JPH0673201B2 - Magneto-optical recording / reproducing method and device - Google Patents

Magneto-optical recording / reproducing method and device

Info

Publication number
JPH0673201B2
JPH0673201B2 JP2548185A JP2548185A JPH0673201B2 JP H0673201 B2 JPH0673201 B2 JP H0673201B2 JP 2548185 A JP2548185 A JP 2548185A JP 2548185 A JP2548185 A JP 2548185A JP H0673201 B2 JPH0673201 B2 JP H0673201B2
Authority
JP
Japan
Prior art keywords
magnetic field
recording
recording medium
magnetic
permanent magnet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2548185A
Other languages
Japanese (ja)
Other versions
JPS61184745A (en
Inventor
薫 土岐
満哉 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP2548185A priority Critical patent/JPH0673201B2/en
Publication of JPS61184745A publication Critical patent/JPS61184745A/en
Publication of JPH0673201B2 publication Critical patent/JPH0673201B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はレーザ光によって情報の記録再生消去をおこな
う光磁気記録再生消去方法及びその装置に関する。
The present invention relates to a magneto-optical recording / reproducing / erasing method and apparatus for recording / reproducing / erasing information by laser light.

(従来技術とその問題点) 光記録方式、特に光ディスクメモリ方式は、高密度・大
容量記録が可能であり、かつ非接触・高速アクセスもで
きるという点から大容量ファイルメモリの一つとして近
年注目を集めている。その中でも記録媒体としてMnBi,M
nCuBi,MnTiBi,MnAlGeなどの結晶性磁性薄膜あるいはTb,
Gd,Dy,Hoなどの希土類金属とFe,Co,Niなどの遷移金属と
の組み合わせによって作成される非晶質磁性薄膜を用い
た光磁気ディスクメモリは、記録情報の書き替えが可能
であるという利点を持っていることから、各所で盛んに
研究されている。
(Prior art and its problems) The optical recording method, particularly the optical disk memory method, has recently attracted attention as one of large-capacity file memories because it enables high-density and large-capacity recording and also enables non-contact and high-speed access. Are gathering. Among them, MnBi, M as a recording medium
nCuBi, MnTiBi, MnAlGe or other crystalline magnetic thin film or Tb,
The magneto-optical disk memory using an amorphous magnetic thin film made by combining rare earth metals such as Gd, Dy, Ho and transition metals such as Fe, Co, Ni is said to be able to rewrite recorded information. Because of its advantages, it is being actively researched in various places.

従来、公知の光磁気記録再生消去方式においては、情報
の記録・再生・消去に対してそれぞれ次のような動作が
とられる。記録媒体はあらかじめ媒体の保磁力以上の外
部磁界により一方向に着磁される。
Conventionally, in the known magneto-optical recording / reproducing / erasing method, the following operations are performed for recording / reproducing / erasing information. The recording medium is previously magnetized in one direction by an external magnetic field having a coercive force greater than that of the medium.

記録には、レーザ光により発生する熱を利用する。レー
ザ光ビームを1〜2μmφの微小スポットに絞り、記録
媒体に照射し、媒体温度を上昇させる。キューリ温度記
録をおこなう場合には、記録媒体をキューリ温度以上に
上昇させ、外部印加磁界あるいは記録媒体の反磁界によ
って反転磁区を形成する。補償温度記録をおこなう場合
には記録媒体の補償温度を室温付近に設定し、レーザ光
ビーム照射によってある温度まで昇温させ、媒体の保磁
力低下を利用し、外部印加磁界によって反転磁区を形成
する。前記手段により記録2値信号「1」「0」を記録
媒体の反転磁区の有無に対応した形で記録できる。
The heat generated by the laser light is used for recording. The laser light beam is focused on a minute spot of 1 to 2 μmφ and irradiated on the recording medium to raise the medium temperature. When Curie temperature recording is performed, the recording medium is heated to a temperature above the Curie temperature and an inverted magnetic domain is formed by an externally applied magnetic field or a demagnetizing field of the recording medium. When performing compensation temperature recording, set the compensation temperature of the recording medium near room temperature, raise it to a certain temperature by laser beam irradiation, and use the reduction of the coercive force of the medium to form an inverted magnetic domain by an externally applied magnetic field. . By the means, the recording binary signals "1" and "0" can be recorded in a form corresponding to the presence or absence of the reversed magnetic domain of the recording medium.

再生は磁気光学効果(Kerr効果あるいはFaradey効果)
を用いておこなわれる。すなわち記録媒体の反転磁区の
有無に対応して媒体からの反射光あるいは透過光の偏光
面が回転することを利用し、記録媒体から情報を読み出
す。記録媒体には記録時にくらべ低パワレベルのレーザ
光が照射され、その反射光または透過光から信号を再生
する。
Reproduction is magneto-optical effect (Kerr effect or Faradey effect)
Is performed using. That is, information is read from the recording medium by utilizing the fact that the polarization plane of the reflected light or transmitted light from the medium rotates depending on the presence or absence of the reversed magnetic domain of the recording medium. The recording medium is irradiated with a laser beam having a lower power level than during recording, and a signal is reproduced from the reflected light or the transmitted light.

記録情報を消去する場合には、外部磁界を記録時とは逆
極性に印加し、レーザ光ビームを記録時と同等の強度で
記録媒体に一様に照射するいわゆる一括消去が行われ
る。外部磁界印加により記録媒体の磁化状態は記録前の
初期状態に戻る。
When erasing recorded information, so-called collective erasing is performed in which an external magnetic field is applied with a polarity opposite to that used during recording, and a laser light beam is uniformly applied to the recording medium at the same intensity as during recording. By applying an external magnetic field, the magnetization state of the recording medium returns to the initial state before recording.

