JPH0670478A - Method for charging battery by spike-like wave and apparatus thereof - Google Patents
Method for charging battery by spike-like wave and apparatus thereofInfo
- Publication number
- JPH0670478A JPH0670478A JP24255692A JP24255692A JPH0670478A JP H0670478 A JPH0670478 A JP H0670478A JP 24255692 A JP24255692 A JP 24255692A JP 24255692 A JP24255692 A JP 24255692A JP H0670478 A JPH0670478 A JP H0670478A
- Authority
- JP
- Japan
- Prior art keywords
- power supply
- storage battery
- charging
- spike
- diode
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Charge And Discharge Circuits For Batteries Or The Like (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】この発明は蓄電池の充電方法に係
り、とくに急速充電の改良に関するもので、とくに鉛蓄
電池に適用することにより大きな効果が期待できるもの
である。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a charging method for a storage battery, and more particularly to an improvement in rapid charging, which can be expected to have a great effect when applied to a lead storage battery.
【0002】[0002]
【従来の技術】従来、密閉形蓄電池の充電方法として、
定電圧定電流充電や終期定電圧付準定電圧充電などの方
法があるが、完全充電に至るにはかなり長い充電時間を
必要とし、一般的な充電方法では使用中にしだいに充電
不足になり、寿命の上からも好ましくない。そこでこの
ような問題点を改良するために、密閉形蓄電池の充電方
法として、充電の最終段階で、充電初期の定電流充電時
間と中期の定電圧充電時間の和に比例させた時間、電池
容量の約1%の電池値にて定電流充電を行うものがあ
る。しかし、定電流による急速充電方式では、蓄電池の
電流密度が大きいために、水電解反応が起き、酸素ガス
および水素ガスが発生する。このようなガスの発生は充
電効率を下げるため、これらのガスを再結合させて、水
に戻す必要がある。一般に水素ガスは中性であるため、
これが電極板に付着すると電流の流れを抑制するように
作用する。2. Description of the Related Art Conventionally, as a method for charging a sealed storage battery,
There are methods such as constant voltage constant current charging and quasi-constant voltage charging with final constant voltage, but it takes a considerably long charging time to reach full charge, and with a general charging method, the charge gradually becomes insufficient during use. However, it is not preferable in terms of life. Therefore, in order to improve such a problem, as a method of charging a sealed storage battery, at the final stage of charging, a time proportional to the sum of the constant current charging time in the initial charging and the constant voltage charging time in the middle period, the battery capacity There is one that performs constant current charging with a battery value of about 1%. However, in the rapid charging method using a constant current, a water electrolysis reaction occurs due to the large current density of the storage battery, and oxygen gas and hydrogen gas are generated. Since the generation of such gas lowers the charging efficiency, it is necessary to recombine these gases and return them to water. Generally, hydrogen gas is neutral,
When this adheres to the electrode plate, it acts to suppress the flow of current.
【0003】そこで、これを改善するために、通電時
間、休止時間がともに1秒以下のパルス状の矩形波をも
った定電流により充電を行うものがある。すなわちこの
充電方法は休止時間を伴うことから連続充電の場合に比
し、ガスの発生を少なくするものである。ところが、そ
の充電方式におけるパルス状の矩形波は通電時間、停止
時間ともに比較的間隔が大きいために充電時に発生する
ガスを十分に抑制することは難しい。Therefore, in order to improve this, there is a method in which charging is performed by a constant current having a pulse-shaped rectangular wave in which both energization time and rest time are 1 second or less. That is, since this charging method involves a down time, the gas generation is reduced as compared with the case of continuous charging. However, it is difficult to sufficiently suppress the gas generated during charging because the pulsed rectangular wave in the charging method has a relatively large interval both in the energization time and the stop time.
