JPH0669903A - Compensation method for cross polarized wave interference caused in non-regenerative radio relay station - Google Patents
Compensation method for cross polarized wave interference caused in non-regenerative radio relay stationInfo
- Publication number
- JPH0669903A JPH0669903A JP24257492A JP24257492A JPH0669903A JP H0669903 A JPH0669903 A JP H0669903A JP 24257492 A JP24257492 A JP 24257492A JP 24257492 A JP24257492 A JP 24257492A JP H0669903 A JPH0669903 A JP H0669903A
- Authority
- JP
- Japan
- Prior art keywords
- signal
- regenerative
- transmission
- relay station
- station
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Radio Relay Systems (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、非再生無線中継局で発
生する交差偏波干渉の相加雑音を復調装置および交差偏
波干渉補償器を有する無線局で一括補償する手段に関す
る。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to means for collectively compensating additive noise of cross polarization interference generated in a non-regenerative radio relay station in a radio station having a demodulator and a cross polarization interference compensator.
【0002】[0002]
【従来の技術】図5は従来の再生ディジタル無線中継方
式の構成例を示し、互いに直交した偏波面(V/H 偏波)
をもつ2チャネルを例にとったブロック図である。送信
無線局で変調装置101 ,102 より生成した変調信号は、
送信装置103 ,104 により所定の無線周波数帯に周波数
変換され、分波装置105 により無線周波数帯で合波され
た後、送信アンテナ106 を用いて次の無線局に送信され
る。再生無線局では、送信無線局から送られた変調信号
を受信アンテナ131 を用いて受信し、分波装置132 によ
り各チャネルに分波し、受信装置133 ,134 を用いて中
間周波数帯に周波数変換する。中間周波数帯に周波数変
換された変調信号は自動利得制御回路135 ,136 により
所定のレベルまで増幅され、それぞれの復調装置137 ,
138 によって送信された信号に再生される。再生された
信号は、伝搬路で生じた交差偏波干渉を補償するため波
形等化器139 ,140 を通過した後、交差偏波干渉補償器
141 ,142 を用いてい偏波側の信号から参照信号を抽出
し、加算器143 ,144 を介して補償される。2. Description of the Related Art FIG. 5 shows an example of the configuration of a conventional regenerative digital radio relay system, which shows polarization planes (V / H polarization) orthogonal to each other.
FIG. 3 is a block diagram showing an example of two channels having a. The modulated signals generated by the modulators 101 and 102 at the transmitting radio station are
The frequency is converted into a predetermined radio frequency band by the transmission devices 103 and 104, and the signals are multiplexed in the radio frequency band by the demultiplexing device 105 and then transmitted to the next radio station using the transmission antenna 106. In the regenerative radio station, the modulated signal sent from the transmission radio station is received using the receiving antenna 131, demultiplexed into each channel by the demultiplexing device 132, and frequency conversion to the intermediate frequency band is performed using the receiving devices 133 and 134. To do. The modulated signal frequency-converted to the intermediate frequency band is amplified to a predetermined level by automatic gain control circuits 135 and 136, and demodulators 137 and
The signal transmitted by 138 is reproduced. The regenerated signal passes through the waveform equalizers 139 and 140 to compensate the cross polarization interference generated in the propagation path, and then the cross polarization interference compensator.
A reference signal is extracted from the polarization-side signal using 141 and 142, and is compensated via adders 143 and 144.
【0003】[0003]
【発明が解決しようとする課題】このような従来構成で
は、各中継局に変復調装置を必要とするため中継装置の
構成が複雑となり、また消費電力および経済性に問題が
あった。本発明は、前記の問題点を解決するため中継局
における変復調装置をなくす非再生中継方式を採用し、
さらに各非再生中継局で相加される干渉雑音を変復調装
置および干渉補償器を有する再生無線局にて一括補償
し、再生中継方式の伝送品質と同等の通信を提供するこ
とを目的とする。本発明において一括補償する相加干渉
雑音は交差偏波干渉である。交差偏波干渉とは、同一周
波数帯で互いに直交する偏波面(V 偏波,H 偏波)を用
いて信号を伝送する場合にV 偏波からH 偏波へあるいは
V 偏波からH 偏波へ漏れ込むことにより生じる干渉であ
る。In such a conventional configuration, since each relay station requires a modulation / demodulation device, the configuration of the relay device becomes complicated, and there are problems in power consumption and economical efficiency. The present invention adopts a non-regenerative relay system that eliminates a modulator / demodulator in a relay station in order to solve the above problems,
Further, it is an object of the present invention to collectively compensate the interference noise added at each non-regenerative relay station by a regenerative radio station having a modulator / demodulator and an interference compensator, and to provide communication equivalent to the transmission quality of the regenerative relay system. In the present invention, the additive interference noise collectively compensated is cross polarization interference. Cross-polarization interference refers to the case where V polarization is changed to H polarization when signals are transmitted using polarization planes (V polarization, H polarization) orthogonal to each other in the same frequency band.