ここで、公知の外部磁界印加手段は、たとえば空心コイ
ルを用いる方法を用いる方法、あるいは永久磁石を用い
る方法である。しかしながら、記録時と消去時では通常
数百ニルステッド以上の印加磁界が必要であるために、
空心コイルを用いる場合にはコイルが大型化し、これに
伴って、磁界切替え速度が遅くなると共に記録媒体とコ
イルとの距離を十分に接近させないと所要印加磁界が得
られないという欠点がある。また、電磁石を用いる場合
にも磁界印加手段は大型化し磁界切替え速度が遅いとい
う欠点を生じる。さらに、永久磁石を用いる場合は、機
械的な駆動手段を用いて磁界を切替えるため複雑な機構
が必要でありこの場合も磁界切替速度は遅いものとな
る。
Here, the known external magnetic field applying means is, for example, a method using an air-core coil or a method using a permanent magnet. However, since an applied magnetic field of several hundred nirsted or more is usually required at the time of recording and erasing,
When an air-core coil is used, the size of the coil becomes large, and accordingly, the magnetic field switching speed becomes slow, and the required applied magnetic field cannot be obtained unless the distance between the recording medium and the coil is sufficiently short. Further, even when an electromagnet is used, the magnetic field applying means becomes large in size and the magnetic field switching speed is slow, which is a drawback. Furthermore, when a permanent magnet is used, a complicated mechanism is required to switch the magnetic field by using a mechanical driving means, and in this case as well, the magnetic field switching speed becomes slow.

以上述べた様に、従来のいずれの方式においても磁界切
替え速度は遅いために、消去には上述した一括消去方式
が用いられ、また記録には一定磁界印加中にレーザパワ
ーを高速変調する方法が用いられていた。そしてこの方
法では、記録時の印加磁界と消去時の印加磁界の差が大
きいと言う欠点があった。又、従来装置では既に記録さ
れた情報に、新しい情報を高速で重ね書きする、いわゆ
るオーバライト性能を持たせることは不可能であった。
As described above, since the magnetic field switching speed is slow in any of the conventional methods, the batch erasing method described above is used for erasing, and a method for high-speed modulation of laser power during constant magnetic field application is used for recording. Was used. This method has a drawback that the difference between the applied magnetic field during recording and the applied magnetic field during erasing is large. Further, in the conventional apparatus, it is impossible to have so-called overwrite performance, in which new information is overwritten on already recorded information at high speed.

(発明の目的] 本発明の目的はこの様な従来の欠点を除くために、成さ
れたものであり、小型かつ簡易な磁界印加手段を用い、
容易に記録・再生・消去を行なうことができ、さらに、
オーバーライト性能を有する新規な光磁気記録再生消去
方法及び装置を提供することにある。
(Object of the Invention) The object of the present invention was made in order to eliminate such drawbacks of the prior art, using a small and simple magnetic field applying means,
You can easily record / playback / delete,
It is an object of the present invention to provide a novel magneto-optical recording / reproducing / erasing method and apparatus having overwrite performance.

(発明の構成) 本発明によれば、垂直磁気異方性を有する磁性薄膜を記
録媒体とし、レーザ光及び外部印加磁界によって情報の
記録・再生・消去を行う光磁気記録再生消去方法におい
て、永久磁石と、この永久磁石の一方の磁極に接触し永
久磁石に直角に対向するように構成した直角対向部分と
この直角対向部分に一端を接触し他端を前記永久磁石の
他方の磁極に接近するように前記永久磁石に平行に対向
するように構成した平行対向部分からなる高透磁率磁性
体のコア部と、前記平行対向部分に巻かれた巻き線とを
備え、前記巻き線に電流が流れているときに前記記録媒
体に磁界を印加し前記巻き線に電流が流れていないとき
に前記記録媒体に磁界を印加しないようにする磁界印加
装置を、前記記録媒体の片側に所定の間隔をおいて固定
して設置し、前記記憶媒体に所定のレーザ光を照射しな
がら記録時及び消去時に前記磁界印加装置の巻き線に異
なるレベルの電流を流し、前記記録媒体に異なるレベル
の磁界を印加できるようにしたことを特徴とする光磁気
記録再生消去方法が得られる。
According to the present invention, in a magneto-optical recording / reproducing / erasing method in which a magnetic thin film having perpendicular magnetic anisotropy is used as a recording medium and information is recorded / reproduced / erased by a laser beam and an externally applied magnetic field, The magnet and one of the magnetic poles of the permanent magnet are in contact with each other at a right angle to the permanent magnet, and one end of the right-angled opposing portion is in contact with the other end of the permanent magnet. As described above, the core portion of the high-permeability magnetic body composed of parallel facing portions configured to face the permanent magnets in parallel and a winding wound around the parallel facing portions are provided, and a current flows through the windings. A magnetic field applying device that applies a magnetic field to the recording medium during heating, and does not apply a magnetic field to the recording medium when no current is flowing through the winding, with a predetermined interval on one side of the recording medium. Fixed The recording medium is irradiated with a predetermined laser beam, and different levels of current are applied to the windings of the magnetic field applying device during recording and erasing so that different levels of magnetic field can be applied to the recording medium. A magneto-optical recording / reproducing / erasing method is obtained which is characterized by