【0004】また蓄電池を充電する際に、その電解液比
重を測定しながら、均等充電し、電解液の比重があらか
じめ定められた値に達したときに、その均等充電を停止
し、代わって浮動充電を行うものがある。この充電方式
は蓄電池が深い放電をしたときに効果の大きいものであ
るが、反面、電解液比重測定装置等の別の装置を必要と
し、このため充電装置が全体とし複雑となることは否め
ない。Further, when the storage battery is charged, it is uniformly charged while measuring the specific gravity of the electrolytic solution, and when the specific gravity of the electrolytic solution reaches a predetermined value, the uniform charging is stopped and floated instead. There is something to charge. This charging method is very effective when the storage battery is deeply discharged, but on the other hand, it requires another device such as an electrolytic solution specific gravity measuring device, which inevitably complicates the charging device as a whole. .
【0005】[0005]
【発明が解決しようとする課題】上記のように従来の充
電方法は、充電時に発生した水素ガスが電極板に付着
し、これが電流の流れを抑制し、ひいては充電に、より
多くの時間がかかるという問題点があった。この発明は
上記のような問題点を解消するためになされたもので、
短時間で充電することができ、蓄電池の寿命を延ばすこ
とのできる充電方法およびその装置を提供することを目
的とする。As described above, in the conventional charging method, the hydrogen gas generated during charging adheres to the electrode plate, which suppresses the flow of current, and thus the charging takes more time. There was a problem. The present invention has been made to solve the above problems,
An object of the present invention is to provide a charging method and a device thereof that can be charged in a short time and can extend the life of a storage battery.
【0006】[0006]
【課題を解決するための手段】直流電源をスパイク波に
変調させ、電解液に急激なスパイク電流を印加して共振
振動させ、この共振振動効果によって電解質イオンを強
制的に活性化させる。A DC power supply is modulated into a spike wave, and a sudden spike current is applied to an electrolytic solution to cause resonant oscillation, and electrolyte ions are forcibly activated by this resonant oscillation effect.
【0007】[0007]
【作用】急激なスパイク電流の印加によって、電解質イ
オンは強制的に活性化され、多量のイオンは極板に吸収
され、このため電流が容易に流れる。The electrolyte ions are forcibly activated by the sudden application of the spike current, and a large amount of ions are absorbed by the electrode plate, so that the current easily flows.
【0008】[0008]
【実施例】以下図によってこの発明の一実施例について
説明する。すなわち図1において、主電源1は可変電源
で、所定の範囲たとえば10〔V〕〜30〔V〕に設定
される。またこの主電源は直流電源を50〔HZ〕〜1
〔KHZ〕のスパイク波に変調させる。この主電源の正
の端子には第1のダイオードD1および電子スイッチS
1を介して蓄電池B1が接続される。また主電源1には
補助電源2が直列に接続される。この補助電源は出力電
圧が固定され、たとえば50〜100〔V〕の間で選択
されている。そしてこの補助電源には第2のダイオード
D2、抵抗R1および第1のコンデンサC1が接続さ
れ、抵抗R1とコンデンサC1の接続点はダイオードD
1と電子スイッチS1との接続点に接続される。またコ
ンデンサC1の負の端子とダイオードD1のアノードと
の接続点にコンデンサC2の正の端子が接続され、かつ
このコンデンサの負の端子は主電源1の負の端子に接続
される。すなわちコンデンサC2は主電源1の端子間に
接続される。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings. That is, in FIG. 1, the main power source 1 is a variable power source, and is set in a predetermined range, for example, 10 [V] to 30 [V]. In addition, this main power source is a DC power source of 50 [HZ] to 1
Modulate to spike wave of [KHZ]. The positive terminal of this main power supply has a first diode D1 and an electronic switch S
The storage battery B1 is connected via 1. An auxiliary power supply 2 is connected to the main power supply 1 in series. The output voltage of this auxiliary power source is fixed and is selected, for example, between 50 and 100 [V]. A second diode D2, a resistor R1 and a first capacitor C1 are connected to this auxiliary power supply, and the connection point between the resistor R1 and the capacitor C1 is the diode D.
