JPH067120B2 - Lean air-fuel ratio detector - Google Patents

Lean air-fuel ratio detector

Info

Publication number
JPH067120B2
JPH067120B2 JP59206773A JP20677384A JPH067120B2 JP H067120 B2 JPH067120 B2 JP H067120B2 JP 59206773 A JP59206773 A JP 59206773A JP 20677384 A JP20677384 A JP 20677384A JP H067120 B2 JPH067120 B2 JP H067120B2
Authority
JP
Japan
Prior art keywords
oxygen
fuel ratio
air
oxygen concentration
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59206773A
Other languages
Japanese (ja)
Other versions
JPS6183957A (en
Inventor
哲正 山田
孝夫 小島
宏之 石黒
良毅 川地
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niterra Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP59206773A priority Critical patent/JPH067120B2/en
Publication of JPS6183957A publication Critical patent/JPS6183957A/en
Publication of JPH067120B2 publication Critical patent/JPH067120B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems
    • G01N27/417Systems using cells, i.e. more than one cell and probes with solid electrolytes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Molecular Biology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Measuring Oxygen Concentration In Cells (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は燃焼機器に供給される混合気の空燃比を検出す
るリーン域空燃比検出装置に関し、特に酸素イオン伝導
性固体電解質を用いた酸素濃淡電池素子及び酸素ポンプ
素子を間隙を介して対向配置してなる空燃比検出素子を
使用して、混合気のリーン域における空燃比を検出する
リーン域空燃比検出装置に関するものである。
Description: TECHNICAL FIELD The present invention relates to a lean region air-fuel ratio detection device for detecting the air-fuel ratio of an air-fuel mixture supplied to a combustion device, and particularly to oxygen using an oxygen ion conductive solid electrolyte. The present invention relates to a lean region air-fuel ratio detection device for detecting an air-fuel ratio in a lean region of an air-fuel mixture by using an air-fuel ratio detection device in which a concentration cell element and an oxygen pump element are arranged to face each other with a gap.

[従来の技術] 従来より、例えば、内燃期関等の燃焼機器においては、
燃費やエミッションの改善を図るべく、排気中の酸素濃
度を検出し、燃焼容器中で燃焼される混合気を理論空燃
比近傍に制御するといった、いわゆるフィードバック制
御を実行するものがある。そして、この種の制御装置に
用いられ、排気中の酸素濃度を検出するセンサとして、
例えばイオン伝導性固体電解質に多孔質電極層を被着し
て構成され、排気の酸素分圧と空気の酸素分圧との差に
よって生ずる起電力の変化によって理論空燃比近傍の燃
焼状態を検知する酸素センサ等、一般には混合気の理論
空燃比を境として出力電圧がスイッチング的に変化する
酸素センサが知られている。
[Prior Art] Conventionally, for example, in combustion equipment such as internal combustion,
In order to improve fuel economy and emission, there is a so-called feedback control in which the oxygen concentration in the exhaust gas is detected and the air-fuel mixture burned in the combustion container is controlled near the stoichiometric air-fuel ratio. Then, as a sensor used in this type of control device to detect the oxygen concentration in the exhaust gas,
For example, it is configured by depositing a porous electrode layer on an ion conductive solid electrolyte, and detects the combustion state near the stoichiometric air-fuel ratio by the change in electromotive force caused by the difference between the oxygen partial pressure of exhaust gas and the oxygen partial pressure of air. In general, an oxygen sensor such as an oxygen sensor in which the output voltage changes in a switching manner with the stoichiometric air-fuel ratio of the air-fuel mixture as a boundary is known.

ところで近年では、混合気の空燃比を単に理論空燃比近
傍に制御するだけでなく、機器の運転状態に応じて目標
とする空燃比を例えばリーン域で変化させてフィードバ
ック制御を実行することにより、燃費やエミッションを
より改善すると共に機器の運転性を向上させるといった
ことが考えられているが、上記従来の酸素センサにあっ
ては、混合気の理論空燃比を検知し得るだけであること
から、混合気を所望の空燃比に制御することができなか
った。
By the way, in recent years, in addition to simply controlling the air-fuel ratio of the air-fuel mixture in the vicinity of the theoretical air-fuel ratio, by performing feedback control by changing the target air-fuel ratio in the lean region, for example, according to the operating state of the equipment, Although it is considered to improve the fuel economy and emission and improve the drivability of the equipment, in the above conventional oxygen sensor, since it is only possible to detect the stoichiometric air-fuel ratio of the air-fuel mixture, It was not possible to control the air-fuel mixture to the desired air-fuel ratio.

そこで、最近では、上記の如き空燃比のフィードバック
制御を実現すべく、板状の酸素イオン導電性固体電解質
の先側の両面に電極層を設けた素子を、2枚間隔をおい
て平行状に配して、上記先側に間隙部を設けて該両素子
を固定し、一方の素子を酸素ポンプ素子、他方の素子を
周囲雰囲気と前記間隙部との酸素濃度差によって作動す
る酸素濃淡電池素子とした酸素センサ(空燃比センサ)
と、上記酸素濃淡電池素子の起電力が一定となる様に、
上記酸素ポンプのポンプ電流を上記間隙部から酸素を汲
み出す方向において調節し、その時のポンプ電流から酸
素濃度(空燃比)信号を得るようにする制御回路とを組
み合わせてなる酸素濃度(リーン域空燃比)検出装置が
提案された。
Therefore, recently, in order to realize the feedback control of the air-fuel ratio as described above, an element provided with electrode layers on both front surfaces of a plate-shaped oxygen ion conductive solid electrolyte is parallelized with two sheets spaced apart. An oxygen concentration battery element in which a gap is provided on the front side to fix the two elements, one element is an oxygen pump element, and the other element is activated by the difference in oxygen concentration between the ambient atmosphere and the gap. Oxygen sensor (air-fuel ratio sensor)
And so that the electromotive force of the oxygen concentration battery element becomes constant,
The oxygen concentration (lean region air-fuel ratio) is combined with a control circuit for adjusting the pump current of the oxygen pump in the direction of pumping oxygen from the gap and obtaining an oxygen concentration (air-fuel ratio) signal from the pump current at that time. A fuel ratio detection device has been proposed.