This is interference caused by leaking from V polarization to H polarization.
【0004】[0004]
【課題を解決するための手段】本発明は、変調装置を備
えた送信無線局と、該変調装置に対応した復調装置およ
び交差偏波干渉補償器とを有する再生無線局と、前記送
信無線局と前記再生無線局との間にN 局(N=1,2,・・・ )
の非再生中継局とを有し、該非再生中継局に備えた非再
生中継装置には受信信号を各システム毎に中間周波数に
変換する受信周波数変換器と伝搬路によるレベル変動を
補正する自動利得増幅器と所要送信周波数に変換する送
信周波数変換器と所要の送信レベルに増幅する送信増幅
器とを具備するハイブリッド中継方式において、前記非
再生装置に基準周波数発振器と、該基準周波数発振器の
出力信号を入力し、互いに直交するV ・H 偏波をもつ各
システムの所要送受信ローカル信号を生成する位相同期
発振器を有し、該位相同期発振器の出力信号を送受信周
波数変換器に供給し各システム間のローカル同期を図る
手段と、前記再生無線局において前記非再生中継局で発
生した交差偏波干渉の相加雑音を前記交差偏波干渉補償
器により一括して補償する手段とを備えたことを特徴と
する。また、上記ローカル同期を図る手段として、前記
位相同期発振器の出力信号を他のシステムの送受信周波
数変換器に供給する手段を備えたことを特徴とする。さ
らに、上記基準周波数発振器を2つ以上のシステムに具
備し、一方の基準周波数発振器が故障した場合、他方の
基準周波数発振器に切り替え、その出力信号を前記位相
同期発振器に入力し、該位相同期発振器の出力信号を送
受信周波数変換器に供給する手段を備えたことを特徴と
する。DISCLOSURE OF THE INVENTION The present invention provides a transmitting radio station having a modulator, a regenerating radio station having a demodulator and a cross polarization interference compensator corresponding to the modulator, and the transmitting radio station. N stations (N = 1,2, ...)
In the non-regenerative repeater device provided in the non-regenerative repeater station, the non-regenerative repeater device has a receiving frequency converter for converting a received signal to an intermediate frequency for each system and an automatic gain for correcting level fluctuation due to a propagation path. In a hybrid relay system including an amplifier, a transmission frequency converter for converting to a required transmission frequency, and a transmission amplifier for amplifying to a required transmission level, a reference frequency oscillator and an output signal of the reference frequency oscillator are input to the non-regenerative device. However, it has a phase-locked oscillator that generates the required transmit / receive local signals for each system with V and H polarizations that are orthogonal to each other, and supplies the output signal of the phase-locked oscillator to the transmit / receive frequency converter to achieve local synchronization between each system. And the additive noise of cross polarization interference generated in the non-regeneration relay station in the regenerative radio station is collectively corrected by the cross polarization interference compensator. And means for compensating. As means for achieving the local synchronization, there is provided means for supplying an output signal of the phase locked oscillator to a transmission / reception frequency converter of another system. Further, the above reference frequency oscillator is provided in two or more systems, and when one reference frequency oscillator fails, the other reference frequency oscillator is switched to and the output signal thereof is input to the phase locked oscillator, Is provided to the transmission / reception frequency converter.
【0005】[0005]
【作用】上記の構成によれば、変調信号を互いに位相同
期が取れた送受信ローカル信号を用いて周波数変換する
ことにより、非再生中継局において発生する交差偏波干
渉はコヒーレンシをもって変調信号に相加されるため交
差偏波干渉補償器を有する再生無線局において一括して
補償することが可能となる。According to the above structure, the modulated signals are frequency-converted by using the transmission / reception local signals whose phases are synchronized with each other, so that the cross polarization interference generated in the non-regenerative repeater station is added to the modulated signals with coherency. Therefore, it becomes possible to collectively compensate in the regenerative radio station having the cross polarization interference compensator.
