JPH0671140A - Method and apparatus for treating nitrogen oxide - Google Patents

Method and apparatus for treating nitrogen oxide

Info

Publication number
JPH0671140A
JPH0671140A JP4230827A JP23082792A JPH0671140A JP H0671140 A JPH0671140 A JP H0671140A JP 4230827 A JP4230827 A JP 4230827A JP 23082792 A JP23082792 A JP 23082792A JP H0671140 A JPH0671140 A JP H0671140A
Authority
JP
Japan
Prior art keywords
gas
nitric oxide
methane
hydrocarbon
reduction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4230827A
Other languages
Japanese (ja)
Inventor
Takatoshi Nakahira
貴年 中平
Koji Moriya
浩二 守家
Ryo Enomoto
量 榎本
Katsutoshi Nakayama
勝利 中山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP4230827A priority Critical patent/JPH0671140A/en
Publication of JPH0671140A publication Critical patent/JPH0671140A/en
Pending legal-status Critical Current

Links

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Abstract

PURPOSE:To remove and purify an exhaust gas with a simple and small constitution by using a compd. wherein gallium is a main ingredient as a catalyst and a hydrocarbon as a reduction gas and performing reduction reaction of nitrogen oxide at a specified temp. CONSTITUTION:Reduction reaction of nitrogen oxide is performed at 400-900 deg.C by using a compd. wherein gallium oxide (Ga2O3) is a main ingredient as a catalyst and a hydrocarbon as a reduction gas. In this case, nitrogen oxide is changed into nitrogen, carbon dioxide and water by reacting with the hydrocarbon based on a catalytic action. This reaction proceeds even when such a hydrocarbon with small number of carbon as methane is used as the reduction gas. As methane being an ingredient of city gas can be used when methane is used as the reduction gas, in a combustor using this as a fuel, it is possible to obtain an NOx-free clean gas by e.g. feeding methane in the exhaust gas in the combustor by making a combustor as a by-pass from the same city gas feeding source and introducing a gas in a mixed condition to a catalytic part.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、エンジン、ボイラ等の
排ガス中に含有される酸化窒素の無害化を目的として採
用されている酸化窒素の処理方法及びその装置に関する
ものであり、さらに詳細には酸化窒素を還元ガスととも
に触媒に接触させて、窒素に還元する選択還元法を採用
した酸化窒素の処理方法及びこの方法を使用する酸化窒
素の処理装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and apparatus for treating nitric oxide, which is adopted for the purpose of detoxifying nitric oxide contained in exhaust gas from engines, boilers, and the like. The present invention relates to a method for treating nitric oxide which employs a selective reduction method in which nitric oxide is brought into contact with a catalyst together with a reducing gas to reduce it to nitrogen, and a nitric oxide treating apparatus using this method.

【0002】[0002]

【従来の技術】この種の選択還元法は、酸素共存下の雰
囲気中で酸化窒素を窒素に還元(窒素と酸素に分解)す
るために提案されているものである。従来、この方法に
おいては、触媒としてゼオライト系化合物等を使用し、
還元性ガスとしてプロパンやプロピレン等が使用され
る。この方法を採用する場合、触媒反応部に還元性ガス
を供給するとともに、処理対象の酸化窒素を同時に供給
し、酸化窒素を還元処理することによりこれを浄化す
る。
2. Description of the Related Art This type of selective reduction method has been proposed for reducing nitrogen oxides to nitrogen (decomposing into nitrogen and oxygen) in an atmosphere in the presence of oxygen. Conventionally, in this method, a zeolite compound or the like is used as a catalyst,
Propane, propylene, etc. are used as the reducing gas. When this method is adopted, a reducing gas is supplied to the catalytic reaction part, and at the same time, nitric oxide to be treated is simultaneously supplied to purify the nitric oxide by reducing it.