また、本発明にかかる光磁気記録再生消去装置では、光
ヘッドと、記録媒体への磁界印加手段を備えた光磁気記
録再生消去装置において、磁界印加手段は、前記記録媒
体の片側に設置され、永久磁石と、この永久磁石の一方
の磁極に接触し永久磁石に直角に対向するように構成し
た直角対向部分とこの直角対向部分に一端を接触し他端
を前記永久磁石の他方の磁極に接近するように前記永久
磁石に平行に対向するように構成した平行対向部分から
なる高透磁率磁性体のコア部と、電流が流れているとき
に前記記録媒体に磁界を印加し、前記巻き線に電流が流
れていないときに前記記録媒体に磁界を印加しないよう
に前記平行対向部分に巻かれた巻き線とを備え、さら
に、前記巻き線には電流源が接続されていることを特徴
とする。
Further, in the magneto-optical recording / reproducing / erasing apparatus according to the present invention, in the magneto-optical recording / reproducing / erasing apparatus including an optical head and a magnetic field applying means for the recording medium, the magnetic field applying means is installed on one side of the recording medium, A permanent magnet and a right-angled facing portion configured to contact one of the magnetic poles of the permanent magnet so as to face the permanent magnet at a right angle, and one end of the right-angled facing portion contacts the right-angled facing portion and the other end approaches the other magnetic pole of the permanent magnet. A magnetic field is applied to the recording medium when a current flows and a core portion of a high-permeability magnetic body composed of parallel facing portions configured to face each other in parallel with the permanent magnet, Windings wound around the parallel facing portions so as not to apply a magnetic field to the recording medium when no current is flowing, and further, a current source is connected to the windings. .

(構成の詳細な説明) 次に、本発明の構成について、図面を用いて詳細に説明
する。第1図(a)〜(b)に、本発明に係る第一の光
磁気記録再生消去方法の記録・消去動作モード図を示
す。記録媒体に用いる磁性薄膜の磁化状態を消磁状態と
し、これを初期状態とする。消磁状態は、少なくとも記
録トラック以外の媒体領域を、印加磁界HW′と同方向に
着磁した後、記録トラックにHW′と同方向の消去磁界HE
を印加しながら、消去パワPEを加えることにより実現で
きる。記録は、第1図(a)(b)のようにこの消磁状
態の磁性薄膜に磁区を形成することにより行われる。磁
区の磁化方向は、印加磁界HWもしくはHW′に対応して、
媒体面に対して、上向きでも、下向きでも良い。従来の
記録が一方向に着磁された磁性薄膜に反転磁区を形成し
て記録を行うのに対して、本発明に係る記録において、
消磁状態の磁性薄膜に磁区を形成すればよいので、記録
に要する印加磁界は、従来の記録よりも小さくてよい。
再生は従来の再生と同じように、磁性薄膜から反射され
るレーザ光の偏光面回転を信号として取り出す。磁区の
ある領域と消磁された領域とでは、明らかにKerr効果に
よる偏向面の回転が異なるので、十分な再生信号が得ら
れる。消去時には第1図(c),(d)に示した様に、
消去を要する領域に、一定強度のレーザ光PEと一定値の
外部磁界HEを印加することにより、初期状態と同じ消磁
状態になる。
(Detailed Description of Configuration) Next, the configuration of the present invention will be described in detail with reference to the drawings. FIGS. 1 (a) and 1 (b) show a recording / erasing operation mode diagram of a first magneto-optical recording / reproducing / erasing method according to the present invention. The magnetized state of the magnetic thin film used for the recording medium is set to the demagnetized state, which is the initial state. Demagnetized state, a medium region other than at least a recording track, the applied magnetic field H W 'and after magnetized in the same direction, the recording track H W' in the same direction of the erasing magnetic field H E
This can be achieved by applying erase power P E while applying. Recording is performed by forming magnetic domains in the demagnetized magnetic thin film as shown in FIGS. The magnetization direction of the magnetic domain corresponds to the applied magnetic field H W or H W ′,
It may be upward or downward with respect to the medium surface. In contrast to conventional recording in which a reversed magnetic domain is formed in a magnetic thin film magnetized in one direction to perform recording, in the recording according to the present invention,
Since the magnetic domains may be formed in the demagnetized magnetic thin film, the applied magnetic field required for recording may be smaller than that in conventional recording.
In the reproduction, as in the conventional reproduction, the polarization plane rotation of the laser light reflected from the magnetic thin film is extracted as a signal. Since the rotation of the deflecting surface due to the Kerr effect is obviously different between the region having magnetic domains and the demagnetized region, a sufficient reproduction signal can be obtained. At the time of erasure, as shown in FIGS. 1 (c) and (d),
By applying a constant intensity laser light P E and a constant external magnetic field H E to the region requiring erasing, the same demagnetization state as the initial state is achieved.

第2図は、本発明に係る光磁気記録・再生・消去装置の
構成を示したものである。これによると垂直磁気異方性
を有する磁性薄膜2を記録媒体とする光磁気ディスク1
の上方に光磁気記録用ヘッド3、その下方に外部磁界印
加手段4が設けられている。ここで光磁気記録用ヘッド
3は、記録・再生・消去用の光学系及び光検出機構を具
備した従来と同等のものであるが、外部磁界印加手段
が、従来と異なる。
FIG. 2 shows the configuration of a magneto-optical recording / reproducing / erasing apparatus according to the present invention. According to this, a magneto-optical disk 1 using a magnetic thin film 2 having perpendicular magnetic anisotropy as a recording medium.
A magneto-optical recording head 3 is provided above, and an external magnetic field applying unit 4 is provided below the magneto-optical recording head 3. Here, the magneto-optical recording head 3 is equivalent to a conventional one having an optical system for recording / reproducing / erasing and a photodetection mechanism, but the external magnetic field applying means is different from the conventional one.