[発明が解決しようとする問題点] しかし、この酸素濃度検出装置の場合、混合気のリーン
域、即ち排気中に残留酸素が存在する場合のみならず、
混合気のリッチ域、即ち排気中に残留酸素が微量にしか
存在しない場合でも、排気中のCO、CO、HO等
と反応し、リーン域における信号と同様の信号をリッチ
域における空燃比に応じて検出するので1つの出力値に
対して2つの空燃比が対応してしまうという問題点(2
値出力の問題)を有することがわかった。
[Problems to be Solved by the Invention] However, in the case of this oxygen concentration detection device, not only when there is residual oxygen in the lean region of the air-fuel mixture, that is, in the exhaust gas,
Even in the rich region of the air-fuel mixture, that is, even when a small amount of residual oxygen is present in the exhaust gas, it reacts with CO, CO 2 , H 2 O, etc. in the exhaust gas, and a signal similar to that in the lean region is output in the rich region. Since the detection is performed according to the fuel ratio, two air-fuel ratios correspond to one output value (2
Value output problem).

[問題点を解決するための手段] 本発明は、発明の構成として上記の問題点を解決するた
めに次の様な技術的手段を採用した。
[Means for Solving Problems] The present invention employs the following technical means as a constitution of the invention in order to solve the above problems.

即ち、本発明のリーン域空燃比検出装置は、 酸素イオン伝導性の固体電解質の両面に酸素ガス透過性
の1対の電極を持つ酸素濃淡電池素子と、酸素イオン伝
導性の固体電解質の両面に酸素ガス透過性の1対の電極
を持つ酸素ポンプ素子とを、各一方の電極同志を間隙部
を介して対向せしめて配設するとともに、該間隙部を被
測定ガスである周囲雰囲気に対してガス拡散制限的に流
通せしめてなる空燃比検出素子と、 上記酸素濃淡電池素子の起電力が一定値となる様に上記
酸素ポンプ素子のポンプ電流を上記間隙部から酸素を汲
み出す方向に調節し、その時のポンプ電流値から空燃比
信号を得る制御回路と、 を備えたリーン域空燃比検出装置において、 上記酸素濃淡電池素子の一対の電極のうちの上記間隙部
側の電極の酸化触媒作用を他方の電極の酸化触媒作用よ
りも強くするとともに、その様に触媒作用を設定した上
記酸素濃淡電池素子のリッチ域において生じる起電力よ
りも小さい値に上記一定値を選定したことを特徴とす
る。
That is, the lean air-fuel ratio detection device of the present invention includes an oxygen concentration battery element having a pair of electrodes permeable to oxygen gas on both sides of an oxygen ion conductive solid electrolyte and an oxygen ion conductive solid electrolyte on both sides. An oxygen pump element having a pair of electrodes permeable to oxygen gas is arranged so that the electrodes on one side face each other through a gap, and the gap is arranged with respect to the ambient atmosphere which is the gas to be measured. An air-fuel ratio detection element that is allowed to flow in a gas diffusion limited manner, and the pump current of the oxygen pump element is adjusted in the direction of pumping oxygen from the gap so that the electromotive force of the oxygen concentration cell element becomes a constant value. In a lean region air-fuel ratio detection device including a control circuit that obtains an air-fuel ratio signal from the pump current value at that time, an oxidation catalyst action of the electrode on the gap side of the pair of electrodes of the oxygen concentration battery element is provided. The other It is characterized in that the fixed value is selected to be a value smaller than the electromotive force generated in the rich region of the oxygen concentration battery element in which the catalytic action is set to be stronger than the oxidation catalytic action of the electrode.

[作用] (1)本発明で用いた酸素濃淡電池素子の作用について
説明する。
[Operation] (1) The operation of the oxygen concentration battery element used in the present invention will be described.

酸素イオン伝導性の固体電解質は、適当な温度条件(例
えば固体電解質がジルコニアの場合400℃以上)にお
いて、固体電解質表面の酸素ガス分圧の高い所から、酸
素ガス分圧の低い所へと固体電解質中を酸素イオンが移
動するものである。よって、固体電解質に酸素ガス透過
性の電極をつけることにより電極間の酸素ガス分圧の差
を電圧(起電力)として取り出すことができる。
Oxygen ion conductive solid electrolytes are solidified from a place where the oxygen gas partial pressure is high on the surface of the solid electrolyte to a place where the oxygen gas partial pressure is low under appropriate temperature conditions (for example, 400 ° C or higher when the solid electrolyte is zirconia). Oxygen ions move in the electrolyte. Therefore, by attaching an oxygen gas permeable electrode to the solid electrolyte, the difference in oxygen gas partial pressure between the electrodes can be taken out as a voltage (electromotive force).

ここで、本発明の様に、上記電極の一方を酸化反応の触
媒作用の強いものに、他方を触媒作用の弱いものとする
と、下記の現象が生ずる。
Here, if one of the electrodes has a strong catalytic action for the oxidation reaction and the other has a weak catalytic action as in the present invention, the following phenomenon occurs.

(a)即ち、測定される排ガス中に未燃焼の炭化水素や
一酸化炭素がある状態、いわゆるリッチ域では、触媒作
用の強い電極において、酸化反応が促進されて、非平衡
遊離酸素が消費され平衡化されることにより、遊離酸素
ガス分圧がほとんど0に近くなるが、他方の触媒作用の
弱い電極においては、遊離酸素の分圧が上記排ガスの非
平衡遊離酸素ガス分圧とほとんど変らない。このため、
触媒作用の弱い電極側から、触媒作用の強い電極側に酸
素イオンが移動しようとして、電圧が出力される。
(A) That is, in a state where unburned hydrocarbons and carbon monoxide are present in the exhaust gas to be measured, that is, in a so-called rich region, the oxidation reaction is promoted and non-equilibrium free oxygen is consumed in the electrode having a strong catalytic action. By the equilibration, the partial pressure of free oxygen gas becomes almost 0, but in the other electrode with weak catalytic action, the partial pressure of free oxygen is almost the same as the partial pressure of non-equilibrium free oxygen gas of the exhaust gas. . For this reason,
A voltage is output as oxygen ions try to move from the electrode side having a weak catalytic action to the electrode side having a strong catalytic action.

(b)一方、未燃焼の炭化水素や一酸化炭素がないか或
は少ない状態、いわゆるリーン域では、酸化反応する成
分自体がないか或は少ないのであるから、もはや酸化反
応は触媒作用の強さには無関係となる。つまり、触媒作
用の強弱にかかわらず酸素はほとんど消費されないので
あるから、どちらの電極においても酸素ガス分圧は変ら
ず、触媒作用の強さが同じ一対の電極を持つ酸素濃淡電
池素子の場合と同様に、電圧は出力されない。
(B) On the other hand, in the state where there is no or a small amount of unburned hydrocarbons and carbon monoxide, that is, in the so-called lean region, there is no component or a small amount of components that undergo the oxidation reaction, so the oxidation reaction no longer has a strong catalytic action. It has nothing to do with it. In other words, since oxygen is hardly consumed regardless of the strength of the catalytic action, the partial pressure of oxygen gas does not change at either electrode, which is different from the case of an oxygen concentration cell device having a pair of electrodes with the same catalytic action. Similarly, no voltage is output.