【0003】[0003]

【発明が解決しようとする課題】しかしながら前述の従
来技術においては、触媒としてゼオライトやアルミナを
使用する場合、還元性ガスとしてはカーボン数が3異常
の炭化水素を使用する必要があった。即ち、プロパンや
プロピレン等が還元ガスとして使用されるのであるが、
例えばこれを家庭用燃焼機器に対して使用する場合は、
プロパンやプロピレン等のボンベをこの機器とともに備
えておく必要があり、装置が複雑になるとともに、機器
に必要となる空間が大きくなる問題があった。
However, in the above-mentioned prior art, when zeolite or alumina is used as a catalyst, it is necessary to use a hydrocarbon having an abnormal carbon number of 3 as a reducing gas. That is, propane, propylene, etc. are used as the reducing gas,
For example, when using this for household combustion equipment,
It is necessary to provide a cylinder of propane, propylene or the like together with this device, which causes a problem that the device becomes complicated and the space required for the device becomes large.

【0004】そこで、本発明の目的は、選択還元法にお
いて、還元ガスとしてメタン等のより低級な炭化水素が
使用でき、例えば家庭用燃焼機器に対して使用した場合
でも、機器を簡単で小さなものとして構成するだけで酸
化窒素の還元処理(これは結局、排ガスの除去・浄化に
つながる。)が可能な酸化窒素の処理方法を得るととも
に、この方法を採用した酸化窒素の処理装置を得ること
である。
Therefore, an object of the present invention is to use a lower hydrocarbon such as methane as a reducing gas in the selective reduction method. For example, even when used for household combustion equipment, the equipment is simple and small. By obtaining a nitric oxide treatment method that enables reduction treatment of nitric oxide (which eventually leads to removal and purification of exhaust gas) by simply configuring is there.

【0005】[0005]

【課題を解決するための手段】この目的を達成するため
の本発明による酸化窒素の処理方法の特徴手段は、触媒
が酸化ガリウム(Ga23)を主成分とする化合物であ
るとともに、還元ガスが炭化水素であり、前記還元ガス
による前記酸化窒素の還元反応を400〜900℃でお
こなうことにある。さらに、本発明による酸化窒素の処
理装置の特徴構成は、酸化ガリウム(Ga 23)を主成
分とする化合物が配設される触媒反応部と、触媒反応部
に酸化窒素と炭化水素を同時に供給する供給手段とを備
え、さらに触媒反応部を400〜900℃に保持する保
温手段が設けられていることにあり、その作用・効果は
次の通りである。
[Means for Solving the Problems] To achieve this object
The characteristic means of the method for treating nitric oxide according to the present invention is a catalyst
Is gallium oxide (Ga2O3) Is the main compound
And the reducing gas is a hydrocarbon,
The reduction reaction of the above-mentioned nitric oxide by
There is something to do. Furthermore, the treatment of nitric oxide according to the invention
The characteristic configuration of the processing device is gallium oxide (Ga 2O3)
And a catalytic reaction part in which the compound to be distributed is disposed
Is equipped with a supply means for simultaneously supplying nitric oxide and hydrocarbons.
In addition, keep the catalytic reaction part at 400 to 900 ° C.
The warming means is provided, and its action and effect is
It is as follows.

【0006】[0006]

【作用】つまり本願の酸化窒素の処理方法を使用する場
合は、酸化窒素が400〜900℃に維持された反応部
において、酸化ガリウム(Ga23)を主成分とする化
合物の触媒作用により、炭化水素と反応し、窒素、二酸
化炭素、水に変化する(ここで、窒素については還元反
応となっている。)。この反応は、酸素共存下において
も選択的に進行する。ここで、炭素数が従来のように3
以上の炭化水素のみならず、メタン等の炭素の少ない炭
化水素を還元ガスとして使用する場合もその反応が進行
する。結果、例えば酸化窒素を含有する排ガスに対して
この方法を採用すると、この排ガスが無害化される。
In other words, when the method for treating nitric oxide of the present application is used, the catalytic action of the compound containing gallium oxide (Ga 2 O 3 ) as the main component in the reaction part where nitric oxide is maintained at 400 to 900 ° C. , Reacts with hydrocarbons and changes into nitrogen, carbon dioxide, and water (where nitrogen is a reduction reaction). This reaction selectively proceeds even in the coexistence of oxygen. Here, the number of carbons is 3 as in the past.
When not only the above hydrocarbons but also hydrocarbons having a small amount of carbon such as methane are used as the reducing gas, the reaction proceeds. As a result, when this method is applied to, for example, exhaust gas containing nitric oxide, this exhaust gas is rendered harmless.