1 and the electronic switch S1. Further, the positive terminal of the capacitor C2 is connected to the connection point between the negative terminal of the capacitor C1 and the anode of the diode D1, and the negative terminal of this capacitor is connected to the negative terminal of the main power supply 1. That is, the capacitor C2 is connected between the terminals of the main power supply 1.
【0009】なお、主電源1は図2に示すプログラム制
御回路を有する電源により構成される。すなわち図2に
おいて、入力端P1、P2にはフィルター11、整流器
12、スイッチング素子13、変圧器14、高周波整流
器15、電流検出器16が順次接続され、直流出力端子
P3、P4に至る。一方スイッチング素子13の出力端
にはアイソレーター17、パルス変換器18、プログラ
ム制御回路19が順次接続され、この出力端は電流検出
器16および直流出力端子P3、P4に至る。そしてプ
ログラム制御回路19は定電圧回路、定電流回路、無負
荷最大電圧設定回路、充電電圧最高値を検出し最小充電
電圧まで自動的に降下させる自動降下回路を有してい
る。The main power supply 1 is composed of a power supply having a program control circuit shown in FIG. That is, in FIG. 2, the filter 11, the rectifier 12, the switching element 13, the transformer 14, the high frequency rectifier 15, and the current detector 16 are sequentially connected to the input terminals P1 and P2, and reach the DC output terminals P3 and P4. On the other hand, an isolator 17, a pulse converter 18, and a program control circuit 19 are sequentially connected to the output end of the switching element 13, and this output end reaches the current detector 16 and the DC output terminals P3 and P4. The program control circuit 19 has a constant voltage circuit, a constant current circuit, a no-load maximum voltage setting circuit, and an automatic voltage drop circuit for detecting the maximum charging voltage value and automatically lowering it to the minimum charging voltage.
【0010】図2において、入力端P1、P2には交流
の100〔V〕または200〔V〕が印加される。この
電圧はフィルター11を通り、整流器12で整流され、
さらにスイッチング素子13を経て、変圧器14により
降圧されて、高周波整流器15に入力され、電流検出器
を経て出力端子P3、P4に出力される。一方、P3,
P4に出力された電圧を検出し、かつ電流検出器16に
より電流を検出し、プログラム制御回路19に入力され
る。プログラム制御回路19で電流信号と電圧信号が合
成されてパルス変換回路18に入力される。このパルス
変換回路18によりスイッチング周波数20KHz〜3
0KHzに変換される。尚、プログラム制御回路19の
入力信号の大小によりパルス幅を可変し、アイソレータ
17を経てスイッチング素子を駆動させ高周波電力に変
換される。その電力は変圧器14、高周波整流器15、
電流検出器16を経て制御された電力が出力端子P3,
P4に出力される。In FIG. 2, AC 100 [V] or 200 [V] is applied to the input terminals P1 and P2. This voltage passes through the filter 11 and is rectified by the rectifier 12,
Further, the voltage is stepped down by the transformer 14 via the switching element 13, input to the high frequency rectifier 15, and output to the output terminals P3 and P4 via the current detector. On the other hand, P3
The voltage output to P4 is detected, the current is detected by the current detector 16, and the current is input to the program control circuit 19. The program control circuit 19 combines the current signal and the voltage signal and inputs them to the pulse conversion circuit 18. This pulse conversion circuit 18 causes a switching frequency of 20 KHz to 3
Converted to 0 KHz. The pulse width is changed according to the magnitude of the input signal of the program control circuit 19, and the switching element is driven through the isolator 17 to be converted into high frequency power. The electric power is the transformer 14, the high frequency rectifier 15,
The electric power controlled through the current detector 16 outputs the output terminal P3.
It is output to P4.