【0006】[0006]
【実施例】図1は、本発明の第1実施例の構成を示すブ
ロック図である。同図の中継方式は、送信無線局、非再
生中継局および再生無線局で構成された例を示してお
り、以下、非再生中継局が一局の場合(2ホップ)につ
いて説明する。図において、送信無線局で変調装置101
,102 により変調された信号は、送信装置103 ,104
を介して無線周波数帯に周波数変換後、分波装置105 に
より偏波合波され送信アンテナ106 を用いて非再生中継
局145 に送信される。分波装置105 では、変調器101 出
力信号はH 偏波、変調器102 出力信号はV 偏波として互
いに直交する偏波面をもって同一周波数帯で合成され
る。なお、交差偏波干渉補償装置波、ベースバンド構成
であるため送信無線局の両偏波の変調信号および送信ロ
ーカル信号はそれぞれ偏波間で同期化されている。非再
生中継局145 において受信アンテナ107 を用いて受信し
た信号は、分波装置108 で各偏波のチャネルに分波され
た後各チャネル用の受信装置109 ,110 に入力する。受
信装置109 ,110 で受信された変調信号は、基準周波数
発振器113出力信号を入力とし、所要の受信ローカル信
号を発生する位相同期発振器(PLO )112 ,115 出力信
号と、ミキサ111 ,114 を介して中間周波数帯に周波数
変換される。図6に送受信ローカル信号の同期を取るた
めに必要な位相同期発振器(PLO )606 の構成例を示
す。図において、基準周波数発振器601 からの信号は、
位相比較器602 に入力し、分周器605 の出力信号との位
相差に対応する出力電圧を発生する。この出力電圧はル
ープフィルタ603 と呼ばれる低域通過フィルタで位相比
較器出力に含まれる不要な成分を除去され、そのフィル
タ出力は電圧制御発振器(VCO )604 を制御し、変調信
号を所定の周波数帯に周波数変換するために必要な送受
信ローカル信号を生成する。VCO604出力の一方は分周器
605 により基準周波数発振器601 の出力周波数にまで分
周され位相比較器602 に入力する。このVCO604は制御信
号電圧により無線周波数を出力し、基準周波数発振器60
1 はVCO604の発振周波数に比べて低周波数を出力する。
このように基準周波数発振器を一つにし、その出力信号
を複数に分岐し、それぞれのPLO に入力させることによ
り、互いに位相同期した送受信ローカル信号を生成する
ことができる。PLO112,115 に入力する基準周波数発振
器113 出力は、分岐によるレベル低下を補うため増幅器
116 を用いて所要レベルまで増幅される。伝搬路による
受信レベルの変動は自動利得制御回路117 ,118 により
吸収され、所定レベルで送信装置119 ,120 に入力す
る。送信装置119 ,120 では、前記基準周波数発振器11
1とは別の基準信号発振器124 を用い、その出力信号は
分岐されPLO123,127 に入力する。送信装置119 ,120
に入力した変調信号は、PLO123,127 出力である位相同
期された送信ローカル信号とミキサ121 ,125 を介して
再び無線周波数帯に周波数変換される。ここで、PLO12
3,127 に入力する基準周波数発振器124 出力は、分岐
によるレベル低下を補うため増幅器128 を用いて所要レ
ベルまで増幅される。周波数変換された各変調信号は、
増幅器122 ,126 を用いて所定の送信レベルに増幅され
た後分波装置129 により所定の偏波面で合波され、送信
アンテナ130 を用いて復調装置と交差偏波干渉補償器を
有する再生無線局に送信される。このとき、非再生中継
局145 の送受信装置(109 ,110 ,119 および120 )内
の送信ローカル信号と受信ローカル信号はそれぞれ互い
に位相同期しているため、交差偏波干渉はコヒーレンシ
を保ったまま変調信号に相加される。再生無線局で、受
信アンテナ131 を用いて受信した変調信号は、分波装置
132により各偏波のチャネルに分波され、その出力信号
は受信装置133 ,134 に入力する。受信装置133 ,134
で所定の中間周波数帯に周波数変換された変調信号は、
自動利得制御回路135 ,136 を介し、各復調装置137 ,
138 に入力する。復調装置137 ,138 によりベースバン
ド信号に周波数変換された変調信号に含まれる交差偏波
干渉は、波形等化器139 ,140 を通過後交差偏波干渉補
償器141 ,142 を用いてい偏波側の変調信号から参照信
号を抽出し、加算器143 ,144 を介して補償される。図
2は、本発明の第2実施例の構成を示すブロック図であ
る。この実施例が図1の第1実施例と異なる点は、非再
生中継局145 内の各送受信装置109 ,119 内に基準発振
器113 ,124 をそれぞれ有し、基準周波数発振器113 ,
124 出力信号をPLO112,123 にそれぞれ入力して送受信
ローカル信号を生成する点である。このようにして生成
した送受信ローカル信号は分岐され、ミキサ111 ,114
,121 および125 を介して所定の周波数帯に変調信号
を周波数変換する。このとき、受信装置110 内のミキサ
114 に入力する受信ローカル信号と送信装置120 内のミ
キサ125 に入力する送信ローカル信号は、分岐によるレ
ベル低下を補うため増幅器116 ,128 を用いて所定レベ
ルに増幅される。図3は、本発明の第3実施例の構成を
示すブロック図である。この実施例が図1の第1実施例
と異なる点は、基準周波数発振器113 ,113Aを受信装置
109 ,110 内がそれぞれ備え、これをスイッチ301 を用
いて切り替えることにより発振器の二重化を図った点で
る。これにより例えば基準周波数発振器113 が故障した
場合、スイッチ301 はもう一つの基準周波数発振器113A
に切り替える。スイッチ301 出力信号は分岐され、PLO1
12,115 ,123 および127 に入力する。このときPLO11
2,115 ,123 および127 への入力は基準周波数発振器
(113 あるいは113A)出力信号の分岐によるレベル低下
を補うため、増幅器116 , 128 および128Aを用いて所定
のレベルに増幅される。このようにして生成された送受
信ローカル信号を用いてミキサ111 ,114 ,121 および
125 を介して変調信号は所定の周波数帯に周波数変換さ
れる。図4は、本発明の第4実施例の構成を示し、多中
継非再生中継方式の構成を示すブロック図である。非再
生中継方式は、基本的には経済化効果を狙った方式であ
り、その効果は多中継時に現われる。図に示す中継方式
は、送信無線局401 、非再生中継局402 ,403 、再生無
線局404 によって構成される。このとき、送信無線局で
変調された変調信号は、送信アンテナ405 を用いて次の
無線局である非再生中継局402 に送られる。非再生中継
局402 では、その変調信号を受信アンテナ406 を用いて
受信し、所要送信レベルまで増幅された後次の無線局で
ある非再生中継局403 に送信アンテナ407 を用いて送
る。非再生中継局403 では、受信アンテナ408 を用いて