【0007】一方、本願の酸化窒素の処理装置を使用す
る場合は、供給手段により触媒反応部に酸化窒素および
炭化水素が供給され、前述の還元反応が行なわれる。
On the other hand, when the apparatus for treating nitric oxide according to the present invention is used, nitric oxide and hydrocarbons are supplied to the catalytic reaction section by the supply means and the above-mentioned reduction reaction is carried out.

【0008】[0008]

【発明の効果】従って本願の発明を採用することによ
り、例えば炭化水素として炭素数の少ないメタン等を採
用する場合も、酸化窒素の還元が行なえるようになっ
た。ここで、還元ガスとしてメタンを採用する場合は、
都市ガス成分であるメタンが使用できるため、これを燃
料とした燃焼器においては、例えば同一の都市ガス供給
元から燃焼器をバイパスしてメタンを燃焼器の排ガス中
に供給して、混合状態のガスを触媒部に導くだけでNO
xフリーの清浄なガスを得ることが可能となる。即ち、
燃焼器への適応が非常に容易であるとともに、装置構成
においても、プロパン等のボンベを別個に設置する必要
がないため、省スペースな排ガス浄化システムを提供で
きる。
Therefore, by adopting the invention of the present application, it becomes possible to reduce nitric oxide even when methane or the like having a small carbon number is adopted as the hydrocarbon. Here, when methane is adopted as the reducing gas,
Since methane, which is a city gas component, can be used, in a combustor using this as a fuel, for example, by bypassing the combustor from the same city gas supply source and supplying methane into the exhaust gas of the combustor, NO by just guiding the gas to the catalyst
It is possible to obtain x-free clean gas. That is,
It is very easy to adapt to a combustor, and even in the device configuration, it is not necessary to separately install a cylinder of propane or the like, so that a space-saving exhaust gas purification system can be provided.

【0009】[0009]