【0011】図1の回路において、電子スイッチS1が
オフのときに主電源1の出力電圧によりコンデンサC2
が充電される。また主電源1と補助電源2によりダイオ
ードD2および抵抗R1を通してコンデンサC1が充電
される。すなわちコンデンサC1の端子電圧はほぼ補助
電源2の端子電圧であり、またコンデンサC2の端子電
圧はほぼ主電源1の端子電圧に保持されている。この状
態で、電子スイッチS1が閉じると、蓄電池B1には図
3に示すように50〔Hz〕〜1〔KHz〕のスパイク
電圧が印加される。このスパイク電圧のスパイク幅は抵
抗R1とコンデンサC1によって決まり、たとえば数十
〔μSec〕である。これによって蓄電池B1にはスパ
イク電流が流れる。In the circuit of FIG. 1, when the electronic switch S1 is off, the output voltage of the main power supply 1 causes the capacitor C2
Is charged. The main power supply 1 and the auxiliary power supply 2 charge the capacitor C1 through the diode D2 and the resistor R1. That is, the terminal voltage of the capacitor C1 is almost the terminal voltage of the auxiliary power supply 2, and the terminal voltage of the capacitor C2 is almost held at the terminal voltage of the main power supply 1. When the electronic switch S1 is closed in this state, a spike voltage of 50 [Hz] to 1 [KHz] is applied to the storage battery B1 as shown in FIG. The spike width of the spike voltage is determined by the resistor R1 and the capacitor C1 and is, for example, several tens [μSec]. As a result, a spike current flows in the storage battery B1.
【0012】従って、蓄電池B1の電解液には急激なス
パイク電流、例えば平均値の3〜4倍のスパイク電流が
与えられ、これにより電解液は共振振動し、この共振振
動によって電解質イオンを強制的に活性化させ多量のイ
オンを極板に吸収させ、これによって充電電流を容易に
流す。即ちスパイク電流は瞬時にマイナスイオンを多量
に発生し、極板により多く吸収させ且つ同方向のスピン
を持った水素分子を活性化させ、通電しやすくする。こ
れにより発生したガスは強制的に抑制される。Therefore, a sharp spike current, for example, a spike current of 3 to 4 times the average value is applied to the electrolytic solution of the storage battery B1, whereby the electrolytic solution resonates and the electrolyte ions are forced by the resonant vibration. Is activated to cause a large amount of ions to be absorbed by the electrode plate, so that the charging current can easily flow. That is, the spike current instantly generates a large amount of negative ions, makes the electrode plate absorb more, activates hydrogen molecules having spins in the same direction, and facilitates conduction. The gas generated thereby is forcibly suppressed.
【0013】そしてコンデンサC1の端子電圧が低下す
ると、主電源1、即ちコンデンサC2からダイオードD
1を通して蓄電池B1に電圧が印加され、充電を持続す
る。When the terminal voltage of the capacitor C1 drops, the main power source 1, that is, the capacitor C2 to the diode D
A voltage is applied to the storage battery B1 through 1 to continue charging.
【0014】充電中は電流検出器16により、充電電流
が検出され、同時に蓄電池Bの端子電圧を自動で検出
し、プログラム制御回路19により、1セルあたり2.
6〔V〕を最大値として、充電電圧を自動で制御し自動
降下させる。またプログラム制御回路19の定電圧回路
および定電流回路により、電解液の温度過昇が防止され
る。さらにプログラム制御回路19は12〔V〕定格の
蓄電池の場合、無負荷時の主電源の電圧を30〔V〕
に、また充電電流の平均値を1時間率〜10時間率とに
設定できる。この場合充電電圧は蓄電池B1の内部抵抗
により自動設定される。すなわち蓄電池B1の内部抵抗
が低い場合、たとえば新しい蓄電池の場合には電圧が低
くなり内部抵抗が高い場合、たとえば古い蓄電池の場合
には自動的に高くなり、設定した電流にて充電される。During charging, the charging current is detected by the current detector 16, and at the same time the terminal voltage of the storage battery B is automatically detected.
The charging voltage is automatically controlled and automatically lowered with 6 [V] as the maximum value. Further, the constant voltage circuit and the constant current circuit of the program control circuit 19 prevent the temperature of the electrolytic solution from rising excessively. Further, the program control circuit 19 sets the voltage of the main power source at no load to 30 [V] in the case of a 12 [V] rated storage battery.
