。
Reference Example 2 (Production of high molecular weight phenolic resin) In the same apparatus as in Reference Example 1, 941 g of phenol and 37% formalin 162 were added.
3 g, and 80 g of 25% NaOH were charged and dissolved while cooling, then heated with stirring and reacted at 85 ° C. for 120 minutes, after which 80 g of PVA was dissolved and the reaction was continued for 45 minutes and then cooled. 3N hydrochloric acid was gradually added dropwise to the above reaction solution to adjust the pH in the system to 5.5 to obtain a uniform white dispersion liquid having a solid content of 50%. The particle size was 1.2 micrometers and the average molecular weight was 2500. It was stable at room temperature (25 ° C) for about 50 days and did not cause precipitation. (Abbreviated as H-2) Reference Example 3 (Production of low molecular weight phenolic resin) In the same apparatus as in Reference Example 1, 941 g of phenol and 37% formalin 1783 were added.
g and 90 g of NaOH were charged and dissolved while cooling, then heated with stirring, reacted at 80 ° C. for 30 minutes and cooled. The resulting solution was reddish brown transparent, stable at room temperature (25 ° C) for 2 months, and did not cause precipitation or turbidity. The molecular weight was 800. (Abbreviated as L-1) Reference Example 4 (Production of low molecular weight phenolic resin) In the same apparatus as in Reference Example 1, 941 g of phenol and 37% formalin 1783 were added.
g and 90 g of NaOH were charged and dissolved while cooling, then heated with stirring and reacted at 80 ° C. for 60 minutes and then cooled. The resulting solution was transparent in reddish brown and thickened after 1 month at room temperature (25 ° C). The molecular weight was 1500. (Abbreviated as L-2) Reference Example 5 (Production of high molecular weight phenolic resin) In the same apparatus as in Reference Example 1, 941 g of phenol and 37% formalin 162 were added.
3 g and 80 g of 30% NaOH were charged and dissolved while cooling and then heated with stirring to react at 85 ° C. for 180 minutes, 20 g of PVA was dissolved, the reaction was continued for 15 minutes, and then cooled. The paratoluenesulfonic acid solution was gradually added dropwise to the above reaction solution to adjust the pH in the system to 6.5 to obtain a uniform white dispersion liquid having a solid content of 50%. The particle size was 20 micrometers and the average molecular weight was 3500. Room temperature (2
At 5 ° C.), precipitation and the like occurred within 1 month. (Abbreviated as H-4) Reference Example 6 (Production of high molecular weight phenolic resin) A resin was produced in the same manner as in Reference Example 1 by changing the charged amounts of phenol and formaldehyde. A uniform, white dispersion having a solid content of 50% was obtained. The particle size was 1.5 micrometers and the average molecular weight was 2800. It was F / P = 1.25. Precipitation and the like occurred at room temperature (25 ° C) for one month. (Abbreviated as H-4) Reference Example 7 (Production of high molecular weight 000-nol resin) In the same manner as in Reference Example 1, a resin was produced by changing the charged amounts of phenol and formaldehyde. A uniform, white dispersion having a solid content of 50% was obtained. The particle size was 2.1 micrometers and the average molecular weight was 3200. It was F / P = 3.0. Precipitation and the like occurred at room temperature (25 ° C) for one month. (Abbreviated as H-5) Reference Example 8 (Production of low molecular weight melamine resin) 1260 g of melamine, 2027 g of 37% formalin were added to the same apparatus as in Reference Example 1.
5 g of NaOH and 100 g of methanol were charged, heated with stirring, reacted at 80 ° C. for 30 minutes and then cooled. The resulting liquid was colorless and transparent, was stable at room temperature (25 ° C.) for 2 months, and did not cause precipitation or turbidity. The molecular weight was 800 and the viscosity was 50 cp (abbreviated as L-3). Reference Example 9 (Production of High Molecular Weight Phenolic Resin) Phenol 941 g, 37% Formalin 1700 g, 25% in a reaction flask in the same apparatus as in Reference Example 1. Charge 100 g of NaOH and dissolve with cooling, then heat with stirring to 85 ° C.
After 180 minutes of reaction, the mixture was cooled, and the reaction was continued at 70 ° C. for 45 minutes and then cooled to obtain a reddish brown transparent resin liquid having a solid content of about 50%. The average molecular weight was 3250. F / P = 2.1. It was stable at room temperature (25 ° C) for 2 months and did not cause precipitation or turbidity. (Abbreviated as H-6) Examples 1 to 9 and Comparative Examples 1 to 13 [Production of plywood] The adhesives synthesized in Reference Examples 1 to 9 are shown in Tables 1 to 1.
Mixing was carried out under the conditions shown in 5, and plywood was prepared under the following conditions.
The adhesive force of the produced plywood was measured by a test by continuous boiling for 72 hours described in Japanese Agricultural Standards for structural plywood.
The passing value of JAS is 7 kg / cm 2 or more. a Compounding conditions: 100 g of resin + 15 g of wheat flour b Single plate: Water content of 13 to 16%, 2 mm thick lauan veneer. c Composition: 3-ply plywood d Cold pressure: 20 minutes, 10 kg / cm 2 e Hot pressure: 120 ° C., 2 minutes H-1 and L-1 were mixed under the conditions shown in Table 1 to prepare a plywood. The results of the reaction molar ratio of (a) and the adhesive strength are shown in Table 1.