(2)次に、本発明で用いた酸素ポンプ素子の作用につ
いて説明する。
(2) Next, the function of the oxygen pump element used in the present invention will be described.

上述の如く酸素イオン伝導性の固体電解質は、酸素ガス
分圧の差を電圧(起電力)として取り出すことができ
る。又、逆に上記酸素イオン伝導性の固体電解質は、電
圧をかけることにより固体電解質中を酸素イオンが移動
するものであり、固体電解質に酸素ガス透過性の電極を
つけることにより、酸素ポンプとして利用することがで
きる。即ち、上記電極に印加する電圧の電位の低い方か
ら高い方へ、酸素イオンを移動させることができ、電極
電位の低い側では酸素ガス分圧が減り、逆に電極電位の
高い側では酸素ガス分圧が増加する。又、上記固体電解
質の荷電担体は酸素イオンであるために、上記電極間に
流れる電流量を調節することにより、酸素イオンの移動
量を調節することができる。
As described above, the oxygen ion conductive solid electrolyte can extract the difference in oxygen gas partial pressure as voltage (electromotive force). On the contrary, the oxygen ion conductive solid electrolyte is one in which oxygen ions move in the solid electrolyte when a voltage is applied.By attaching an oxygen gas permeable electrode to the solid electrolyte, it is used as an oxygen pump. can do. That is, oxygen ions can be moved from the lower potential of the voltage applied to the electrode to the higher potential, the oxygen gas partial pressure is reduced on the side of low electrode potential, and conversely on the side of high electrode potential. The partial pressure increases. Since the charge carrier of the solid electrolyte is oxygen ions, the amount of movement of oxygen ions can be adjusted by adjusting the amount of current flowing between the electrodes.

(3)次に、上記酸素濃淡電池素子と上記酸素ポンプ素
子とを間隙を介して配置した空燃比検出素子、即ち、上
記酸素濃淡電池素子の酸化反応の触媒作用の強い電極を
間隙側に向けて対向配設した空燃比検出素子を用いた本
発明のリーン域空燃比検出装置の作用について説明す
る。
(3) Next, the air-fuel ratio detection element in which the oxygen concentration cell element and the oxygen pump element are arranged with a gap, that is, the electrode having a strong catalytic action for the oxidation reaction of the oxygen concentration cell element is directed toward the gap side. The operation of the lean region air-fuel ratio detecting device of the present invention using the air-fuel ratio detecting elements that are arranged opposite to each other will be described.

(a)まず、混合気がリーン域である時には、上述した
様に酸素濃淡電池素子の電極雰囲気にはおける酸素分圧
は電極の触媒作用の強さには無関係になるので、電極間
で触媒作用の強さが変わらない従来の空燃比検出装置の
場合と同様に、本発明のリーン域空燃比検出装置の空燃
比信号は、混合気の混合比のみに対応して決まる。従っ
て、作用は従来の装置における作用と同じで次の通りで
ある。
(A) First, when the air-fuel mixture is in the lean region, the oxygen partial pressure in the electrode atmosphere of the oxygen concentration battery element becomes irrelevant to the strength of the catalytic action of the electrodes as described above. Similar to the case of the conventional air-fuel ratio detecting device in which the strength of action does not change, the air-fuel ratio signal of the lean region air-fuel ratio detecting device of the present invention is determined corresponding to only the mixture ratio of the air-fuel mixture. Therefore, the operation is the same as that of the conventional device and is as follows.

即ち、制御回路によって、酸素ポンプ素子の外側の電極
に正、内側の電極に負の電圧を印加されることにより、
酸素イオンが酸素ポンプ素子の固体電解質内を内側電極
より外側電極へ移動し、酸素ポンプ素子と酸素濃淡電池
素子との間の間隙部に存在する酸素ガスが酸素ポンプ素
子の外側へ汲み出される。上記の如く間隙部より酸素ガ
スが汲み出されると、酸素濃淡電池素子の外側つまり周
囲雰囲気と間隙部との間の酸素拡散制限的作用によって
酸素ガス濃度の差を生ずる。この濃度差により、酸素濃
淡電池素子に起電力Vを生ずるのである。
That is, by applying a positive voltage to the outer electrode and a negative voltage to the inner electrode of the oxygen pump element by the control circuit,
Oxygen ions move from the inner electrode to the outer electrode in the solid electrolyte of the oxygen pump element, and oxygen gas existing in the gap between the oxygen pump element and the oxygen concentration cell element is pumped to the outside of the oxygen pump element. When oxygen gas is pumped out from the gap as described above, a difference in oxygen gas concentration occurs due to the oxygen diffusion limiting action outside the oxygen concentration battery element, that is, between the ambient atmosphere and the gap. Due to this concentration difference, an electromotive force V S is generated in the oxygen concentration battery element.

上記起電力VSは、上記間隙部の端部から内部へ制限的
に拡散流入する酸素ガス量と、酸素ポンプ素子により間
隙部から外側へ汲み出される酸素ガスとが平衡する間隙
部内酸素分圧に達した時点で一定となる。
The electromotive force V S is the oxygen partial pressure in the gap portion in which the amount of oxygen gas that diffuses and flows into the inside from the end portion of the gap portion in a limited manner and the oxygen gas pumped out from the gap portion to the outside by the oxygen pump element are in equilibrium. It will be constant when it reaches.

よって、この起電力VSが予め定めた一定値V0に維持さ
れる様に、酸素ポンプ素子側に流す電流量(ポンプ電
流)を変化させると、定温においてその電流量は、周囲
雰囲気内の酸素ガスの含有率にほぼ直線的に比例する様
にすることができるので、リーン域における酸素ガス濃
度を求めることができる。
Therefore, if the amount of current (pump current) supplied to the oxygen pump element side is changed so that the electromotive force V S is maintained at a predetermined constant value V 0 , the amount of current at constant temperature is equal to that in the surrounding atmosphere. Since it can be made almost linearly proportional to the oxygen gas content, the oxygen gas concentration in the lean region can be obtained.

(b)次に、混合気がリッチ域である時には、上述した
様に酸素濃淡電池素子の両電極には触媒作用の強弱がつ
けてあるので、酸素ポンプ素子を働かせて酸素ガス分圧
差を惹起させなくても、酸素濃淡電池素子の両電極の間
に起電力VSが発生する。
(B) Next, when the air-fuel mixture is in a rich region, both electrodes of the oxygen concentration battery element have strong and weak catalytic action as described above. Therefore, the oxygen pump element is activated to induce the oxygen gas partial pressure difference. Even without it, the electromotive force V S is generated between both electrodes of the oxygen concentration battery element.