Further, the average value of the charging current can be set to 1 hour rate to 10 hour rate. In this case, the charging voltage is automatically set by the internal resistance of the storage battery B1. That is, when the internal resistance of the storage battery B1 is low, for example, in the case of a new storage battery, the voltage is low and when the internal resistance is high, for example, in the case of an old storage battery, the voltage is automatically increased and the battery is charged at the set current.
【0015】また図4は図1に示す補助電源2を有さ
ず、主電源1の端子間に電子スイッチS1および第1の
ダイオードD1を介して蓄電池B1を接続したものであ
る。さらに主電源1の端子間にはパルストランスPT1
の一次側巻線とトランジスタQ1のコレクタおよびエミ
ッタが直列に接続される。そしてトランジスタQ1のベ
ースにはコンデンサC1を介して入力端子T1が設けら
れる。トランジスタQ1のベースと第1のコンデンサC
1との接続点および主電源1の負の端子間には抵抗R1
が接続される。主電源1の端子間には第2のコンデンサ
C2が接続される。ダイオードD1のカソードと蓄電池
B1の正の端子との接続点には第2のダイオードD2の
カソードが接続され、このダイオードのアノードは抵抗
R2を介してパルストランスPT1の二次側の一端に接
続され、その他端は主電源1の負の端子に接続される。Further, FIG. 4 does not have the auxiliary power supply 2 shown in FIG. 1, but the storage battery B1 is connected between the terminals of the main power supply 1 via the electronic switch S1 and the first diode D1. Further, a pulse transformer PT1 is provided between the terminals of the main power supply 1.
The primary winding and the collector and emitter of the transistor Q1 are connected in series. An input terminal T1 is provided at the base of the transistor Q1 via the capacitor C1. Base of transistor Q1 and first capacitor C
1 and a negative terminal of the main power source 1 between the resistor R1
Are connected. A second capacitor C2 is connected between the terminals of the main power supply 1. The cathode of the second diode D2 is connected to the connection point between the cathode of the diode D1 and the positive terminal of the storage battery B1, and the anode of this diode is connected to the one end on the secondary side of the pulse transformer PT1 via the resistor R2. , The other end is connected to the negative terminal of the main power supply 1.
【0016】図4において、入力端子T1と電子スイッ
チS1とを連動させ、この電子スイッチS1のオンと同
時に、入力端子T1に数十〔μSec〕のスパイク信号
を入力する。このスパイク信号はトランジスタQ1で増
幅され、これによってパルストランスPT1の一次コイ
ルにスパイク電流が流れる。このため一次コイルの電圧
はパルストランスPT1の二次側コイルにおいて昇圧さ
れる。このときダイオードD1はパルストランスPT1
からのスパイク電流を阻止し、またダイオードD2は蓄
電池B1からパルストランスPT1に直流電流が流れる
のを阻止する。なお、コンデンサC2は波形全体に良い
影響を与えるように作用する。In FIG. 4, the input terminal T1 and the electronic switch S1 are interlocked, and at the same time when the electronic switch S1 is turned on, a spike signal of several tens [μSec] is input to the input terminal T1. This spike signal is amplified by the transistor Q1 and a spike current flows through the primary coil of the pulse transformer PT1. Therefore, the voltage of the primary coil is boosted in the secondary coil of the pulse transformer PT1. At this time, the diode D1 is the pulse transformer PT1.
, And the diode D2 blocks a direct current from the storage battery B1 to the pulse transformer PT1. The capacitor C2 acts so as to have a good influence on the entire waveform.
【0017】また図5に示すものは変圧器14の出力端
に整流制御及び位相制御回路20を接続し、且この回路
の出力端にプログラム制御回路19を接続したものであ
る。In FIG. 5, a rectification control and phase control circuit 20 is connected to the output terminal of the transformer 14, and a program control circuit 19 is connected to the output terminal of this circuit.