【実施例】本願の実施例を図面に基づいて説明する。図
1には本願の発明をガスエンジンヒートポンプに適応す
る場合の燃焼・排気系1の構成が示されている。このガ
スエンジンヒートポンプのガスエンジン2は燃料ガス供
給系3及び燃焼空気供給系4よりそれぞれ燃料ガスpと
燃焼用空気aが供給される。そして、ガスエンジン2内
の燃焼により発生する酸化窒素を含有する排気ガスgが
排気系5へ放出される。この排気系5には、ペレット状
に成形された酸化ガリウム(Ga 23)を主成分とする
化合物が配設されている触媒反応部6が介装されてい
る。また使用に際して、この触媒反応部6を反応に適し
た温度に維持する保温手段としての保温装置8が、触媒
反応部6の周部に設置されている。従って、触媒反応部
6は排ガスgの保有する熱と、保温装置8により反応に
適当な温度に保たれる(ここで、ガスエンジンによる排
気ガスの温度が充分に高い場合は、この保温装置8は必
要とされることはない。)。一方、図示するようにガス
エンジン2をバイパスして還元ガスである燃料ガスpを
燃料ガス供給系3から直接排気系5へ導くバイパス系9
が設けられている。このバイパス系9にはマスフローコ
ントローラといった流量制御器10が配設されており、
バイパス系9より排ガスgに供給される還元ガス(燃料
ガス)の量(排ガスに対する還元ガスの量)が制御され
る。そして運転状態において、酸化窒素を含有する排ガ
スは、触媒反応部6を通過することにより浄化されて排
気側7へ排出される。この構造において、排気系5、バ
イパス系9、流量制御器10は、触媒反応部6に酸化窒
素及び還元ガスを同時に供給する。そこで、この機構を
供給手段と呼ぶ。
Embodiments of the present application will be described with reference to the drawings. Figure
1 applies the invention of the present application to a gas engine heat pump
The configuration of the combustion / exhaust system 1 in the case of This moth
The gas engine 2 of the engine heat pump supplies the fuel gas.
Fuel gas p is supplied from the supply system 3 and the combustion air supply system 4, respectively.
Combustion air a is supplied. And inside the gas engine 2
Exhaust gas g containing nitric oxide generated by combustion of
It is discharged to the exhaust system 5. This exhaust system 5 has pellets
Gallium oxide (Ga) 2O3) Is the main component
The catalytic reaction part 6 in which the compound is disposed is interposed
It Also, when used, this catalytic reaction part 6 is suitable for reaction
The heat retention device 8 as a heat retention means for maintaining a high temperature
It is installed around the reaction section 6. Therefore, the catalytic reaction part
6 reacts with the heat of the exhaust gas g and the heat retention device 8
Maintained at a suitable temperature (where the exhaust from the gas engine
If the temperature of the gas is sufficiently high, this heat retaining device 8 is necessary.
It doesn't matter. ). On the other hand, gas as shown
Bypassing the engine 2, the reducing gas fuel gas p
Bypass system 9 that leads from the fuel gas supply system 3 directly to the exhaust system 5
Is provided. This bypass system 9 has a mass flow
A flow rate controller 10 such as a controller is provided,
The reducing gas (fuel that is supplied to the exhaust gas g from the bypass system 9
Gas) (the amount of reducing gas to exhaust gas) is controlled
It In operating conditions, exhaust gas containing nitric oxide is discharged.
The gas is purified by passing through the catalytic reaction unit 6 and discharged.
It is discharged to the air side 7. In this structure, the exhaust system 5,
The Y-pass system 9 and the flow rate controller 10 are used to
Elementary and reducing gas are supplied simultaneously. Therefore, this mechanism
Called supply means.

【0010】以下に上述の燃焼・排気系1の作動につい
て説明する。先ず、燃料ガス(これは還元ガスとしても
働く。)として、メタン(13A都市ガス)を採用した
場合の例について以下に説明する。前述のガスエンジン
2を理論空燃比より酸素過剰(λ>1)な状態で燃焼さ
せ、この排熱と保温装置8により触媒反応部6の温度を
700℃付近に維持する。左記の条件下での燃料ガスp
の混入比(排ガスg量に対するバイパスされる燃料の
比)と排ガスg中に含有される酸化窒素の浄化率及び触
媒の関係を表1に示した。(但し、この表には、粒子径
を5〜10μmに調整した酸化ガリウム(Ga23
と、粒子径の調整されていない市販試薬の酸化ガリウム
(Ga23)の結果が示されている。)
The operation of the above combustion / exhaust system 1 will be described below. First, an example in which methane (13A city gas) is used as the fuel gas (which also works as a reducing gas) will be described below. The gas engine 2 is burned in a state of oxygen excess (λ> 1) from the stoichiometric air-fuel ratio, and the temperature of the catalytic reaction part 6 is maintained at around 700 ° C. by this exhaust heat and the heat retention device 8. Fuel gas p under the conditions on the left
Table 1 shows the relationship between the mixture ratio (the ratio of the bypassed fuel to the amount of exhaust gas g), the purification rate of nitric oxide contained in the exhaust gas g, and the catalyst. (However, in this table, gallium oxide (Ga 2 O 3 ) having a particle size adjusted to 5 to 10 μm was used.
And the results of gallium oxide (Ga 2 O 3 ) which is a commercially available reagent whose particle size is not adjusted are shown. )

【0011】[0011]

【表1】 [Table 1]