本発明では、上記酸素濃淡電池素子をリッチ域で単体で
晒した場合に発生する上記起電力VSの値VS0よりも上
記(制御の目的とする値である)一定値V0が小さい値
に選ばれている。
In the present invention, the constant value V 0 (which is a target value for control) is smaller than the value V S0 of the electromotive force V S generated when the oxygen concentration battery element is exposed alone in the rich region. Has been selected for.

従って、混合気がリッチ域の場合に、酸素濃淡電池素子
を上記一定値V0にするためには、酸素ポンプ素子に流
すポンプ電流の向きは逆向き(間隙部へ酸素を汲み入れ
る方向)にしなければならないが、これは、制御回路か
ら流しうるポンプ電流の向き(間隙部から酸素を汲み出
す方向)とは異なるので、実際にはポンプ電流は流れな
くなる。
Therefore, when the air-fuel mixture is in the rich region, in order to bring the oxygen concentration battery element to the above-mentioned constant value V 0 , the direction of the pump current flowing through the oxygen pump element is reversed (direction in which oxygen is pumped into the gap). This must be done, but this is different from the direction of the pump current that can flow from the control circuit (the direction in which oxygen is pumped out of the gap), so the pump current does not actually flow.

また、混合気が理論空燃比か又はその近傍の空燃比にな
ったときには、上記起電力VSと一定値V0が等しくなる
ので、ポンプ電流はゼロになる。
Further, when the air-fuel mixture has the stoichiometric air-fuel ratio or an air-fuel ratio near the stoichiometric air-fuel ratio, the electromotive force V S and the constant value V 0 become equal to each other, so that the pump current becomes zero.

(c)この様に、空燃比検出素子の酸素濃淡電池素子の
起電力を、本発明に従って予め定めた一定値V0に維持
する様にポンプ素子側に流すポンプ電流が所定方向(間
隙部から酸素を汲み出す方向)において調節される時、
リッチ域(及び理論空燃比点近傍)ではポンプ電流は流
れなくなる。一方、リーン域では、ポンプ電流は常に正
しく空燃比のみに対応することになり、2値出力の問題
は解決される。
(C) As described above, the pump current flowing in the pump element side is maintained in a predetermined direction (from the gap portion) so that the electromotive force of the oxygen concentration battery element of the air-fuel ratio detecting element is maintained at a constant value V 0 predetermined according to the present invention. When adjusted in the direction of pumping oxygen),
The pump current stops flowing in the rich region (and near the stoichiometric air-fuel ratio point). On the other hand, in the lean region, the pump current always correctly corresponds to only the air-fuel ratio, and the problem of binary output is solved.

(4)上記作用を示すために上記酸素ポンプ素子及び酸
素濃淡電池素子を形成している固体電解質は、酸素イオ
ン導電体の性質を有することが必要であり、ジルコニア
のイットリアあるいはカルシア等との固溶体が代表的な
ものであり、その他二酸化セリウム、二酸化トリウム、
二酸化ハフニウムの各固溶体、ペロブスカイト型酸化物
固溶体、3価金属酸化物固溶体等が酸素イオン導電性の
固体電解質として使用可能である。
(4) The solid electrolyte forming the oxygen pump element and the oxygen concentration cell element in order to exhibit the above-mentioned action needs to have the property of an oxygen ion conductor, and a solid solution of zirconia with yttria or calcia. Is typical, other cerium dioxide, thorium dioxide,
Hafnium dioxide solid solutions, perovskite type oxide solid solutions, trivalent metal oxide solid solutions and the like can be used as oxygen ion conductive solid electrolytes.

又、酸化反応の触媒作用の強さの異なる電極材料の組み
合せとしては、触媒作用の強いPtと触媒作用の弱いA
u、以下同様にPtとAg、PtとPt+Au(1〜2
0%)、PtとPt+Ru(1〜20%)、Pt+Rh
(1〜15%)とPt、Ptと触媒被毒したPt、Pt
と半導電性金属酸化物を点火したPt等がある。これら
は、原料粉末を主成分としてペースト化し厚膜技術を用
いて印刷後、焼結して形成してもよく、またフレーム溶
射あるいは化学メッキもしくは蒸着などの薄膜技術を用
いて形成してもよいが、その場合には、電極の上に重ね
てアルミナ、スピネル、ジルコニア、ムライト等の多孔
質保護層を厚膜技術を用いて設けることがより好まし
い。
Further, as a combination of electrode materials having different catalytic action strengths of oxidation reaction, Pt having a strong catalytic action and A having a weak catalytic action are used.
u, and the like below, Pt and Ag, Pt and Pt + Au (1-2
0%), Pt and Pt + Ru (1 to 20%), Pt + Rh
(1 to 15%) and Pt, Pt and Pt poisoned with catalyst, Pt
And Pt etc. ignited a semiconductive metal oxide. These may be formed by pasting raw material powder as a main component, printing using a thick film technique, and then sintering, or may be formed using a thin film technique such as flame spraying or chemical plating or vapor deposition. However, in that case, it is more preferable to provide a porous protective layer of alumina, spinel, zirconia, mullite or the like on the electrode by using a thick film technique.

又、電極の保護層に酸化反応の触媒作用を付与するに
は、保護層として用いるアルミナ、スピネル、ジルコニ
ア、ムライト等にPt、Rh等を分散させればよい。
Further, in order to impart the catalytic action of the oxidation reaction to the protective layer of the electrode, Pt, Rh or the like may be dispersed in alumina, spinel, zirconia, mullite or the like used as the protective layer.

[実施例] 本発明の一実施例を図面に用いて説明する。[Embodiment] An embodiment of the present invention will be described with reference to the drawings.

第1図は実施例のリーン域空燃比検出装置における空燃
比検出素子の斜視図、第2図はその平面図、第3図はそ
の裏面図、第4図はその1−1断面図を示す。ここにお
いて、1が本発明のリーン域空燃比検出装置、2が酸素
ポンプ素子、3が酸素濃淡電池素子である。
FIG. 1 is a perspective view of an air-fuel ratio detecting element in a lean region air-fuel ratio detecting device of an embodiment, FIG. 2 is a plan view thereof, FIG. 3 is a rear view thereof, and FIG. . Here, 1 is a lean region air-fuel ratio detection device of the present invention, 2 is an oxygen pump element, and 3 is an oxygen concentration cell element.