変調信号を受信し、非再生中継局402 と同様な手順で受
信変調信号を処理し、送信アンテナ409を用いて次の非
再生中継局に送る。このようにして非再生中継された変
調信号は、復調装置と波形等化器を有する無線局404 で
受信アンテナ410 を介して受信され、復調される。非再
生中継局で発生した交差偏波干渉の相加雑音は、再生無
線局に有する交差偏波干渉補償器により一括して補償さ
れる。1 is a block diagram showing the configuration of a first embodiment of the present invention. The relay system shown in the figure shows an example of a transmission wireless station, a non-regenerative relay station, and a regenerative wireless station. Hereinafter, the case where there is one non-regenerative relay station (two hops) will be described. In the figure, the transmitting radio station is a modulator 101
, 102, the signals modulated by the transmitters 103, 104
After being frequency-converted into a radio frequency band via the, the demultiplexing device 105 polarization-multiplexes and transmits to the non-regenerative relay station 145 using the transmitting antenna 106. In the demultiplexing device 105, the output signal of the modulator 101 is an H polarization, and the output signal of the modulator 102 is a V polarization, and they are combined in the same frequency band with polarization planes orthogonal to each other. Since the cross polarization interference compensator wave and the baseband configuration are used, the modulation signals of both polarizations of the transmission wireless station and the transmission local signal are synchronized between the polarizations. The signal received using the receiving antenna 107 in the non-regenerative repeater station 145 is demultiplexed by the demultiplexing device 108 into each polarization channel, and then input to the receiving devices 109 and 110 for each channel. The modulated signals received by the receiving devices 109 and 110 are input to the output signal of the reference frequency oscillator 113 and output through the phase locked oscillators (PLO) 112 and 115 that generate the required received local signals and the mixers 111 and 114. The frequency is converted to the intermediate frequency band. FIG. 6 shows an example of the structure of the phase-locked oscillator (PLO) 606 required for synchronizing the transmitted and received local signals. In the figure, the signal from the reference frequency oscillator 601 is
It is input to the phase comparator 602 and generates an output voltage corresponding to the phase difference from the output signal of the frequency divider 605. This output voltage is filtered by a low-pass filter called loop filter 603 to remove unnecessary components contained in the output of the phase comparator, and the filter output controls the voltage controlled oscillator (VCO) 604 to output the modulated signal to a predetermined frequency band. Generate the transmit / receive local signal required for frequency conversion to. One of the VCO604 outputs is a frequency divider
The frequency is divided by 605 up to the output frequency of the reference frequency oscillator 601 and input to the phase comparator 602. This VCO 604 outputs a radio frequency by the control signal voltage, and the reference frequency oscillator 60
1 outputs a low frequency compared to the oscillation frequency of VCO604.