【0012】結果、還元ガスであるメタンの混入比の増
加に従って酸化窒素の除去率が上昇した。この状態にお
いて排ガス中には当然酸化窒素、メタン、酸素、二酸化
炭素が共存しており、酸化窒素が還元されていることよ
り選択還元が起こっていることがわかる。ここで、排ガ
ス中の酸化窒素の代表例としてのNO,NO2に対する
メタンの触媒上での反応は、以下のように記述される。
As a result, the removal rate of nitric oxide increased as the mixing ratio of methane as the reducing gas increased. In this state, the exhaust gas naturally contains nitrogen oxides, methane, oxygen, and carbon dioxide, and it can be seen that the selective reduction occurs because the nitrogen oxides are reduced. Here, the reaction of methane on the catalyst with respect to NO and NO 2 as typical examples of nitric oxide in exhaust gas is described as follows.

【0013】[0013]

【数1】 4NO+CH4 →2N2+CO2+2H2O ……… 2NO2+CH4→N2+CO2+2H2O ………[Equation 1] 4NO + CH 4 → 2N 2 + CO 2 + 2H 2 O ……… 2NO 2 + CH 4 → N 2 + CO 2 + 2H 2 O ………

【0014】この反応によりNOは還元され窒素、二酸
化炭素、水に変化して、無害化される。
By this reaction, NO is reduced and converted into nitrogen, carbon dioxide, and water to be rendered harmless.

【0015】上記の酸化窒素の還元処理方法に於ける、
反応温度と酸化窒素の還元性能との関係を、図2に基づ
いて説明する。使用した装置構成は図1のものと同様で
ある。(図においてNOにて酸化窒素を代表する。) 実験時の条件 NO濃度 500 ppm SV値(ガス流量/反応部容積) 20000h-1 還元ガス メタン(13A)
2500ppm 酸素、水素、一酸化炭素、二酸化炭素、水共存下 (1)温度変化に伴う還元性能の変化 図2は、縦軸が夫々のガスの濃度を、横軸が反応部の温
度を示している。NOが実線で、窒素が破線で示されて
いる。温度変化に伴う還元性能について温度の上昇に従
って説明する。実線がNO濃度を、破線が対応するN2
濃度を示している。 (a)100〜400℃の温度域においては、ほとんど
反応は起こっていない。 (b)400〜900℃域においてNOが減少し、N2
が発生していることが分かる。温度を前述の領域に保つ
ことにより、NOxの浄化を行なうことができる。さら
に、700℃以上の温度域においては、NOxの低減効
果が減少した。従って、この触媒の浄化最適温度は60
0〜700℃であり、高温の排ガスの機器に適用しやす
い。
In the above method for reducing nitric oxide,
The relationship between the reaction temperature and the reducing performance of nitric oxide will be described based on FIG. The device configuration used is similar to that of FIG. (In the figure, NO is representative of nitric oxide.) Conditions at the time of experiment NO concentration 500 ppm SV value (gas flow rate / reaction part volume) 20000 h -1 reducing gas methane (13A)
2500ppm In the coexistence of oxygen, hydrogen, carbon monoxide, carbon dioxide, and water (1) Change in reduction performance with temperature change In Fig. 2, the vertical axis shows the concentration of each gas and the horizontal axis shows the temperature of the reaction part. There is. NO is shown as a solid line and nitrogen is shown as a broken line. The reducing performance with temperature change will be described according to the temperature increase. The solid line shows the NO concentration, and the broken line shows the corresponding N 2
The concentration is shown. (A) Almost no reaction occurs in the temperature range of 100 to 400 ° C. (B) NO decreases in the range of 400 to 900 ° C. and N 2
It can be seen that is occurring. NOx can be purified by maintaining the temperature in the above range. Furthermore, in the temperature range of 700 ° C. or higher, the effect of reducing NOx decreased. Therefore, the optimum purification temperature for this catalyst is 60
The temperature is 0 to 700 ° C., and it is easy to apply to high temperature exhaust gas equipment.