第3図は、この外部磁界印加手段の構成を示した図であ
り、板状の永久磁石22と、この永久磁石の記録媒体に対
向する側の磁極に対向する部分と、巻線24を有した部分
とからなるL型で、高透磁率磁性体から成るコア部23と
から成る。そして、巻線24は、電流源20に接続され、巻
線24への電流の有無によって、第4図に示す様に記録媒
体への磁場の印加と遮蔽が選択される。すなわち、巻線
24に電流が流れていない時は、第4図(a)に示す様
に、コア部23は、永久磁石22の磁極から生じる磁束を、
もう一方の磁極へ、効率良く導く磁路を形成するため、
記録媒体側へは、磁界が殆ど印加されない。一方、第4
図(b)に示す様に、巻線24に電流Iが流れる場合、電
流Iによって、コア部23内に生じる磁束の分だけ、永久
磁石22の磁極から、磁束が外部に漏れるため記録媒体へ
垂直方向のバイアス磁界が印加される様になる。
FIG. 3 is a view showing the structure of the external magnetic field applying means, which has a plate-shaped permanent magnet 22, a portion of the permanent magnet that faces the magnetic pole on the side facing the recording medium, and a winding 24. And a core portion 23 made of a high-permeability magnetic material. The winding 24 is connected to the current source 20, and the application and shielding of the magnetic field to the recording medium is selected depending on the presence / absence of current in the winding 24, as shown in FIG. Ie winding
When no current is flowing in 24, the core portion 23 causes the magnetic flux generated from the magnetic poles of the permanent magnets 22, as shown in FIG.
In order to form a magnetic path that leads efficiently to the other magnetic pole,
A magnetic field is hardly applied to the recording medium side. On the other hand, the fourth
As shown in FIG. 2B, when a current I flows through the winding wire 24, the magnetic flux leaks from the magnetic pole of the permanent magnet 22 to the outside by the amount of the magnetic flux generated in the core portion 23 by the current I, and the magnetic flux is transferred to the recording medium. A vertical bias magnetic field is applied.

第4図(c)は、巻線に流れる電流Iと、バイアス磁界
HBとの関係を示したものであり、電流Iの増加に伴っ
て、バイアス磁界HBは増加し、コア部23の磁化が飽和に
近づくにつれて、バイアス磁界HBも、飽和する傾向を示
し、電流値IS以上では従来の永久磁石バイアスと同等の
バイアス磁界を得ることができる。第2図においては、
この様な外部磁界印加手段が記録媒体の下方に、永久磁
石の磁極Nが、媒体に対向する様に配設されている。従
って巻線への通電中は、記録媒体に上向きのバイアス磁
界が印加される。又、バイアス磁界の大きさは、巻線へ
流す電流の大きさによって制御できる。
FIG. 4 (c) shows the current I flowing in the winding and the bias magnetic field.
The relationship with H B is shown. The bias magnetic field H B increases with the increase of the current I, and as the magnetization of the core portion 23 approaches saturation, the bias magnetic field H B also tends to saturate. , At a current value I S or more, a bias magnetic field equivalent to that of the conventional permanent magnet bias can be obtained. In FIG. 2,
Such an external magnetic field applying means is arranged below the recording medium so that the magnetic pole N of the permanent magnet faces the medium. Therefore, while the winding is energized, an upward bias magnetic field is applied to the recording medium. Further, the magnitude of the bias magnetic field can be controlled by the magnitude of the current flowing through the winding.

永久磁石22としては、厚さ数ミリメートル、幅及び長さ
が数ミリ〜数十ミリメートルのサマリウムコバルト磁石
やアルニコ磁石もしくはフェライト磁石が用いられ、コ
ア部23としては、厚さ数ミリメートル、磁路長及び幅が
数ミリ〜数十ミリメートルのNiFe合金、もしくはNiZnフ
ェライトやMnZnフェライト等のソフトフェライトが用い
られ、又巻線24としては、線径数十ミクロン〜数百ミク
ロンの銅線が用いられ巻線は、数十ターンである。又電
流値ISとしては、数十〜数百ミリアンペアが適当であ
る。
As the permanent magnet 22, a samarium-cobalt magnet, an alnico magnet, or a ferrite magnet having a thickness of several millimeters and a width and a length of several millimeters to several tens of millimeters is used, and the core portion 23 has a thickness of several millimeters and a magnetic path length. And a width of several millimeters to several tens of millimeters of NiFe alloy, or soft ferrite such as NiZn ferrite or MnZn ferrite is used, and as the winding wire 24, a copper wire having a wire diameter of several tens of microns to several hundreds of microns is used. The line is dozens of turns. Further, the current value I S is preferably several tens to several hundreds of milliamperes.

この様にして構成した外部磁界印加手段では、巻線のイ
ンダクタンスLを1μH以下にすることが容易なため、
数百エルステッドオーダの磁場の数メガヘルツオーダで
高速切替えが記録媒体から数ミリメートル離れた位置か
らでも容易に実現できる。
In the external magnetic field applying means thus configured, it is easy to set the inductance L of the winding to 1 μH or less,
High-speed switching can be easily realized even from a position several millimeters away from the recording medium with a magnetic field of several hundred oersteds of several megahertz order.