In this way, by using one reference frequency oscillator, branching its output signal into a plurality of signals, and inputting them to each PLO, it is possible to generate transmit / receive local signals that are phase-synchronized with each other. The reference frequency oscillator 113 input to the PLO 112, 115 is an amplifier for compensating for the level drop due to the branch.
It is amplified to the required level with 116. The fluctuation of the reception level due to the propagation path is absorbed by the automatic gain control circuits 117 and 118, and is input to the transmission devices 119 and 120 at a predetermined level. In the transmitters 119 and 120, the reference frequency oscillator 11
A reference signal oscillator 124 different from 1 is used, and its output signal is branched and input to PLO 123, 127. Transmitter 119,120
The modulated signal input to (1) is again frequency-converted into the radio frequency band via the phase-locked transmission local signals output from the PLOs 123 and 127 and the mixers 121 and 125. Where PLO12
The output of the reference frequency oscillator 124 input to 3,127 is amplified to a required level by using the amplifier 128 to compensate for the level drop due to the branch. Each frequency-converted modulated signal is
A regenerative radio station including a post-demultiplexing device 129, which has been amplified to a predetermined transmission level using amplifiers 122 and 126, and has a predetermined polarization plane, and a demodulation device and a cross polarization interference compensator using a transmission antenna 130. Sent to. At this time, since the transmission local signal and the reception local signal in the transmitter / receivers (109, 110, 119 and 120) of the non-regenerative repeater station 145 are mutually phase-locked, the cross polarization interference is modulated while maintaining coherency. Added to the signal. The modulated signal received using the receiving antenna 131 at the regenerative radio station is the demultiplexer.
The signals are demultiplexed into channels of each polarization by 132, and the output signals are input to receiving devices 133 and 134. Receivers 133, 134
The modulated signal frequency-converted to a predetermined intermediate frequency band by
Through the automatic gain control circuits 135 and 136, the demodulators 137 and
Type in 138. Cross-polarization interference included in the modulated signals frequency-converted into baseband signals by the demodulators 137 and 138 is transmitted through the waveform equalizers 139 and 140, and then cross-polarization interference compensators 141 and 142 are used. A reference signal is extracted from the modulated signal of and is compensated through adders 143 and 144. FIG. 2 is a block diagram showing the configuration of the second embodiment of the present invention. This embodiment is different from the first embodiment in FIG. 1 in that the transceivers 109 and 119 in the non-regenerative repeater station 145 have reference oscillators 113 and 124, respectively, and the reference frequency oscillator 113 and
The point is that the 124 output signals are input to the PLO 112 and 123, respectively, and the transmission / reception local signals are generated. The transmission / reception local signal generated in this way is branched to be mixed by the mixers 111 and 114.
, 121 and 125 to convert the frequency of the modulated signal into a predetermined frequency band. At this time, the mixer in the receiver 110
The reception local signal input to 114 and the transmission local signal input to the mixer 125 in the transmission device 120 are amplified to a predetermined level by using amplifiers 116 and 128 in order to compensate for the level reduction due to branching. FIG. 3 is a block diagram showing the configuration of the third exemplary embodiment of the present invention. This embodiment is different from the first embodiment in FIG. 1 in that the reference frequency oscillators 113 and 113A are used as receivers.
These are provided in 109 and 110, respectively, and by switching them using switch 301, the duplication of the oscillator is achieved. As a result, for example, if the reference frequency oscillator 113 fails, the switch 301 switches to another reference frequency oscillator 113A.
Switch to. Switch 301 output signal is branched to PLO1
Enter 12, 115, 123 and 127. At this time PLO11
The inputs to 2, 115, 123 and 127 are amplified to a predetermined level using amplifiers 116, 128 and 128A to compensate for the level drop due to the branching of the reference frequency oscillator (113 or 113A) output signal. Using the transmitted / received local signals generated in this way, the mixers 111, 114, 121 and
The modulated signal is frequency-converted via 125 to a predetermined frequency band. FIG. 4 is a block diagram showing the configuration of the fourth embodiment of the present invention and showing the configuration of the multi-relay non-regenerative relay system. The non-regenerative relay system is basically aimed at the economic effect, and the effect appears when there are multiple relays. The relay system shown in the figure is composed of a transmission wireless station 401, non-regenerative relay stations 402 and 403, and a regenerative wireless station 404. At this time, the modulated signal modulated by the transmitting wireless station is sent to the non-regenerating relay station 402 which is the next wireless station using the transmitting antenna 405. The non-regenerative relay station 402 receives the modulated signal using the receiving antenna 406, amplifies it to a required transmission level, and then sends it to the non-regenerative relay station 403, which is the next wireless station, using the transmitting antenna 407. The non-regenerative relay station 403 receives the modulated signal using the receiving antenna 408, processes the received modulated signal in the same procedure as the non-regenerative relay station 402, and sends it to the next non-regenerative relay station using the transmitting antenna 409. . The modulated signal thus non-regenerated and relayed is received by the radio station 404 having a demodulator and a waveform equalizer via the receiving antenna 410 and demodulated. The additive noise of cross polarization interference generated in the non-regenerative relay station is collectively compensated by the cross polarization interference compensator included in the regenerative radio station.