【0018】次に図2、図5に示す主電源によるプログ
ラム制御について説明する。まず、主電源1すなわち充
電器の無負荷解放電圧を直流の30〔V〕とし、蓄電池
の容量により任意に電流を設定する。なお、設定電流値
は定電流となる。この状態で、充電を開始すると図6に
示すようになる。この図において、この発明の充電装置
のプログラム動作は定電流充電で充電を開始し、蓄電池
の内部抵抗に左右された蓄電池の端子電圧となる。そし
て充電開始後時間が経過し、蓄電池の充電がある程度進
むと特性曲線が徐々に上昇し、さらに充電が進むと、曲
線は立ち上がり、その角度は増加して、やがては飽和状
態に達し、ほぼ曲線が水平になり適当な時間を経過する
と、充電装置の動作は自動的に定電圧動作に移行し、徐
々に電圧は下がり、最終的には蓄電池の電圧が直流の1
2.5〔V〕になるようなプログラム動作で終了する。Program control by the main power source shown in FIGS. 2 and 5 will be described below. First, the no-load release voltage of the main power source 1, that is, the charger is set to DC 30 [V], and the current is arbitrarily set according to the capacity of the storage battery. The set current value is a constant current. In this state, when charging is started, it becomes as shown in FIG. In this figure, the program operation of the charging device of the present invention starts charging by constant current charging, and the terminal voltage of the storage battery depends on the internal resistance of the storage battery. The characteristic curve gradually rises when the charging of the storage battery progresses to some extent after the start of charging, and when the charging further proceeds, the curve rises, its angle increases, and eventually reaches the saturated state, almost reaching the curve. When the battery level becomes horizontal and an appropriate time elapses, the operation of the charging device automatically shifts to the constant voltage operation, the voltage gradually decreases, and finally the voltage of the storage battery becomes 1 DC.
The program operation ends with 2.5 [V].
【0019】[0019]
【発明の効果】この発明は上述のように、直流電源をス
パイク波に変調させ、電解液に急激なスパイク電流を印
加して共振振動させ、この効果によって電解質イオンを
強制的に活性化させるようにしているので、多量のイオ
ンを極板に吸収させることができ、したがって電流の流
れが極めて容易となり、蓄電池を短い時間で充電するこ
とができる。さらにスパイク電流は蓄電池を傷めること
がなくむしろ蓄電池の寿命を延ばす効果がある。As described above, according to the present invention, the direct current power supply is modulated into a spike wave and a sharp spike current is applied to the electrolytic solution to cause resonance oscillation, and this effect is used to forcibly activate the electrolyte ions. Since a large amount of ions can be absorbed by the electrode plate, the flow of current becomes extremely easy, and the storage battery can be charged in a short time. Furthermore, the spike current does not damage the storage battery, but rather has the effect of extending the life of the storage battery.
【図1】この発明における蓄電池の充電方法の一実施例
を示す回路図である。FIG. 1 is a circuit diagram showing an embodiment of a storage battery charging method according to the present invention.
【図2】図1の主電源のブロック回路図である。FIG. 2 is a block circuit diagram of the main power supply of FIG.
【図3】スパイク電流の波形図である。FIG. 3 is a waveform diagram of a spike current.
【図4】この発明における蓄電池の他の実施例を示す回
路図である。FIG. 4 is a circuit diagram showing another embodiment of the storage battery according to the present invention.
【図5】図2の主電源の他の実施例を示すブロック図で
ある。FIG. 5 is a block diagram showing another embodiment of the main power supply of FIG.
【図6】この発明における蓄電池の充電方法による充電
特性図である。FIG. 6 is a charging characteristic diagram according to the charging method of the storage battery in the present invention.