光磁気記録用ヘッド3は、上述した様に従来と同等のも
のであり次の様な構成を有する。6は、直線偏向のレー
ザ光源であり、たとえば半導体レーザが使用される。7,
8,9はビームスプリッタである。レーザ光ビーム集光用
レンズ10は、アクチュニータ11により支持されている。
フォーカスエラならびにトラッキングエラー信号はそれ
ぞれフォーカスエラ検出用受光素子12、トラッキングエ
ラー検出用受光素子13によって検出されサーボ制御回路
14,15に入力され、サーボ信号となり、前記アクチュエ
ータ11にフィードバックされる。再生信号は偏光フィル
タ16を通過後、再生信号検出用受光素子17によって検出
され、再生信号増幅回路18によって増幅される。偏光フ
ィルタ16としては、たとえばグラムトムソンプリズムが
用いられる。再生信号検出用受光素子17としては、例え
ばPLNフォトダイオードまたはアバランシェ・フォトダ
イオードが使用される。レーザ光源6の変調には、レー
ザ光源変調用回路が使用され、記録時・消去時・再生時
に合わせて、レーザ光のパワーが変調される。
The magneto-optical recording head 3 is the same as the conventional one as described above and has the following configuration. Reference numeral 6 is a linearly polarized laser light source, and for example, a semiconductor laser is used. 7,
8 and 9 are beam splitters. The laser light beam focusing lens 10 is supported by an actuator 11.
The focus error and tracking error signals are detected by the focus error detection light receiving element 12 and the tracking error detection light receiving element 13, respectively, and the servo control circuit is detected.
The signals are input to 14, 15 and serve as servo signals, which are fed back to the actuator 11. After passing through the polarization filter 16, the reproduction signal is detected by the reproduction signal detecting light receiving element 17 and amplified by the reproduction signal amplifying circuit 18. As the polarization filter 16, for example, a Gram Thomson prism is used. As the light receiving element 17 for detecting the reproduction signal, for example, a PLN photodiode or an avalanche photodiode is used. A laser light source modulation circuit is used to modulate the laser light source 6, and the power of the laser light is modulated at the time of recording, erasing, and reproducing.

第5図〜第9図は外部磁界印加手段の他の構成例を示す
図である。
5 to 9 are diagrams showing other configuration examples of the external magnetic field applying means.

第5図では、コア部27において、巻線28が施こされた部
分の幅が永久磁石22の磁極に対向する部分より小さいこ
とを特徴とする。
In FIG. 5, the core portion 27 is characterized in that the width of the portion provided with the winding wire 28 is smaller than the portion facing the magnetic pole of the permanent magnet 22.

第6図では、コア部29において、巻線30が施こされた部
分の厚みが、永久磁石22の磁極に対向する部分より小さ
いことを特徴とする。
In FIG. 6, the core portion 29 is characterized in that the portion where the winding wire 30 is applied is thinner than the portion facing the magnetic pole of the permanent magnet 22.

第7図では、コア部31において、巻線32が施こされた部
分の幅及び厚み共に、永久磁石22の磁極に対向する部分
より小さいことを特徴とする。
In FIG. 7, the core portion 31 is characterized in that the width and thickness of the portion to which the winding 32 is applied are smaller than the portion facing the magnetic pole of the permanent magnet 22.

これらの構成例は、いずれも第3図に示す第一の構成例
に比べて、巻線部のコアの断面積を小さくすることによ
って、より低い電流値で巻線部の磁化が飽和するように
でき、その結果、印加磁界の高速切り替えを容易にする
ものである。
Compared with the first configuration example shown in FIG. 3, in each of these configuration examples, the magnetization of the winding portion is saturated at a lower current value by reducing the cross-sectional area of the winding core. As a result, high speed switching of the applied magnetic field is facilitated.

第8図では、コア部37がU型をしており、このため永久
磁石の磁極から発生する磁束を、第一の構成例より効率
良く、もう一方の磁極に導くことができるので、巻線36
に通電しない時における印加磁界を、より完全に遮蔽で
きる。
In FIG. 8, since the core portion 37 has a U shape, the magnetic flux generated from the magnetic pole of the permanent magnet can be guided to the other magnetic pole more efficiently than in the first configuration example. 36
It is possible to more completely shield the applied magnetic field when no current is applied to the.

第9図では、同心円柱状の永久磁石39が、この内径と同
じ位の穴42が設けられたコア部40に、その穴位置と内径
をあわせて、取り付けられている。この場合、穴42を光
ビームの通路として使えるので、外部磁界印加手段を記
録媒体に対して、光ヘッドと同じ側に配設する場合に適
している。
In FIG. 9, a concentric cylindrical permanent magnet 39 is attached to a core portion 40 provided with a hole 42 of the same size as the inner diameter, with the hole position and the inner diameter aligned. In this case, since the hole 42 can be used as a passage for the light beam, it is suitable when the external magnetic field applying means is arranged on the same side as the optical head with respect to the recording medium.