【0011】[0011]

【表1】 H−1、H−2、L−1、L−2を表2に示す条件で混
合し合板を作製した。(a)の反応モル比と接着強度の結
果を表2に示す。
[Table 1] H-1, H-2, L-1, and L-2 were mixed under the conditions shown in Table 2 to produce a plywood. The results of the reaction molar ratio of (a) and the adhesive strength are shown in Table 2.

【0012】[0012]

【表2】 *比較例4は洗浄作業の際に凝集物を生じ作業性が悪か
った。 H−1、H−4、L−1を表3に示す条件で混合し合板
を作製した。(a)の反応モル比と接着強度の結果を表3
に示す。
[Table 2] * Comparative Example 4 was poor in workability because aggregates were generated during the cleaning work. H-1, H-4, and L-1 were mixed under the conditions shown in Table 3 to prepare a plywood. Table 3 shows the results of the reaction molar ratio and the adhesive strength of (a).
Shown in.

【0013】[0013]

【 表3】 *比較例7はH4とL1を混合後短時間で2層分離し
た。 H−1、H−4、H−5、L−1を表4に示す条件で混
合し合板を作製した。(a)の反応モル比と接着強度の結
果を表4に示す。
[Table 3] * In Comparative Example 7, two layers were separated in a short time after mixing H4 and L1. H-1, H-4, H-5, and L-1 were mixed under the conditions shown in Table 4 to produce plywood. Table 4 shows the results of the reaction molar ratio of (a) and the adhesive strength.

【0014】[0014]

【 表4】 モル比:ホルムアルデヒド/フェノールモル比 H−1、L−1、L−3を表5に示す条件で混合し合板
を作製した。(a)の組成比と接着強度の結果を表5に示
す。
[Table 4] Molar ratio: Formaldehyde / phenol molar ratio H-1, L-1, and L-3 were mixed under the conditions shown in Table 5 to prepare plywood. Table 5 shows the results of the composition ratio of (a) and the adhesive strength.

【0015】[0015]

【 表5】 H−6、L−1、を表6に示す条件で混合し合板を作製
した。(a) の組成比と接着強度の結果を表6に示す。
[Table 5] H-6 and L-1 were mixed under the conditions shown in Table 6 to produce plywood. Table 6 shows the results of the composition ratio of (a) and the adhesive strength.

【0016】[0016]

【表6】 [Table 6]

【0017】[0017]

【発明の効果】本発明の接着剤組成物は、従来のフェノ
ール系樹脂に比べて、硬化が早く、耐久性、耐加水分解
性に優れ、被着体の水分量に影響されにくいことが表1
〜6から明らかである。
EFFECTS OF THE INVENTION The adhesive composition of the present invention is quicker to cure than the conventional phenolic resins, has excellent durability and hydrolysis resistance, and is not easily affected by the amount of water in the adherend. 1
~ 6.