酸素ポンプ素子2の主体は酸素イオン導電性固体電解質
の長方形の焼結板状体からなる。ポンプ素子2の先側2
aには、その表裏面の相対する位置でかつ先側の三方の
端縁から少しひかえた位置に耐熱金属層よりなる電極
4、5が方形状に設けられている。一方の方形電極4の
元側方向の2つの角の内の1つより耐熱金属層よりなる
引き出し線4aが、板状体の元側2bへ真直ぐに伸びる
帯形状に設けられている。同様に他方の方形電極5の元
側方向の2つの角の内、電極4と反対側の角より引き出
し線5aが板状体の元側2bへ真直ぐに伸びる帯形状に
設けられている。引き出し線5aは元側2bで板状体の
表裏を貫通しているスルーホール5dを通じて、その反
対面の取り出し部5bに電気的に接続されている。引き
出し線4aは元側2bで取りだし部4bを形成し、その
結果、同一面に2つの電極4、5の取り出し部4b、5
bが配設されることになる。
The main body of the oxygen pump element 2 is a rectangular sintered plate-shaped body of an oxygen ion conductive solid electrolyte. Pump element 2 front side 2
The electrodes 4 and 5 made of a heat-resistant metal layer are provided in a square shape on the surface a at positions facing each other on the front and back sides and slightly away from the three edges on the front side. A lead wire 4a made of a heat-resistant metal layer from one of the two corners of the rectangular electrode 4 in the original direction is provided in a strip shape that extends straight to the original side 2b of the plate-shaped body. Similarly, of the two corners of the other rectangular electrode 5 in the direction of the original side, a lead wire 5a is provided in a strip shape extending straight from the corner opposite to the electrode 4 to the original side 2b of the plate-shaped body. The lead wire 5a is electrically connected to the take-out portion 5b on the opposite side through a through hole 5d penetrating the front and back of the plate-shaped body on the base side 2b. The lead wire 4a forms a lead-out portion 4b on the original side 2b, and as a result, lead-out portions 4b, 5 of the two electrodes 4, 5 are formed on the same surface.
b will be provided.

酸素濃淡電池素子3もポンプ素子2と同様に主体は酸素
イオン導電性固体電解質の長方形の焼結板状体からな
る。酸素濃淡電池素子3の先側3aには、その表裏面に
相対する位置に、裏面に酸化反応の触媒作用の強い電極
材料からなる電極(カソード)6が、表面に酸化反応の
触媒作用の弱い電極材料からなる電極(アノード)7が
各々方形状に設けられている。カソード6の元側方向の
2つの角の内の1つより耐熱金属層よりなる引き出し線
6aが、板状体の元側3bへ真直ぐに伸びる帯形状に設
けられている。同様にアノード7の元側方向の2つの角
の内、カソード6と反対側の角より引き出し線7aが板
状体の元側3bへ真直ぐに伸びる帯形状に設けられてい
る。引き出し線6aは元側1bで板状体の表裏を貫通し
ているスルーホール6dを通じて、その反対面の取り出
し部6bに電気的に接続されている。引き出し線7aは
元側3bで取り出し部7bを形成し、その結果、同一面
に、2つの電極6、7の取り出し部6b、7bが配設さ
れていることになる。
Like the pump element 2, the oxygen concentration cell element 3 is also mainly composed of a rectangular sintered plate-like body of an oxygen ion conductive solid electrolyte. On the front side 3a of the oxygen concentration battery element 3, an electrode (cathode) 6 made of an electrode material having a strong catalytic action for the oxidation reaction is provided on the back side at a position facing the front and back sides, and a catalytic action for the oxidation reaction is weak on the front side. Each electrode (anode) 7 made of an electrode material is provided in a rectangular shape. A lead wire 6a made of a heat-resistant metal layer from one of the two corners of the cathode 6 in the direction of the original side is provided in a strip shape extending straight to the original side 3b of the plate-shaped body. Similarly, a lead wire 7a is provided in a strip shape extending straight from the corner opposite to the cathode 6 among the two corners of the anode 7 toward the base side 3b of the plate-shaped body. The lead wire 6a is electrically connected to the take-out portion 6b on the opposite side through a through hole 6d penetrating the front and back of the plate-shaped body on the original side 1b. The lead wire 7a forms the lead-out portion 7b on the original side 3b, and as a result, the lead-out portions 6b and 7b of the two electrodes 6 and 7 are arranged on the same surface.

酸素ポンプ素子2及び酸素濃淡電池素子3の各板状体を
形成している固体電解質は、ここではジルコニアとイッ
トリアとの固溶体を用いた。
A solid solution of zirconia and yttria was used here as the solid electrolyte forming each plate of the oxygen pump element 2 and the oxygen concentration battery element 3.

各板状体の表面に形成されるカソード6及びアノード7
以外の電極4、5、引き出し線4a、5a、6a、7a
および取り出し部4b、5b、6b、7bは耐熱金属層
よりなり、ここでは主にPtからなるペーストを、生の
固体電解質シート上にプリント印刷したのち同時一体焼
結する方法を用いて被着形成した。又、酸素濃淡電池素
子の表裏面に形成されるカソード6及びアノード7の材
質は、ここではカソード6としてPtとアノード7とし
てPt+Auを用いた。
Cathode 6 and anode 7 formed on the surface of each plate
Electrodes 4 and 5, other than lead lines 4a, 5a, 6a and 7a
The take-out portions 4b, 5b, 6b and 7b are made of a heat-resistant metal layer. Here, a paste mainly made of Pt is print-printed on a green solid electrolyte sheet, and then is integrally sintered by a method of simultaneous integral sintering. did. Further, as the material of the cathode 6 and the anode 7 formed on the front and back surfaces of the oxygen concentration cell device, here, Pt was used as the cathode 6 and Pt + Au was used as the anode 7.

これらは素子1枚毎に製作してもよいが、一般に生産性
を考慮して、焼結前の固体電解質の大型の生のセラミッ
クシートに電極用等の金属ペーストを多数同時にプリン
ト印刷し、その後、素子毎に切り抜き焼成する方法を採
用するのが有利である。
These may be manufactured for each element, but generally, in consideration of productivity, a large number of metal pastes for electrodes and the like are simultaneously printed and printed on a large raw ceramic sheet of a solid electrolyte before sintering, and thereafter, It is advantageous to employ a method of cutting and firing each element.

次に両素子2、3を間隙部9を有する一体のリーン域空
燃比検出装置1に組み立てるには、両素子2、3の各々
元側2b、3bにて耐熱性無機質接着剤等を用いて平行
に一定間隔に貼り合わせることによりなされる。
Next, in order to assemble the two elements 2 and 3 into the integrated lean region air-fuel ratio detection device 1 having the gap portion 9, a heat-resistant inorganic adhesive agent or the like is used on the original sides 2b and 3b of both elements 2 and 3, respectively. It is made by laminating in parallel at regular intervals.