次に、本発明に係る第二の記録・再生・消去方法を説明
する。第10図(a)〜(b)に、第2図と同様の装置を
用いる場合の動作モード図を示す。この場合も、消磁状
態は少なくとも記録トラック以外の媒体領域を印加磁界
HW′と同方向(第2図中下から上向き)に着磁した後、
記録トラックにHW′と同方向の消去磁界HEを印加しなが
ら、消去パワーPEを加えることにより実現できる。ここ
で、消去磁界HEを発生するのに必要な巻線電流をIEとす
る。本方法では、記録時に、上記消去パワーと同じ一定
のパワーを加えながら、記録パターンに応じて巻線電流
を高速変調することによって外部印加磁界を消去磁界HE
と記録磁界HW′を順次印加する。記録媒体の走向に伴う
冷却過程で、上記印加磁界に対応して、同図(d)に示
す様に消磁状態部分43の中に記録磁化状態が実現され
る。従来の記録が一方向に着磁された磁性薄膜に反転磁
区を形成して記録を行うのに対して、本発明に係る記録
では記録磁化状態が巻線に流す電流値に対応して決定さ
れる。従って、本方法では一括消去の過程を必要とせず
に所望の記録が実現できるオーバライト性能を有してい
る。再生は、従来の再生と同様に、磁性薄膜から反射さ
れるレーザ光の偏光面回転を信号として取り出す。
Next, a second recording / reproducing / erasing method according to the present invention will be described. FIGS. 10 (a) and 10 (b) show operation mode diagrams in the case where the same device as that in FIG. 2 is used. Also in this case, the demagnetized state should be applied magnetic field at least in the medium area other than the recording track.
After magnetizing in the same direction as H W ′ (from bottom to top in FIG. 2),
This can be achieved by applying the erasing power P E while applying the erasing magnetic field H E in the same direction as H W ′ to the recording track. Here, the winding current required to generate the erase magnetic field H E is I E. In this method, at the time of recording, while applying the same constant power as the above erasing power, the externally applied magnetic field H E
And the recording magnetic field H W ′ are sequentially applied. In the cooling process accompanying the strike of the recording medium, a recording magnetization state is realized in the demagnetized state portion 43 as shown in FIG. In the conventional recording, the reversed magnetic domain is formed in the magnetic thin film magnetized in one direction to perform the recording, whereas in the recording according to the present invention, the recording magnetization state is determined corresponding to the current value flowing in the winding. It Therefore, the present method has the overwrite performance capable of realizing desired recording without the need for the batch erasing process. In reproduction, as in conventional reproduction, the polarization plane rotation of the laser light reflected from the magnetic thin film is taken out as a signal.

(実施例1) 第2図に示した光磁気記録再生消去装置を用いて、光磁
気ディスクへの情報記録・再生・消去を行なった。外部
磁界印加手段としては、第7図に示したものを用いた。
これは、永久磁石としては厚さ2mm幅30mm高さ30mmのア
ルニコ磁石を用い、コア部としては、MnZnフェライトを
磁極に対向する部分が厚さ2mm、巾35mmに、巻線部が厚
さ1mm高さ10mmに成形したものを用い、この両者を接着
剤で接着したものから成る。巻線は、線径100μmの銅
線が50ターン巻かれたものから成る。光磁気ディスクと
して120mmφのプラスチック基板上に、スパッタ法によ
りTbFe膜を800Å厚に形成したディスクを使用した。基
板としては、あらかじめ幅0.8μm、ピッチ2.5μm、深
さ700Åの溝が形成されているいわゆるプリグルーブ基
板を用いた。
Example 1 Using the magneto-optical recording / reproducing / erasing apparatus shown in FIG. 2, information recording / reproducing / erasing was performed on a magneto-optical disk. As the external magnetic field applying means, the one shown in FIG. 7 was used.
As the permanent magnet, an Alnico magnet with a thickness of 2 mm and a width of 30 mm and a height of 30 mm is used.For the core part, the part facing the magnetic pole of MnZn ferrite is 2 mm thick, 35 mm wide, and the winding part is 1 mm thick. It is made by molding a product with a height of 10 mm and bonding both with an adhesive. The winding consists of a copper wire with a diameter of 100 μm wound 50 turns. As a magneto-optical disk, a disk in which a TbFe film was formed to a thickness of 800 Å on a 120 mmφ plastic substrate by a sputtering method was used. As the substrate, a so-called pre-groove substrate in which a groove having a width of 0.8 μm, a pitch of 2.5 μm and a depth of 700 Å was previously formed was used.

まず、光磁気ディスクを一方向に初期着磁したのち、初
期着磁方向に1400eのバイアス磁界を印加し、線速9m/se
cにてディスク面上4mWの一定強度レーザ光を照射した。
照射したディスク・トラックの磁化状態を偏光顕微鏡で
観察した結果、一様に消磁されていることが確認され
た。次に、消磁された光磁気ディスクに対して4mWのパ
ワーで印加磁界を変えて1MHzの信号の記録を行った。再
生C/Nは、第11図に示す様に、磁化反転方向に0Oe以上な
らびに初期着磁方向に、270Oe以上の範囲で飽和し、良
好な記録ができた。消去は、初期着磁方向に140Oeの磁
界を印加し、4mWの一定強度のレーザ光により実行され
た。記録信号の消え残りは見られなかった。
First, the magneto-optical disk was initially magnetized in one direction, and then a bias magnetic field of 1400e was applied in the initial magnetization direction to obtain a linear velocity of 9 m / se.
At c, a constant intensity laser beam of 4 mW was irradiated on the disk surface.
As a result of observing the magnetized state of the irradiated disk track with a polarization microscope, it was confirmed that the magnet was uniformly demagnetized. Next, a 1 MHz signal was recorded on the demagnetized magneto-optical disk by changing the applied magnetic field with a power of 4 mW. As shown in FIG. 11, the reproduction C / N was saturated in the range of 0 Oe or more in the magnetization reversal direction and 270 Oe or more in the initial magnetization direction, and good recording was possible. The erasing was performed by applying a magnetic field of 140 Oe in the initial magnetization direction and using a laser beam having a constant intensity of 4 mW. The rest of the recorded signal was not seen.