【図面の簡単な説明】[Brief description of drawings]

【図1】 実施例1のフェノール系接着剤組成物の分子
量分布図である。
1 is a molecular weight distribution diagram of the phenolic adhesive composition of Example 1. FIG.

Claims (12)

【特許請求の範囲】[Claims] 【請求項1】 (a) 高分子量のフェノール系樹脂接着剤
と、(b) 低分子量の、フェノール樹脂、尿素樹脂、メラ
ミン樹脂またはアミノ基を有する樹脂からなる郡から選
ばれた1種または2種以上とを混合してなるフェノール
系接着剤組成物。
1. One or two selected from the group consisting of (a) a high molecular weight phenolic resin adhesive and (b) a low molecular weight phenolic resin, urea resin, melamine resin or resin having an amino group. A phenolic adhesive composition comprising a mixture of at least one species.
【請求項2】 高分子量のフェノール系樹脂が、フェノ
ール系樹脂とアミノ系化合物との共縮合物であることを
特徴とする請求項1記載のフェノール系樹脂接着剤組成
物。
2. The phenolic resin adhesive composition according to claim 1, wherein the high molecular weight phenolic resin is a cocondensation product of a phenolic resin and an amino compound.
【請求項3】 アミノ基を有する樹脂が、メラミン及び
/又は尿素であることを特徴とする請求項2記載のフェ
ノール系樹脂接着剤組成物。
3. The phenolic resin adhesive composition according to claim 2, wherein the resin having an amino group is melamine and / or urea.
【請求項4】 高分子量のフェノール系樹脂の平均分子
量が、3000以上のフェノール系樹脂の分散液である
請求項1〜3記載の何れかのフェノール系接着剤組成
物。
4. The phenolic adhesive composition according to claim 1, which is a dispersion liquid of a high molecular weight phenolic resin having an average molecular weight of 3000 or more.
【請求項5】 高分子量のフェノール系樹脂の分散液の
フェノール系樹脂の粒径が、0.3〜10マイクロメー
ターであることを特徴とする請求項1〜2記載の何れか
のフェノール系接着剤組成物。
5. The phenolic adhesive according to claim 1, wherein the particle size of the phenolic resin in the high molecular weight phenolic resin dispersion is 0.3 to 10 micrometers. Agent composition.
【請求項6】 高分子量のフェノール系樹脂が、フェノ
ール1モルに対して1.5〜2.8モルのホルムアルデヒ
ドを反応してなる事を特徴とする請求項1〜5記載の何
れかのフェノール系接着剤組成物。
6. The phenol according to claim 1, wherein the high molecular weight phenolic resin is formed by reacting 1.5 to 2.8 mol of formaldehyde with respect to 1 mol of phenol. Adhesive composition.
【請求項7】 高分子量のフェノール系樹脂の粘度が、
80〜1500cpであることを特徴とする請求項1〜
4記載の何れかのフェノール系樹脂接着剤組成物。
7. The viscosity of the high molecular weight phenolic resin is
It is 80-1500 cp, It is characterized by the above-mentioned.
4. The phenolic resin adhesive composition according to any one of 4 above.
【請求項8】 (b)中に少なくとも低分子量のフェノー
ル樹脂が60%以上含まれていることを特徴とする請求
項1記載のフェノール系接着剤組成物。
8. The phenolic adhesive composition according to claim 1, wherein at least 60% or more of a low molecular weight phenolic resin is contained in (b).
【請求項9】 低分子量のフェノール樹脂、尿素樹脂、
メラミン樹脂またはアミノ基を有する接着剤組成物の分
子量が1000以下であることを特徴とする請求項1記
載のフェノール系樹脂。
9. A low molecular weight phenolic resin, urea resin,
The phenolic resin according to claim 1, wherein the melamine resin or the adhesive composition having an amino group has a molecular weight of 1,000 or less.
【請求項10】 低分子量のフェノール樹脂の粘度が2
5℃で15〜500センチポイズであることを特徴とす
る請求項1、6または7記載のフェノール系接着剤組成
物。
10. A low molecular weight phenolic resin having a viscosity of 2
The phenol-based adhesive composition according to claim 1, 6 or 7, which has a viscosity of 15 to 500 centipoise at 5 ° C.
【請求項11】 (a)と(b)の混合比率が、固形分の比率
で 2〜300:100であることを特徴とする請求項
1記載のフェノール系接着剤組成物。
11. The phenolic adhesive composition according to claim 1, wherein the mixing ratio of (a) and (b) is 2 to 300: 100 in terms of solid content.
【請求項12】 (a)と(b)の混合が、使用の直前に行わ
れることを特徴とする請求項1記載のフェノール系接着
剤組成物。
12. The phenolic adhesive composition according to claim 1, wherein the mixing of (a) and (b) is performed immediately before use.
JP22696192A 1992-08-26 1992-08-26 Phenolic adhesive composition Pending JPH0673356A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22696192A JPH0673356A (en) 1992-08-26 1992-08-26 Phenolic adhesive composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22696192A JPH0673356A (en) 1992-08-26 1992-08-26 Phenolic adhesive composition