1 主電源 2 補助電源 11 フィルター 12 整流器 13 スイッチング素子 14 変圧器 15 高周波整流器 16 電流検出器 17 アイソレーター 18 パルス変換器 19 プログラム制御回路 20 整流制御・位相制御回路 D1 ダイオード D2 ダイオード R1 抵抗 R2 抵抗 C1 コンデンサ C2 コンデンサ S1 電子スイッチ B1 蓄電池 PT1 パルストランス Q1 トランジスタ 1 Main Power Supply 2 Auxiliary Power Supply 11 Filter 12 Rectifier 13 Switching Element 14 Transformer 15 High Frequency Rectifier 16 Current Detector 17 Isolator 18 Pulse Converter 19 Program Control Circuit 20 Rectification Control / Phase Control Circuit D1 Diode D2 Diode R1 Resistor R2 Resistor C1 Capacitor C2 Capacitor S1 Electronic switch B1 Storage battery PT1 Pulse transformer Q1 Transistor
Claims (3)
スパイク波を充電電池の電極に供給し、該充電電池の電
解液に急激なスパイク電流を印加して共振振動させ、こ
の共振振動効果によって電解質イオンを強制的に活性化
させ、多量のイオンを電極板に吸収させて電流容量を増
加させるスパイク波による蓄電池の充電方法。1. A DC power supply is modulated into a spike wave, the spike wave is supplied to an electrode of a rechargeable battery, and a sharp spike current is applied to an electrolyte of the rechargeable battery to cause resonant oscillation, and by this resonant oscillation effect. A method of charging a storage battery by a spike wave in which electrolyte ions are forcibly activated and a large amount of ions are absorbed by an electrode plate to increase current capacity.
ードおよび電子スイッチを介して蓄電池を接続し、上記
主電源には補助電源を直列に接続し、この補助電源には
第2のダイオード、抵抗および第1のコンデンサを接続
し、上記抵抗R1と上記第1のコンデンサの接続点を上
記第1のダイオードと上記電子スイッチとの接続点に接
続し、上記主電源の出力端には第2のコンデンサを上記
第1のダイオードと直列に接続したスパイク波による蓄
電池の充電装置。2. A main power source composed of a variable power source is connected to a storage battery via a first diode and an electronic switch, an auxiliary power source is connected in series to the main power source, and a second diode is connected to the auxiliary power source. A resistor and a first capacitor are connected, a connection point between the resistor R1 and the first capacitor is connected to a connection point between the first diode and the electronic switch, and a second end is provided at an output end of the main power supply. Device for charging a storage battery by a spike wave in which the above capacitor is connected in series with the first diode.
よび第1のダイオードD1を介して蓄電池B1を接続
し、上記主電源1の端子間にはパルストランスの一次側
巻線とトランジスタを直列に接続し、第1のダイオード
のカソードと蓄電池の正の端子との接続点と上記主電源
の負の端子間には第2のダイオードとパルストランスP
T1の二次側巻線の直列回路を接続し、上記トランジス
タのベースを入力端子としたスパイク波による蓄電池の
充電装置。3. A storage battery B1 is connected from a variable power supply to the main power supply 1 via an electronic switch and a first diode D1, and a primary side winding and a transistor of a pulse transformer are connected in series between the terminals of the main power supply 1. The second diode and the pulse transformer P are connected between the connection point between the cathode of the first diode and the positive terminal of the storage battery and the negative terminal of the main power source.