この両素子を一定間隔に平行に貼り合わせるには例えば
次のような方法が採られる。まず片方の素子の元側接着
面に耐熱性無機質接着剤例えばセラミック系接着剤を適
量塗布する。次に、厚みの均一なスペーサ、例えば、ゲ
ージあるいは厚さ0.01〜0.05mmの紙、ビニール、アルミ
ホイル等を一枚又は複数枚重ねて2つの素子の先側に挟
んで押圧し、接着剤を両素子の元側接着面全面に押し拡
げ、はみ出た余分の接着剤を取り除いた後、加熱処理し
て接着剤を固める。
The following method, for example, is used to bond the two elements in parallel at a constant interval. First, an appropriate amount of a heat-resistant inorganic adhesive such as a ceramic adhesive is applied to the original adhesive surface of one element. Next, a spacer with a uniform thickness, for example, a gauge or a paper of 0.01 to 0.05 mm in thickness, vinyl, aluminum foil, etc., is laid one on top of the other and is pressed against the front side of the two elements with an adhesive. The elements are pressed and spread over the entire bonding surface on the original side, excess adhesive that has run off is removed, and then heat treatment is performed to harden the adhesive.

上記両素子間の間隔は素子形状及び電極面積にもよるが
酸素濃淡電池素子の出力を適当に選択することにより、
例えば、100mm2の正方形状電極の場合、0.01〜0.5mm
まで可能であり、酸素ポンプ素子のポンプ電流が比較的
大電流領域1mA〜100mAで使用する場合はやや広く、
比較的電流領域0.1mA〜10mAで使用する場合はやや狭
くとるといった様に必要に応じて変化させることができ
る。ここでは間隙寸法は0.1mmとされた。尚、これらの
電流領域により検出できる酸素濃度は0.1%以下から約
10%程度まで可能である。それ故、本実施例の空燃比
検出素子は前記スペーサの厚みを変更するだけで、素子
間隔が所望の広さに製造工程で簡単に設計できる特徴を
有する。
The interval between the above two elements depends on the element shape and the electrode area, but by appropriately selecting the output of the oxygen concentration battery element,
For example, in the case of 100 mm 2 square electrode, 0.01-0.5 mm
It is possible to use the pump current of the oxygen pump element in a relatively large current range of 1mA to 100mA, and it is rather wide.
When used in a relatively current range of 0.1 mA to 10 mA, it can be changed as necessary, such as making it slightly narrower. Here, the gap size was 0.1 mm. The oxygen concentration that can be detected by these current regions can be from 0.1% or less to about 10%. Therefore, the air-fuel ratio detecting element of the present embodiment has a feature that the element spacing can be easily designed in the manufacturing process to a desired width by simply changing the thickness of the spacer.

空燃比検出素子1は、本発明に従って、酸素濃淡電池素
子3の出力電圧を一定に制御すべく酸素ポンプ素子2に
流す所定方向のポンプ電流の大きさを調節し、その時の
電流値が混合気の空燃比に応じた空燃比信号として取り
出すようされた制御回路と組み合わせて用いられる。
According to the present invention, the air-fuel ratio detecting element 1 adjusts the magnitude of the pump current in a predetermined direction flowing to the oxygen pump element 2 in order to control the output voltage of the oxygen concentration cell element 3 at a constant level, and the current value at that time is a mixture gas. It is used in combination with a control circuit designed to extract an air-fuel ratio signal according to the air-fuel ratio of.

第5図は本実施例装置の制御回路を示し、端子a、b、
c、dを夫々酸素濃淡電池素子3のアノード7、カソー
ド6、酸素ポンプ素子2の電極5、4に接続する。そし
て酸素濃淡電池素子3から出力された、排気中の酸素濃
度あるいは排気中のCO、CO2、H2O等に応じた電圧
Sが抵抗R1を介して検知され、演算増幅器(以下、
オペアンプという)OP1を中心に構成された増幅部4
1により電圧VSを増幅して所定倍n(例えば5倍)に
増幅された電圧nVSを得る。次にこの電圧nVSはオペ
アンプOP2を中心に構成された積分回路42に入力さ
れ、ツェナーダイオードD1により決定された電圧を、
可変抵抗VR1を用いてn分の1に分圧することによっ
て得られる所定の電圧V0を基準として第6図に示す如
く積分され、次のトランジスタTR1、TR2からなる
ポンプ電流制御回路43におけるトランジスタTR1の
ベース電圧、即ち所定方向(間隙部から酸素を汲み出す
方法)のポンプ電流の制御電圧VBとして取り出され
る。尚、図に示す+Bはバッテリ電圧を表わしている。
FIG. 5 shows a control circuit of the apparatus of this embodiment, which has terminals a, b,
c and d are connected to the anode 7 and cathode 6 of the oxygen concentration battery element 3 and the electrodes 5 and 4 of the oxygen pump element 2, respectively. Then, the voltage V S output from the oxygen concentration cell element 3 according to the oxygen concentration in the exhaust gas or CO, CO 2 , H 2 O in the exhaust gas is detected through the resistor R1, and the operational amplifier (hereinafter, referred to as
An amplifier 4 which is mainly composed of OP1)
The voltage V S is amplified by 1 to obtain the voltage nV S amplified by a predetermined multiple n (for example, 5 times). Next, this voltage nV S is input to the integrating circuit 42 mainly composed of the operational amplifier OP2, and the voltage determined by the Zener diode D1 is
Transistor TR1 in pump current control circuit 43 including next transistors TR1 and TR2 is integrated as shown in FIG. 6 with reference to a predetermined voltage V 0 obtained by dividing the voltage by 1 / n using variable resistor VR1. base voltage of, i.e. is taken out as a control voltage V B of the pump current in a predetermined direction (way to pump oxygen from the gap). Incidentally, + B shown in the drawing represents the battery voltage.

ここで、上記所定の一定電圧値V0は、上記酸素濃淡電
池素子をリッチ域の雰囲気にさらした時得られる起電力
値VS0(通常100mV)よりも小さい値40mVを選ん
だ。
Here, as the predetermined constant voltage value V 0 , a value of 40 mV, which is smaller than the electromotive force value V S0 (normally 100 mV) obtained when the oxygen concentration battery element is exposed to the atmosphere in the rich region, is selected.

この様にして酸素ポンプ素子2に流れるポンプ電流が制
御されると、酸素濃淡電池素子3と酸素ポンプ素子2と
の間隙に存在する酸素の濃度が制御され、ほぼ理論空燃
比からリーン域にかけて、酸素濃淡電池素子3の出力電
圧がほぼ一定(40mV)に制御可能となる。
When the pump current flowing through the oxygen pump element 2 is controlled in this manner, the concentration of oxygen existing in the gap between the oxygen concentration cell element 3 and the oxygen pump element 2 is controlled, and the oxygen concentration in the gap between the stoichiometric air-fuel ratio and the lean region is controlled. The output voltage of the oxygen concentration battery element 3 can be controlled to be substantially constant (40 mV).