Publications (1)

Publication Number Publication Date
JPH0673356A true JPH0673356A (en) 1994-03-15

Family

ID=16853338

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22696192A Pending JPH0673356A (en) 1992-08-26 1992-08-26 Phenolic adhesive composition

Country Status (1)

Country Link
JP (1) JPH0673356A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1988009504A1 (en) * 1987-05-29 1988-12-01 Toa Medical Electronics Co., Ltd. Method for classifying leukocytes and reagents
JP2006282868A (en) * 2005-03-31 2006-10-19 J-Chemical:Kk Phenol resin-based adhesive and method for producing needle-leaved tree plywood by using the same
CN111333827A (en) * 2020-04-22 2020-06-26 黄山市源润新材料科技有限公司 High-hardness and high-stability 60/40 mixed type polyester resin for powder and preparation method thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1988009504A1 (en) * 1987-05-29 1988-12-01 Toa Medical Electronics Co., Ltd. Method for classifying leukocytes and reagents
JP2006282868A (en) * 2005-03-31 2006-10-19 J-Chemical:Kk Phenol resin-based adhesive and method for producing needle-leaved tree plywood by using the same
CN111333827A (en) * 2020-04-22 2020-06-26 黄山市源润新材料科技有限公司 High-hardness and high-stability 60/40 mixed type polyester resin for powder and preparation method thereof

Similar Documents

Publication Publication Date Title
AU2009262835B8 (en) Storage stable melamine-urea-formaldehyde resins and applications thereof
AU629659B2 (en) Spray dried phenol-formaldehyde compositions
JPH0510368B2 (en)
NO143888B (en) COSMETIC AGENT FOR SMALL SKIN.
US4968772A (en) Process for the preparation of urea-formaldehyde resins
US4968773A (en) Process for the preparation of urea-formaldehyde resins
EP0747433A2 (en) A catalytic composition and method for curing urea-formaldehyde resin
US6291558B1 (en) Composition board binding material
JPH0673356A (en) Phenolic adhesive composition
SE543103C2 (en) Process for preparing a solution of lignin in an aqueous medium by partial methylolation
WO2013144226A1 (en) Melamine-reinforced uf glues containing up to 0.9% of melamine for the production of medium-density fiberboards
US2781327A (en) Phenolic resin glue compositions containing modified bark phloem flour
FI113274B (en) Binders for the preparation of lignocellulosic molding pairs
SU886726A3 (en) Catalyst for polycondensation of urea or melaminoformaldehyde resins
US2805168A (en) Chemically modified ligno-cellulosic materials
JPS5925656B2 (en) Manufacturing method of dry-formed plate
JP4426176B2 (en) Phenolic resin adhesive composition
JPH0688010A (en) Liquid curing agent composition for resorcinol resin adhesive
US3096226A (en) Aqueous composition of phenol-aldehyde condensate and method of bonding materials with same
EP0594038B1 (en) Aqueous urea-formaldehyde resins
JP3025351B2 (en) Liquid curing agent
JPS5952650B2 (en) Method for producing phenol-melamine cocondensation resin
IE60577B1 (en) Process for the preparation of urea-formaldehyde resins
JPH0577714B2 (en)
JPS6036238B2 (en) Manufacturing method of powder resin adhesive for wood