【0007】[0007]
【発明の効果】以上説明したように本発明は、一つある
いは複数の基準周波数発振器出力を複数に分岐し、その
出力を送受信装置内に有する位相同期発振器に入力して
互いに位相同期した送受信ローカル信号を生成すること
により、互いに位相同期した変調信号の周波数変換がで
き、非再生中継局で発生する交差偏波干渉の相加雑音を
コヒーレンシを保ったまま変調信号に相加することがで
きる。これにより復調器と交差偏波干渉補償器を有する
再生無線局において交差偏波干渉の相加雑音を一括して
補償することができる。以上のことから、本発明である
補償方法を適用した非再生中継方式は再生ディジタル無
線中継方式とほぼ同一の伝送品質を維持でき、かつ変復
調装置を有しないことにより大幅なコスト低減を実現で
きるという効果がある。As described above, according to the present invention, one or a plurality of reference frequency oscillator outputs are branched into a plurality of outputs, and the outputs are input to a phase-locked oscillator provided in a transmitter / receiver to transmit / receive local signals in phase with each other. By generating the signal, it is possible to perform frequency conversion of the modulation signals that are phase-synchronized with each other, and it is possible to add additive noise of cross polarization interference generated in the non-regenerative relay station to the modulation signal while maintaining coherency. As a result, additive noise due to cross polarization interference can be collectively compensated for in a regenerative radio station having a demodulator and a cross polarization interference compensator. From the above, it can be said that the non-regenerative relay system to which the compensation method of the present invention is applied can maintain almost the same transmission quality as the regenerative digital wireless relay system, and can realize a significant cost reduction by not having a modulator / demodulator. effective.
【図面の簡単な説明】[Brief description of drawings]
【図1】本発明である非再生無線中継局で発生した交差
偏波干渉の補償方法の第1実施例を示すブロック図。FIG. 1 is a block diagram showing a first embodiment of a method of compensating for cross polarization interference generated in a non-regenerative wireless relay station according to the present invention.
【図2】本発明である非再生無線中継局で発生した交差
偏波干渉の補償方法の第2実施例を示すブロック図。FIG. 2 is a block diagram showing a second embodiment of a method for compensating for cross polarization interference occurring in a non-regenerative wireless relay station according to the present invention.
【図3】本発明である非再生無線中継局で発生した交差
偏波干渉の補償方法の第3実施例を示すブロック図。FIG. 3 is a block diagram showing a third embodiment of a method of compensating for cross polarization interference occurring in a non-regenerative wireless relay station according to the present invention.
【図4】本発明である非再生無線中継局で発生した交差
偏波干渉の補償方法の第4実施例を示すブロック図。FIG. 4 is a block diagram showing a fourth embodiment of a method of compensating for cross polarization interference generated in a non-regenerative wireless relay station according to the present invention.
【図5】従来方式である再生ディジタル無線中継方式の
構成例を示すブロック図。FIG. 5 is a block diagram showing a configuration example of a reproduction digital wireless relay system which is a conventional system.
【図6】位相同期発振器(PLO )を示すブロック図。FIG. 6 is a block diagram showing a phase-locked oscillator (PLO).