【0016】〔別実施例〕本願の別実施例を以下に箇条
書きする。 (イ)上述の実施例においては、主に触媒としての酸化
ガリウム(Ga23)の例を示したが、イットリウム、
カルシウム等を担持させたものであってもよい。従って
本発明に係わる化合物を、酸化ガリウム(Ga23)を
主成分とする化合物と称する。又、還元ガスとしては、
炭化水素であればいかなるものでもよい。
[Other Embodiments] Other embodiments of the present application are listed below. (A) In the above-mentioned examples, gallium oxide (Ga 2 O 3 ) was mainly used as a catalyst, but yttrium,
It may be one carrying calcium or the like. Therefore, the compound according to the present invention is referred to as a compound containing gallium oxide (Ga 2 O 3 ) as a main component. Also, as the reducing gas,
Any hydrocarbon may be used.

【0017】(ロ)前述の実施例においては、化合物を
ペレット状のまま酸化窒素を含むガス中に配設したが、
これはハニカム状等いかなる形状に成形して使用しても
よい。
(B) In the above embodiment, the compound was placed in a gas containing nitric oxide in the form of pellets.
This may be used after being formed into any shape such as a honeycomb shape.

【0018】(ハ)さらに、上記の実施例においては、
ガスエンジンを備えた燃焼・排気系1に於ける酸化窒素
の処理についてその実施例を示したが、本願の農法はプ
ラントに於ける酸化窒素の処理等、いかなる場合に対し
ても使用することができる。また、実施例においても還
元ガスとガスエンジンに供給される燃料ガスが異なるも
のであってもよい。さらに、流量制御器としてはマスフ
ローコントローラの他、ニードルバルブ、キャピラリ等
も採用できる。
(C) Further, in the above embodiment,
Although an example of the treatment of nitric oxide in the combustion / exhaust system 1 equipped with a gas engine is shown, the agricultural method of the present application can be used in any case such as treatment of nitric oxide in a plant. it can. Also in the embodiment, the reducing gas and the fuel gas supplied to the gas engine may be different. Further, as the flow rate controller, a needle valve, a capillary or the like can be adopted in addition to the mass flow controller.

【0019】尚、特許請求の範囲の項に図面との対照を
便利にするために符号を記すが、該記入により本発明は
添付図面の構成に限定されるものではない。
It should be noted that reference numerals are given in the claims for convenience of comparison with the drawings, but the present invention is not limited to the configurations of the accompanying drawings by the entry.

【図面の簡単な説明】[Brief description of drawings]

【図1】本願の排ガス浄化装置の構成を示す図FIG. 1 is a diagram showing a configuration of an exhaust gas purifying apparatus of the present application.

【図2】還元ガスとしてメタンを使用した場合の酸化窒
素の還元状態を示す図
FIG. 2 is a diagram showing a reduced state of nitric oxide when methane is used as a reducing gas.

【符号の説明】[Explanation of symbols]