従って、酸素ポンプ素子2のポンプ電流を抵抗R2を介
して空燃比信号V1として取り出すことにより、第7図
に示す如く、混合気のほぼ理論空燃比からリーン域にか
けて、空燃比に応じた空燃比信号V1が出力される様に
なる。
Therefore, by extracting the pump current of the oxygen pump element 2 as the air-fuel ratio signal V 1 via the resistor R2, as shown in FIG. 7, the air-fuel ratio corresponding to the air-fuel ratio is increased from approximately the theoretical air-fuel ratio to the lean region. The fuel ratio signal V 1 is output.

即ち、リッチ域において、もはや再びポンプ電流は間隙
部から酸素を汲み出す方向に流されることがなくなり、
センサ出力はほぼ理論空燃比からリーン域にかけての空
燃比に対して一義的に決まる様になる。尚、第7図にお
いて、λ=1は理論空燃比を表している。
That is, in the rich region, the pump current no longer flows in the direction of pumping oxygen from the gap,
The sensor output is almost uniquely determined for the air-fuel ratio from the theoretical air-fuel ratio to the lean range. In FIG. 7, λ = 1 represents the theoretical air-fuel ratio.

更に、本発明のリーン域空燃比検出装置の空燃比検出素
子近傍に該素子の加熱をする加熱素子を設けると、空燃
比測定時に温度補償が可能となりより精密、正確な測定
が可能となる。
Further, by providing a heating element for heating the air-fuel ratio detecting element of the lean region air-fuel ratio detecting device of the present invention, temperature compensation can be performed during the air-fuel ratio measurement, and more precise and accurate measurement becomes possible.

[発明の効果] 以上詳述した如く、本発明のリーン域空燃比検出装置
は、酸化反応の触媒作用の強さの異なる1対の電極をも
つ酸素濃淡電池素子と酸素ポンプ素子とを所定の配置で
組み合せた空燃比検出素子を用い、その酸素濃淡電池素
子の起電力を上述した所定の関係に保った一定値とする
よう酸素ポンプ素子のポンプ電流を所定方向で大きさの
みを調節する制御回路で制御し、該ポンプ電流から空燃
比信号を得る様にしたので、空燃比信号からリーン域空
燃比が一義的かつ常に正確に決まる。
[Effects of the Invention] As described in detail above, the lean region air-fuel ratio detection device of the present invention includes the oxygen concentration battery element and the oxygen pump element having the pair of electrodes having different catalytic strengths of the oxidation reaction. Control that adjusts only the magnitude of the pump current of the oxygen pump element in a predetermined direction so that the electromotive force of the oxygen concentration cell element is maintained at a constant value by using the air-fuel ratio detection element combined in the arrangement. Since the air-fuel ratio signal is obtained from the pump current by controlling the circuit, the lean region air-fuel ratio is uniquely and always accurately determined from the air-fuel ratio signal.

即ち、酸化反応の触媒作用の強さの異なる1対の電極を
持つ酸素濃淡電池素子をリッチ雰囲気においた時に両電
極間に生じる起電力VSの値VS0と上記制御回路におけ
る制御目標設定値V0との関係がVS0>V0を維持する限
り、使用劣化等により該電極の酸化触媒作用の強さが変
化する等の原因でVS0の値が変化する様なことが起こっ
ても、そのことには何等影響を受けることなく、リッチ
域での空燃比信号の出力発生は抑えられ、片や理論空燃
比近傍を除いてリーン域ではリーン域空燃比に常に正確
に対応した空燃比信号が出力されるという利点がある。
That is, the value V S0 of the electromotive force V S generated between both electrodes when an oxygen concentration battery element having a pair of electrodes different in the strength of the catalytic action of the oxidation reaction is placed in a rich atmosphere and the control target set value in the control circuit. as long as the relationship to V 0 is maintained at V S0> V 0, also happened by the use deterioration such as the value of V S0 responsible for such strength of the oxidation catalytic action of the electrode changes varies The output of the air-fuel ratio signal in the rich region is suppressed without being affected by that, and the air-fuel ratio which always corresponds to the lean region air-fuel ratio is always accurate in the lean region except near the stoichiometric air-fuel ratio. There is an advantage that a signal is output.

また、リーン域とリッチ域を判別するための構造を複雑
化したセンサや特別な回路及びソフトは不必要となる。
即ち、制御回路は従来のリーン域空燃比検出装置の比較
的単純な構成のものをそのまま用いることができるとい
う利点がある。
In addition, a sensor having a complicated structure for distinguishing the lean region and the rich region, a special circuit, and software are unnecessary.
That is, the control circuit has an advantage that the conventional lean region air-fuel ratio detecting device having a relatively simple structure can be used as it is.

更に、空燃比検出素子は基準酸素分圧源を特に設ける必
要がないので、大きさは従来のものと変わらず、構造も
簡単であり製造も容易である。
Further, since the air-fuel ratio detecting element does not need to be provided with a reference oxygen partial pressure source, the size is the same as that of the conventional one, and the structure is simple and the manufacturing is easy.

【図面の簡単な説明】[Brief description of drawings]

第1図は実施例のリーン域空燃比検出装置の空燃比検出
素子の斜視図、第2図はその平面図、第3図はその裏面
図、第4図はその1−1断面図、第5図は実施例のリー
ン域空燃比検出装置の制御回路図、第6図は積分回路4
2より出力され、ポンプ電流を制御する制御電圧VB
表わす電圧波形図、第7図は実施例のリーン域空燃比検
出装置にて検出される空燃比信号V1を表わすグラフで
ある。 1…空燃比検出素子 2…酸素ポンプ素子 3…酸素濃淡電池素子 4、5…電極 6…電極(カソード) 7…電極(アノード)
FIG. 1 is a perspective view of an air-fuel ratio detecting element of a lean region air-fuel ratio detecting device of an embodiment, FIG. 2 is its plan view, FIG. 3 is its rear view, and FIG. 4 is its 1-1 cross-sectional view. FIG. 5 is a control circuit diagram of the lean air-fuel ratio detecting device of the embodiment, and FIG. 6 is an integrating circuit 4
2 is a voltage waveform diagram showing the control voltage V B for controlling the pump current, which is output from No. 2, and FIG. 7 is a graph showing the air-fuel ratio signal V 1 detected by the lean region air-fuel ratio detecting device of the embodiment. 1 ... Air-fuel ratio detecting element 2 ... Oxygen pump element 3 ... Oxygen concentration battery element 4, 5 ... Electrode 6 ... Electrode (cathode) 7 ... Electrode (anode)