101 ,102 変調装置 103 ,104 ,119 ,120 送信装置 105 ,108 ,129 ,132 分波装置 106 ,130 送信アンテナ 107 ,131 受信アンテナ 109 ,110 ,133 ,134 受信装置 111 ,114 ,121 ,125 ミキサ 112 ,115 ,123 ,127 位相同期発振器(PLO ) 113 , 113A 基準周波数発振器 116 ,128 ,128A , 増幅器 122 , 126 送信増幅器 117 ,118 ,135 ,136 自動利得制御回路 137 ,138 復調装置 139 ,140 波形等化器 141 ,142 交差偏波干渉補償器 143 ,144 加算器 145 非再生中継局 301 スイッチ 401 送信無線局 402 ,403 非再生中継局 404 再生無線局 405 ,407 ,409 送信アンテナ 406 ,408 ,410 受信アンテナ 601 基準周波数発振器 602 位相比較器 603 ループフィルタ 604 電圧制御発振器(VCO ) 605 分周器 606 位相同期発振器(PLO) 101, 102 Modulator 103, 104, 119, 120 Transmitter 105, 108, 129, 132 Demultiplexer 106, 130 Transmit antenna 107, 131 Receive antenna 109, 110, 133, 134 Receive 111, 114, 121, 125 Mixer 112, 115, 123, 127 Phase-locked oscillator (PLO) 113, 113A Reference frequency oscillator 116, 128, 128A, amplifier 122, 126 Transmit amplifier 117, 118, 135, 136 Automatic gain control circuit 137, 138 Demodulator 139, 140 Waveform equalizer 141, 142 Cross polarization interference compensator 143, 144 Adder 145 Non-regenerative relay station 301 Switch 401 Transmission wireless station 402, 403 Non-regenerative relay station 404 Regenerative wireless station 405, 407, 409 Transmission antenna 406, 408,410 Receive antenna 601 Reference frequency oscillator 602 Phase comparator 603 Loop filter 604 Voltage controlled oscillator (VCO) 605 Divider 606 Phase locked oscillator (PLO)
Claims (3)
装置に対応した復調装置および交差偏波干渉補償器とを
有する再生無線局と、前記送信無線局と前記再生無線局
との間にすくなくともひとつの非再生中継局とを有し、
該非再生中継局に備えた非再生中継装置には受信信号を
各システム毎に中間周波数に変換する受信周波数変換器
と伝搬路によるレベル変動を補正する自動利得増幅器と
所要送信周波数に変換する送信周波数変換器と所要の送
信レベルに増幅する送信増幅器とを具備するハイブリッ
ド中継方式において、 前記非再生装置に基準周波数発振器と、該基準周波数発
振器の出力信号を入力し、互いに直交するV ・ H 両偏波
をもつ各システムの所要送受信ローカル信号を生成する
位相同期発振器を有し、該位相同期発振器の出力信号を
送受信周波数変換器に供給し各システム間の受信装置及
び送信装置のローカル同期を図る手段と、 前記再生無線局において前記非再生中継局で発生した交
差偏波干渉の相加雑音を前記交差偏波干渉補償器により
一括して補償する手段と、 を備えたことを特徴とする非再生無線中継局で発生した
交差偏波干渉の補償方法。1. A transmitting radio station having a modulating device, a reproducing radio station having a demodulating device and a cross polarization interference compensator corresponding to the modulating device, and between the transmitting radio station and the reproducing radio station. At least one non-regenerative relay station,
The non-regenerative repeater device provided in the non-regenerative repeater station includes a reception frequency converter for converting a received signal into an intermediate frequency for each system, an automatic gain amplifier for correcting level fluctuation due to a propagation path, and a transmission frequency for converting to a required transmission frequency. In a hybrid relay system including a converter and a transmission amplifier that amplifies to a required transmission level, a reference frequency oscillator and an output signal of the reference frequency oscillator are input to the non-regenerative device, and V and H bi-polarizations orthogonal to each other are input. Means having a phase-locked oscillator for generating a required transmission / reception local signal of each system having a wave, and supplying an output signal of the phase-locked oscillator to a transmission / reception frequency converter to achieve local synchronization of a receiver and a transmitter between the systems In the regenerative radio station, the additive noise of cross polarization interference generated in the non-regeneration relay station is collectively collected by the cross polarization interference compensator. A method of compensating for cross-polarization interference generated in a non-regenerative wireless relay station, comprising: means for compensating.
記位相同期発振器の出力信号を他のシステムの送受信周
波数変換器に供給する手段を備えたことを特徴とする請
求項1記載の補償方法。2. The compensating method according to claim 1, further comprising means for supplying the output signal of the phase-locked oscillator to a transmission / reception frequency converter of another system as means for achieving the local synchronization.