A charging device for a storage battery by a spike wave in which a series circuit of a secondary winding of T1 is connected and the base of the transistor is used as an input terminal.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP24255692A JPH0670478A (en) | 1992-08-20 | 1992-08-20 | Method for charging battery by spike-like wave and apparatus thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP24255692A JPH0670478A (en) | 1992-08-20 | 1992-08-20 | Method for charging battery by spike-like wave and apparatus thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0670478A true JPH0670478A (en) | 1994-03-11 |
Family
ID=17090857
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP24255692A Pending JPH0670478A (en) | 1992-08-20 | 1992-08-20 | Method for charging battery by spike-like wave and apparatus thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0670478A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1997040544A1 (en) * | 1996-04-24 | 1997-10-30 | Gm Racing Modellsportvertrieb Gmbh | Method for reducing the internal resistance of rechargeable batteries |
WO1998021804A1 (en) * | 1996-11-08 | 1998-05-22 | Lajos Koltai | Method and electric circuit for increasing the life of storage batteries |
CN1117409C (en) * | 1996-04-24 | 2003-08-06 | 三洋电机株式会社 | Method for reducing internal resisance of rechargeable batteries |
JP2013518541A (en) * | 2010-01-28 | 2013-05-20 | 株式會社 Run Energy | High efficiency charger using switching arrangement and charge / discharge |
JP2020514990A (en) * | 2017-09-28 | 2020-05-21 | エルジー・ケム・リミテッド | Method for preventing swelling of battery cell and battery pack using the same |
-
1992
- 1992-08-20 JP JP24255692A patent/JPH0670478A/en active Pending
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1997040544A1 (en) * | 1996-04-24 | 1997-10-30 | Gm Racing Modellsportvertrieb Gmbh | Method for reducing the internal resistance of rechargeable batteries |
US5905363A (en) * | 1996-04-24 | 1999-05-18 | Gm Racing Modellsportvertrieb Gmbh | Method for reducing the internal resistance of rechargeable batteries |
CN1117409C (en) * | 1996-04-24 | 2003-08-06 | 三洋电机株式会社 | Method for reducing internal resisance of rechargeable batteries |
KR100397481B1 (en) * | 1996-04-24 | 2003-11-19 | 산요덴키가부시키가이샤 | How to reduce internal resistance of rechargeable batteries |
WO1998021804A1 (en) * | 1996-11-08 | 1998-05-22 | Lajos Koltai | Method and electric circuit for increasing the life of storage batteries |
JP2013518541A (en) * | 2010-01-28 | 2013-05-20 | 株式會社 Run Energy | High efficiency charger using switching arrangement and charge / discharge |
JP2020514990A (en) * | 2017-09-28 | 2020-05-21 | エルジー・ケム・リミテッド | Method for preventing swelling of battery cell and battery pack using the same |
US11088403B2 (en) | 2017-09-28 | 2021-08-10 | Lg Chem, Ltd. | Method for preventing swelling of battery cell and battery pack using same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
AU720246B2 (en) | Electronic method for controlling charged particles to obtain optimum electrokinetic behavior | |
US10976373B2 (en) | Lead acid battery device, control device for lead acid battery, and control method for lead acid battery | |
US20070139011A1 (en) | Battery charge circuit with multi-charge stage and method thereof | |
JPS6079417A (en) | Power converter for solar battery | |
JPH10509838A (en) | Battery charging and conditioning method | |
US3887858A (en) | Battery charging | |
US4728877A (en) | Method and apparatus for improving electrochemical processes | |
WO2004100338A1 (en) | Lead battery conditioner | |
RU2430458C2 (en) | Method and device for recovering storage batteries | |
JPH0670478A (en) | Method for charging battery by spike-like wave and apparatus thereof | |
JP2787541B2 (en) | Method and apparatus for regenerating primary battery | |
JP3213399B2 (en) | Charging method | |
JPH0629029A (en) | Fuel cell operating method | |
KR101499816B1 (en) | Multi-pulse power charge device to lead storage battery enhancement | |
JP2003203663A (en) | Fuel cell power generating system | |
US4128798A (en) | Charging circuit | |
US20070139009A1 (en) | Battery charge circuit with multi-charge stage and method thereof | |
CN1023677C (en) | High speed charger for sealed cadmium-nickel accumulator | |
JP2007028791A (en) | Charger of secondary battery | |
SU754535A1 (en) | Method of charging storage battery | |
JPH0479732A (en) | Boosting charger | |
JPH0970145A (en) | Constant-voltage charger | |
CN207304115U (en) | It is exclusively used in the automatic switchover charger of standby battery | |
KR20170105672A (en) | Lifr span lengthening device for efficient use ofbattery | |
JPH11159437A (en) | Wind power generation equipment |