───────────────────────────────────────────────────── フロントページの続き (72)発明者 川地 良毅 愛知県名古屋市瑞穂区高辻町14番18号 日 本特殊陶業株式会社内 (56)参考文献 特開 昭58−153155(JP,A) 特開 昭52−130391(JP,A) 特開 昭59−67455(JP,A) 特開 昭58−27055(JP,A) ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Ryoki Kawaji 14-18 Takatsuji-cho, Mizuho-ku, Nagoya, Aichi Nihon Special Ceramics Co., Ltd. (56) Reference JP-A-58-153155 (JP, A) ) JP-A-52-130391 (JP, A) JP-A-59-67455 (JP, A) JP-A-58-27055 (JP, A)

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】酸素イオン伝導性の固体電解質の両面に酸
素ガス透過性の1対の電極を持つ酸素濃淡電池素子と、
酸素イオン伝導性の固体電解質の両面に酸素ガス透過性
の1対の電極を持つ酸素ポンプ素子とを、各一方の電極
同志を間隙部を介して対向せしめて配設するとともに、
該間隙部を被測定ガスである周囲雰囲気に対してガス拡
散制限的に流通せしめてなる空燃比検出素子と、 上記酸素濃淡電池素子の起電力が一定値となる様に上記
酸素ポンプ素子のポンプ電流を上記間隙部から酸素を汲
み出す方向に調節し、その時のポンプ電流値から空燃比
信号を得る制御回路と、 を備えたリーン域空燃比検出装置において、 上記酸素濃淡電池素子の一対の電極のうちの上記間隙部
側の電極の酸化触媒作用を他方の電極の酸化触媒作用よ
りも強くするとともに、その様に触媒作用を設定した上
記酸素濃淡電池素子のリッチ域において生じる起電力よ
りも小さい値に上記一定値を選定したことを特徴とする
リーン域空燃比検出装置。
1. An oxygen concentration cell device having a pair of electrodes permeable to oxygen gas on both sides of a solid electrolyte having oxygen ion conductivity.
An oxygen pump element having a pair of electrodes permeable to oxygen gas is provided on both sides of an oxygen ion conductive solid electrolyte, and the electrodes of each one are arranged so as to face each other with a gap portion between them, and
An air-fuel ratio detecting element that is allowed to flow through the gap in a gas diffusion limited manner with respect to the ambient atmosphere as the gas to be measured, and a pump of the oxygen pump element so that the electromotive force of the oxygen concentration battery element becomes a constant value. A lean region air-fuel ratio detection device comprising a control circuit for adjusting an electric current in a direction of pumping oxygen from the gap and obtaining an air-fuel ratio signal from a pump current value at that time, wherein a pair of electrodes of the oxygen concentration battery element Of the electrode on the side of the gap is stronger than that of the electrode on the other side, and is smaller than the electromotive force generated in the rich region of the oxygen concentration battery element in which the catalytic action is set in such a manner. A lean region air-fuel ratio detection device characterized in that the above-mentioned constant value is selected as the value.
【請求項2】酸素濃淡電池素子及び酸素ポンプ素子の電
極が、導電層と保護層との2層からなる特許請求の範囲
第1項記載のリーン域空燃比検出装置。
2. The lean air-fuel ratio detection device according to claim 1, wherein the electrodes of the oxygen concentration battery element and the oxygen pump element are composed of two layers, a conductive layer and a protective layer.
【請求項3】酸素濃淡電池素子における電極の保護層に
のみ酸化反応の触媒作用の強弱がある特許請求の範囲第
2項記載のリーン域空燃比検出装置。
3. The lean region air-fuel ratio detection device according to claim 2, wherein the catalytic action of the oxidation reaction is strong and weak only in the protective layer of the electrode in the oxygen concentration battery element.
JP59206773A 1984-10-01 1984-10-01 Lean air-fuel ratio detector Expired - Lifetime JPH067120B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59206773A JPH067120B2 (en) 1984-10-01 1984-10-01 Lean air-fuel ratio detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59206773A JPH067120B2 (en) 1984-10-01 1984-10-01 Lean air-fuel ratio detector

Publications (2)

Publication Number Publication Date
JPS6183957A JPS6183957A (en) 1986-04-28
JPH067120B2 true JPH067120B2 (en) 1994-01-26

Family

ID=16528847

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59206773A Expired - Lifetime JPH067120B2 (en) 1984-10-01 1984-10-01 Lean air-fuel ratio detector

Country Status (1)

Country Link
JP (1) JPH067120B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2500323Y2 (en) * 1992-07-21 1996-06-05 九州電気産業株式会社 Wire stop clip

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2500323Y2 (en) * 1992-07-21 1996-06-05 九州電気産業株式会社 Wire stop clip

Also Published As

Publication number Publication date
JPS6183957A (en) 1986-04-28

Similar Documents

Publication Publication Date Title
US4304652A (en) Device for detection of air/fuel ratio from oxygen partial pressure in exhaust gas
US4298573A (en) Device for detection of oxygen concentration in combustion gas
US4300991A (en) Air-fuel ratio detecting apparatus
US4264425A (en) Device for detection of air/fuel ratio from oxygen partial pressure in exhaust gas
JP3855483B2 (en) Stacked air-fuel ratio sensor element
US6554984B2 (en) Method of manufacturing a gas sensor
US4306957A (en) Device for producing control signal for feedback control of air/fuel ratio
JPH0221545B2 (en)
JPS6338154A (en) Nox sensor
JPH0473551B2 (en)
US4302312A (en) Device for producing control signal for feedback control of air/fuel mixing ratio
JPH0548420B2 (en)
GB2052758A (en) Device for Detection of Air/Fuel Ratio From Oxygen Partial Pressure in Exhaust Gas
JPH0414305B2 (en)
US20030136676A1 (en) Sensor element and gas sensor
EP0140295A2 (en) Method of operating an air-fuel ratio sensor
JP2000146906A (en) Gas sensor element
US6156176A (en) Air fuel ratio sensor with oxygen pump cell
JPH067120B2 (en) Lean air-fuel ratio detector
JPH0245819B2 (en)
JP3395957B2 (en) Carbon monoxide detection sensor and carbon monoxide detection method using the same
JPS6183956A (en) Air/fuel ratio sensor
JPS6195243A (en) Air/fuel ratio detecting element
JPS6258160A (en) Air/fuel ratio detection element
JPS60129655A (en) Oxygen sensor