に具備し、一方の基準周波数発振器が故障した場合、他
方の基準周波数発振器に切り替え、その出力信号を前記
位相同期発振器に入力し、該位相同期発振器の出力信号
を送受信周波数変換器に供給する手段を備えたことを特
徴とする請求項1記載の補償方法。3. A system comprising two or more reference frequency oscillators, and when one of the reference frequency oscillators fails, the other reference frequency oscillator is switched to and its output signal is input to the phase-locked oscillator. 2. The compensating method according to claim 1, further comprising means for supplying an output signal of the synchronous oscillator to the transmission / reception frequency converter.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4242574A JP2682345B2 (en) | 1992-08-20 | 1992-08-20 | Compensation system for cross polarization interference generated at non-regenerative wireless relay stations |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4242574A JP2682345B2 (en) | 1992-08-20 | 1992-08-20 | Compensation system for cross polarization interference generated at non-regenerative wireless relay stations |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0669903A true JPH0669903A (en) | 1994-03-11 |
JP2682345B2 JP2682345B2 (en) | 1997-11-26 |
Family
ID=17091098
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP4242574A Expired - Lifetime JP2682345B2 (en) | 1992-08-20 | 1992-08-20 | Compensation system for cross polarization interference generated at non-regenerative wireless relay stations |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2682345B2 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6287852B1 (en) | 1997-10-17 | 2001-09-11 | Matsushita Electric Industrial Co., Ltd. | Photosynthetic culture apparatus and group of photosynthesis culture apparatuses |
KR20010089078A (en) * | 2000-03-21 | 2001-09-29 | 구관영 | A channel converting repeater system by using dual polarization antenna |
KR20020085364A (en) * | 2001-05-08 | 2002-11-16 | 주식회사 웨이브텔레콤 | Rf repeater system capable of excluding a cross polarization interference signal and operating method thereof |
US7194184B2 (en) | 2003-03-10 | 2007-03-20 | Fiberstars Incorporated | Light pipe with side-light extraction |
US7826003B2 (en) | 2002-06-28 | 2010-11-02 | Samsung Electronics Co., Ltd. | Back light assembly and liquid crystal display device having the same |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH029234A (en) * | 1988-06-27 | 1990-01-12 | Nippon Telegr & Teleph Corp <Ntt> | Radio communication system |
-
1992
- 1992-08-20 JP JP4242574A patent/JP2682345B2/en not_active Expired - Lifetime
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH029234A (en) * | 1988-06-27 | 1990-01-12 | Nippon Telegr & Teleph Corp <Ntt> | Radio communication system |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6287852B1 (en) | 1997-10-17 | 2001-09-11 | Matsushita Electric Industrial Co., Ltd. | Photosynthetic culture apparatus and group of photosynthesis culture apparatuses |
KR20010089078A (en) * | 2000-03-21 | 2001-09-29 | 구관영 | A channel converting repeater system by using dual polarization antenna |
KR20020085364A (en) * | 2001-05-08 | 2002-11-16 | 주식회사 웨이브텔레콤 | Rf repeater system capable of excluding a cross polarization interference signal and operating method thereof |
US7826003B2 (en) | 2002-06-28 | 2010-11-02 | Samsung Electronics Co., Ltd. | Back light assembly and liquid crystal display device having the same |
US7194184B2 (en) | 2003-03-10 | 2007-03-20 | Fiberstars Incorporated | Light pipe with side-light extraction |
Also Published As
Publication number | Publication date |
---|---|
JP2682345B2 (en) | 1997-11-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA2315489C (en) | Radio communication apparatus and radio communication method | |
JP3565160B2 (en) | Cross polarization interference compensation circuit | |
US6459881B1 (en) | Repeater for radio signals | |
CA1250022A (en) | One frequency repeater having interference cancellation capability in a digital radio system | |
JP2809179B2 (en) | Radio broadcast communication system | |
US5479443A (en) | Hybrid digital radio-relay system | |
JP2682345B2 (en) | Compensation system for cross polarization interference generated at non-regenerative wireless relay stations | |
JP6739073B2 (en) | Optical transmission method and optical transmission device | |
JP2795090B2 (en) | Apparatus and method for compensating interference signal generated in non-regenerative wireless relay station | |
JP2848161B2 (en) | Wireless communication system | |
JP3287015B2 (en) | Auxiliary signal transmission method | |
JPH05291995A (en) | Method for compensating interference for radio repeater station | |
AU740398B2 (en) | Method of synchronization | |
JP2848160B2 (en) | Wireless communication system | |
JP2595751B2 (en) | Wireless transceiver | |
JPH09214411A (en) | Radio transmitter-receiver of non-regenerative relay system | |
JPS63316941A (en) | Signal transmission method | |
JPH02246538A (en) | Cross polarization type radio system | |
JP2865881B2 (en) | Transmission signal reproduction device | |
JPH0795714B2 (en) | Wireless communication system | |
JPH1188233A (en) | Auxiliary signal transmitting method and system therefor | |
JPS62213441A (en) | Interference compensation system between cross polarized waves | |
JP2002009738A (en) | Optical transmission system | |
JPH02172391A (en) | Satellite communication system | |
JPH0530048A (en) | Auxiliary signal transmission system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 19970708 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20070808 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080808 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080808 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090808 Year of fee payment: 12 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090808 Year of fee payment: 12 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100808 Year of fee payment: 13 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100808 Year of fee payment: 13 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110808 Year of fee payment: 14 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120808 Year of fee payment: 15 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130808 Year of fee payment: 16 |
|
EXPY | Cancellation because of completion of term | ||
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130808 Year of fee payment: 16 |