6 触媒反応部 8 保温手段 6 catalytic reaction part 8 heat retention means

───────────────────────────────────────────────────── フロントページの続き (72)発明者 中山 勝利 大阪府大阪市中央区平野町四丁目1番2号 大阪瓦斯株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Masaru Nakayama 4-1-2, Hiranocho, Chuo-ku, Osaka-shi, Osaka Prefecture Osaka Gas Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 酸化窒素を還元ガスとともに触媒に接触
させて、前記酸化窒素を窒素に還元する選択還元法によ
る酸化窒素の処理方法であって、 前記触媒が酸化ガリウム(Ga23)を主成分とする化
合物であるとともに、前記還元ガスが炭化水素であり、 前記還元ガスによる前記酸化窒素の還元反応を400〜
900℃でおこなう酸化窒素の処理方法。
1. A method for treating nitric oxide by the selective reduction method, which comprises contacting nitric oxide with a reducing gas together with a catalyst to reduce the nitric oxide to nitrogen, wherein the catalyst comprises gallium oxide (Ga 2 O 3 ). In addition to being a compound containing the main component, the reducing gas is a hydrocarbon, and the reduction reaction of the nitric oxide by the reducing gas is 400 to
A method for treating nitric oxide at 900 ° C.
【請求項2】 酸化ガリウム(Ga23)を主成分とす
る化合物が配設される触媒反応部(6)と、前記触媒反
応部に酸化窒素と炭化水素を同時に供給する供給手段と
を備え、さらに前記触媒反応部(6)を400〜900
℃に保持する保温手段(8)が設けられている酸化窒素
の処理装置。
2. A catalytic reaction part (6) in which a compound containing gallium oxide (Ga 2 O 3 ) as a main component is arranged, and a supply means for simultaneously supplying nitrogen oxide and hydrocarbon to the catalytic reaction part. And further comprising the catalytic reaction part (6) of 400 to 900
A treatment apparatus for nitric oxide, which is provided with a heat retaining means (8) for holding at ℃.
JP4230827A 1992-08-31 1992-08-31 Method and apparatus for treating nitrogen oxide Pending JPH0671140A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4230827A JPH0671140A (en) 1992-08-31 1992-08-31 Method and apparatus for treating nitrogen oxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4230827A JPH0671140A (en) 1992-08-31 1992-08-31 Method and apparatus for treating nitrogen oxide

Publications (1)

Publication Number Publication Date
JPH0671140A true JPH0671140A (en) 1994-03-15

Family

ID=16913903

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4230827A Pending JPH0671140A (en) 1992-08-31 1992-08-31 Method and apparatus for treating nitrogen oxide

Country Status (1)

Country Link
JP (1) JPH0671140A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7399729B2 (en) 2003-12-22 2008-07-15 General Electric Company Catalyst system for the reduction of NOx

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7399729B2 (en) 2003-12-22 2008-07-15 General Electric Company Catalyst system for the reduction of NOx

Similar Documents

Publication Publication Date Title
CA2138133C (en) Method for removal of nitrogen oxides from exhaust gas
KR100186852B1 (en) A method for purifying combustion exhaust gas
EP1674682B1 (en) Exhaust gas purifying apparatus for internal combustion engine
US7198764B2 (en) Gas treatment system and a method for using the same
JP2001170454A (en) Exhaust gas cleaning system and exhaust gas cleaning catalyst
US3953576A (en) Maximizing conversion of nitrogen oxides in the treatment of combustion exhaust gases
JPH05103953A (en) Method for removing nitrogen oxide in exhaust gas and removal catalyst
WO1992004968A1 (en) Catalytic decomposition of cyanuric acid and use of product to reduce nitrogen oxide emissions
JP2003236343A (en) Method for decontaminating exhaust gas and apparatus for denitration at low temperature
JPH0691138A (en) Method for processing exhaust gas and device therefor
JPH0671140A (en) Method and apparatus for treating nitrogen oxide
JP3283350B2 (en) Nitric oxide reduction catalyst and nitric oxide treatment equipment
JP3263105B2 (en) Nitrogen oxide treatment method and treatment apparatus
JP2008309043A (en) Exhaust emission control device for internal combustion engine
JP2007332885A (en) Nox purification system and nox purification method
JP3258345B2 (en) Nitrogen oxide treatment method and treatment apparatus
JPH05220349A (en) Method and device for treating nox
JP4652047B2 (en) Exhaust gas treatment method and urea SCR type automobile exhaust gas treatment device
JPH06226050A (en) Treatment and treatment device for nitrogen oxide
JP2001140630A (en) Exhaust emission control device for internal combustion engine
US11441464B2 (en) Use of ozone with LNT and MnO2 catalyst for the treatment of residual pollutant for the exhaust gas of an internal engine combustion
JPH05146641A (en) Method and apparatus for treating nitrogen oxide
US11686236B1 (en) Device for the reduction of ammonia and nitrogen oxides emissions
JPH06226051A (en) Treatment and treatment device for nitrogen oxide
JP3302384B2 (en) Nitrogen oxide treatment method and treatment apparatus