(実施例2) 実施例1に示した、光磁気記録・再生・消去装置と光磁
気ディスクを用い、記録パワを4mW一定にして、記録磁
界として、初期着磁方向に消磁磁界HE140Oeと磁区形成
磁界HW′300Oeを1MHzで交互に印加したところ、実施例
1と同様良好な記録ができた。この記録トラック上に、
新たに同一条件で記録磁界を0.5MHzで印加したところ、
記録磁界に対応した記録ができた。前に記録した信号の
消え残りは見られなかった。
(Embodiment 2) Using the magneto-optical recording / reproducing / erasing apparatus and the magneto-optical disk shown in Embodiment 1, the recording power is kept constant at 4 mW, and the demagnetizing field H E 140Oe is applied in the initial magnetization direction as the recording magnetic field. When the magnetic domain forming magnetic field H W '300 Oe was alternately applied at 1 MHz, good recording was achieved as in Example 1. On this recording track,
When a recording magnetic field was newly applied at 0.5 MHz under the same conditions,
Recording was possible corresponding to the recording magnetic field. No erasure of the previously recorded signal was seen.

(発明の効果) 以上述べた様に、本発明によれば従来例と比較して次の
様な効果がある。
(Effects of the Invention) As described above, the present invention has the following effects as compared with the conventional example.

磁性薄膜の消磁状態を初期状態としているので、従
来の記録・再生・消去方法に比べて、記録・再生・消去
に要する磁界変化量は1/2以下で良い。
Since the demagnetized state of the magnetic thin film is set to the initial state, the amount of change in magnetic field required for recording / reproducing / erasing may be 1/2 or less as compared with the conventional recording / reproducing / erasing method.

外部磁界発生手段は、従来に比べて高速の磁界切替
ができるので、オーバライト性能を有す記録・再生・消
去装置及び方法を提供できる。
Since the external magnetic field generating means can switch the magnetic field at a higher speed than the conventional one, it is possible to provide a recording / reproducing / erasing apparatus and method having overwrite performance.

【図面の簡単な説明】[Brief description of drawings]

第1図、第10図(a)〜(d)は、本発明に係る光磁気
記録再生消去方法の動作モード図、第2図,第3図、第
5〜9図は、本発明の外部磁界印加手段の構成例を示す
図、第4図(a),(b),(c)は、外部磁界印加手
段の動作説明図、第11図は、本発明の実施例で用いられ
た光磁気ディスクの記録特性を示す図である。 図において、1……光磁気ディスク、2……磁性薄膜、
3……光磁気記録用ヘッド、4,26,33,34,35,38……外部
磁界印加手段、5……記録媒体走向方向、6……レーザ
光源、7,8,9……ビームスプリッタ、10……レーザビー
ム集光用レンズ、11……アクチュエータ、12,13……エ
ラー検出用受光素子、14,15……サーボ制御回路、16…
…偏光フィルタ、17……再生信号検出用受光素子、18…
…増幅回路、19……レーザ光源変調用回路、20……電流
源、21……巻線電流と印加磁界の関係、22,39……永久
磁石、23,27,29,31,37,40……高透磁率磁性体から成る
コア、24,28,30,32……巻線、42……穴である。43……
消磁状態部分
1 and 10 (a) to 10 (d) are operation mode diagrams of the magneto-optical recording / reproducing / erasing method according to the present invention, and FIGS. 2, 3 and 5-9 are outside of the present invention. The figure which shows the structural example of magnetic field application means, 4 (a), (b) and (c) are the operation | movement explanatory drawings of an external magnetic field application means, FIG. 11 is the light used by the Example of this invention. It is a figure which shows the recording characteristic of a magnetic disc. In the figure, 1 ... magneto-optical disk, 2 ... magnetic thin film,
3 ... Magneto-optical recording head, 4, 26, 33, 34, 35, 38 ... External magnetic field applying means, 5 ... Recording medium strike direction, 6 ... Laser light source, 7, 8, 9 ... Beam splitter , 10 ...... Laser beam focusing lens, 11 ...... Actuator, 12, 13 ...... Error detection light receiving element, 14, 15 ...... Servo control circuit, 16 ...
... Polarizing filter, 17 ... Receiving signal detection light receiving element, 18 ...
… Amplifier circuit, 19 …… Laser light source modulation circuit, 20 …… Current source, 21 …… Relationship between winding current and applied magnetic field, 22,39 …… Permanent magnet, 23,27,29,31,37,40 ...... Cores made of high-permeability magnetic material, 24, 28, 30, 32 ... windings, 42 ... holes. 43 ……
Degaussed state part

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】垂直磁気異方性を有する磁性薄膜を記録媒
体とし、レーザ光及び外部印加磁界によって情報の記録
・再生・消去を行う光磁気記録再生消去方法において、
永久磁石と、この永久磁石の一方の磁極に接触し永久磁
石に直角に対向するように構成した直角対向部分とこの
直角対向部分に一端を接触し他端を前記永久磁石の他方
の磁極に接近するように前記永久磁石に平行に対向する
ように構成した平行対向部分からなる高透磁率磁性体の
コア部と、前記平行対向部分に巻かれた巻き線とを備
え、前記巻き線に電流が流れているときに前記記録媒体
に磁界を印加し前記巻き線に電流が流れていないときに
前記記録媒体に磁界を印加しないようにする磁界印加装
置を、前記記録媒体の片側に所定の間隔をおいて固定し
て設置し、前記記憶媒体に所定のレーザ光を照射しなが
ら記録時及び消去時に前記磁界印加装置の巻き線に異な
るレベルの電流を流し、前記記録媒体に異なるレベルの
磁界を印加できるようにしたことを特徴とする光磁気記
録再生消去方法。
1. A magneto-optical recording / reproducing / erasing method in which a magnetic thin film having perpendicular magnetic anisotropy is used as a recording medium to record / reproduce / erase information by a laser beam and an externally applied magnetic field.
A permanent magnet and a right-angled facing portion configured to contact one of the magnetic poles of the permanent magnet so as to face the permanent magnet at a right angle, and one end of the right-angled facing portion contacts the right-angled facing portion and the other end approaches the other magnetic pole of the permanent magnet. As described above, the core portion of the high-permeability magnetic body composed of parallel facing portions configured to face the permanent magnets in parallel and a winding wound around the parallel facing portions are provided, and a current flows through the windings. A magnetic field applying device that applies a magnetic field to the recording medium when the recording medium is flowing and does not apply a magnetic field to the recording medium when no current is flowing to the winding is provided on one side of the recording medium with a predetermined interval. The recording medium is fixedly installed, and different levels of current are applied to the windings of the magnetic field applying device to apply different magnetic fields to the recording medium during recording and erasing while irradiating the storage medium with a predetermined laser beam. I can do it Magneto-optical recording and reproducing erasing method being characterized in that the.
【請求項2】光ヘッドと、記録媒体への磁界印加手段を
備えた光磁気記録再生消去装置において、磁界印加手段
は、前記記録媒体の片側に設置され、永久磁石と、この
永久磁石の一方の磁極に接触し永久磁石に直角に対向す
るように構成した直角対向部分とこの直角対向部分に一
端を接触し他端を前記永久磁石の他方の磁極に接近する
ように前記永久磁石に平行に対向するように構成した平
行対向部分からなる高透磁率磁性体のコア部と、電流が
流れているときに前記記録媒体に磁界を印加し、前記巻
き線に電流が流れていないときに前記記録媒体に磁界を
印加しないように前記平行対向部分に巻かれた巻き線と
を備え、さらに、前記巻き線には電流源が接続されてい
ることを特徴とする光磁気記録再生消去装置。
2. A magneto-optical recording / reproducing / erasing apparatus comprising an optical head and a magnetic field applying means for a recording medium, wherein the magnetic field applying means is installed on one side of the recording medium, and a permanent magnet and one of the permanent magnets are provided. A right-angled facing portion configured to contact the magnetic pole of the permanent magnet and to face the permanent magnet at a right angle, and one end of the right-angled facing portion is brought into contact with the other end of the right-angled facing portion so as to approach the other magnetic pole of the permanent magnet. A core portion of a high-permeability magnetic body composed of parallel facing portions configured to face each other, and a magnetic field is applied to the recording medium when a current is flowing, and the recording is performed when a current is not flowing in the winding. A magneto-optical recording / reproducing / erasing apparatus comprising: a winding wound around the parallel facing portions so as not to apply a magnetic field to the medium; and a current source connected to the winding.
JP2548185A 1985-02-13 1985-02-13 Magneto-optical recording / reproducing method and device Expired - Lifetime JPH0673201B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2548185A JPH0673201B2 (en) 1985-02-13 1985-02-13 Magneto-optical recording / reproducing method and device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2548185A JPH0673201B2 (en) 1985-02-13 1985-02-13 Magneto-optical recording / reproducing method and device

Publications (2)

Publication Number Publication Date
JPS61184745A JPS61184745A (en) 1986-08-18
JPH0673201B2 true JPH0673201B2 (en) 1994-09-14

Family

ID=12167241

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2548185A Expired - Lifetime JPH0673201B2 (en) 1985-02-13 1985-02-13 Magneto-optical recording / reproducing method and device

Country Status (1)

Country Link
JP (1) JPH0673201B2 (en)

Also Published As

Publication number Publication date
JPS61184745A (en) 1986-08-18

Similar Documents

Publication Publication Date Title
JPH065585B2 (en) Magneto-optical storage device
US4862437A (en) Magneto-optical recording reproducing, and erasing apparatus having two independent magnetic field applying devices
JPS60236137A (en) Simultaneously erasing-recording type photomagnetic recording system and recording device and medium used for this system
CA1177577A (en) Magnetooptical recording medium and recording-and- reproducing device using the same
US4518657A (en) Recording medium and recording-reproduction system provided with the recording medium
JPH0630183B2 (en) Magneto-optical recording / reproducing method and device
JPH0721894B2 (en) Magneto-optical recording method
JPS6217282B2 (en)
JP2811673B2 (en) Magnetic field applying electromagnet for magneto-optical disk
JPH0568763B2 (en)
JP2604700B2 (en) Magneto-optical recording / reproduction / erasing method and apparatus
JPH0673201B2 (en) Magneto-optical recording / reproducing method and device
JP2591729B2 (en) Magneto-optical recording / reproduction / erasing method and apparatus
JP2604702B2 (en) Magneto-optical recording / reproduction / erasing method and apparatus
JP2808597B2 (en) Magnetic field applying electromagnet for magneto-optical disk
JPH0721893B2 (en) Magneto-optical recording method
JP2705598B2 (en) Magneto-optical storage method and apparatus
JPH069082B2 (en) Magnetic field application device
JPS61269204A (en) Magnetic field applying device
JPS61269203A (en) Magnetic field applying device
JPH0568762B2 (en)
JPS62120604A (en) Device for inpressing magnetic field
JPS63144401A (en) Magnetic field impressing device for magneto-optical disk
JPH067401B2 (en) Magnetic field applying electromagnet for magneto-optical disk
JPH0568764B2 (en)