JPH0669783U - Freezing temperature measuring probe for molten metal - Google Patents

Freezing temperature measuring probe for molten metal

Info

Publication number
JPH0669783U
JPH0669783U JP1683893U JP1683893U JPH0669783U JP H0669783 U JPH0669783 U JP H0669783U JP 1683893 U JP1683893 U JP 1683893U JP 1683893 U JP1683893 U JP 1683893U JP H0669783 U JPH0669783 U JP H0669783U
Authority
JP
Japan
Prior art keywords
thermocouple
sample
solidification temperature
probe
molten metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP1683893U
Other languages
Japanese (ja)
Inventor
昌紀 狛谷
一弥 木村
英作 和田
茂 井上
重臣 佐藤
隆宏 吉川
孝二 恩田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
JFE Engineering Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Engineering Corp filed Critical JFE Engineering Corp
Priority to JP1683893U priority Critical patent/JPH0669783U/en
Publication of JPH0669783U publication Critical patent/JPH0669783U/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Measuring Temperature Or Quantity Of Heat (AREA)

Abstract

(57)【要約】 【目的】 サンプルに発生する巣の位置を熱電対から離
し、凝固温度を精度良く測定させる。 【構成】 試料採取容器1の底部から凝固温度センサ2
の熱電対3が突出する溶融金属用凝固温度測定プローブ
において、試料採取容器1のうち、前記熱電対付近1aの
構成部材を、その上部側1bより冷却能が大きい部材で構
成させた。
(57) [Summary] [Purpose] The location of the nest that occurs in the sample is separated from the thermocouple, and the solidification temperature is measured accurately. [Structure] From the bottom of the sampling container 1 to the solidification temperature sensor 2
In the probe for measuring the solidification temperature for molten metal, in which the thermocouple 3 of FIG.

Description

【考案の詳細な説明】[Detailed description of the device]

【0001】[0001]

【産業上の利用分野】[Industrial applications]

この考案は、採取した溶融金属の凝固温度を測定することによって炭素量を推 定する際に用いられるプローブに関する。 The present invention relates to a probe used for estimating the carbon content by measuring the solidification temperature of a collected molten metal.

【0002】[0002]

【従来の技術】[Prior art]

従来より、鉄鋼の製鋼工程の中心である転炉においては、サブランスを利用し て例えば特公昭50ー22434号に開示されるような消耗型プローブで温度、凝固温度 、酸素量等を測定し、ダイナミックコントロール・システムによる終点制御、終 点の温度・成分の確認等を行なっている。これらの測定はいずれも迅速性および 精度の確実性を要し、近年さらに高精度が要求されている。 Conventionally, in a converter, which has been the center of the steelmaking process of steel, the temperature, solidification temperature, oxygen content, etc. are measured using a sublance with a consumable probe as disclosed in Japanese Patent Publication No. The end point is controlled by the dynamic control system, and the end temperature and components are checked. All of these measurements require swiftness and certainty of accuracy, and in recent years, higher accuracy is required.

【0003】 このような状況の中、従来のサブランスプローブは図3に示す構造のものが用 いられてきた。図中、1は試料採取容器、5は測温・測酸センサ、6は保護管、 7は流入口穴蓋、8は試料導入部を示し、前記試料採取容器1内には上部から螺 旋状の脱酸用Al部材4が配置されるとともに、その底部中央側からは凝固温度セ ンサ2の検知部である熱電対3が突出している。このようなプローブは、溶鋼中 に浸漬されると、流入口穴蓋7が溶損し、サンプルとなる溶鋼が試料導入部8を 通って試料採取容器1内に流入し、そこで凝固したものが前記凝固温度センサ2 によって温度を測定され、溶鋼の炭素量が求められる。そして、試料採取容器1 内には脱酸用Al部材4が配置されることにより、気泡のない、すなわち凝固中に 巣のない健全なサンプルが得られるようにしてある。Under such circumstances, the conventional sublance probe having the structure shown in FIG. 3 has been used. In the figure, 1 is a sample collection container, 5 is a temperature / acid measurement sensor, 6 is a protective tube, 7 is an inlet hole cover, 8 is a sample introduction part, and the sample collection container 1 is screwed from the top. A deoxidizing Al member 4 is arranged, and a thermocouple 3 which is a detecting portion of the solidification temperature sensor 2 projects from the center of the bottom of the Al member 4. When such a probe is immersed in molten steel, the inlet hole lid 7 is melted and molten steel as a sample flows into the sampling container 1 through the sample introduction part 8 and is solidified there. The temperature is measured by the solidification temperature sensor 2 to determine the carbon content of the molten steel. The deoxidizing Al member 4 is arranged in the sample collection container 1 so that a sound sample having no bubbles, that is, no cavities during solidification can be obtained.

【0004】[0004]

【考案が解決しようとする問題点】[Problems to be solved by the device]

しかしながら、従来のプローブでは、実際には常に巣のない健全なサンプルを 得ることは困難であり、巣の生じる場合が多々あった。すなわち、図4は図3の プローブで採取されたサンプル10の断面図であるが、図示のように、サンプル10 には最終的に凝固した中央部に巣9が生じていた。 However, with conventional probes, it is actually difficult to always obtain a healthy sample without nests, and nests often occur. That is, FIG. 4 is a cross-sectional view of the sample 10 taken by the probe of FIG. 3, but as shown in the figure, the sample 9 had a nest 9 in the finally solidified central portion.

【0005】 一方、試料採取容器1下部中央部には、上述のように熱電対3が底部から突出 して配置されており、上記巣9はこの熱電対3の周辺に位置することになる。し たがって、従来のプローブでは、熱電対3の接点部周囲は空間となって、不接触 状態となり、凝固温度センサ2による正確な凝固温度の測定ができなくなってし まうという問題があった。また、最終凝固部には炭素の偏析が生じることもあり 、巣が生じたままのサンプルでは測定された凝固温度の代表性に問題がある。こ のため、炭素量推定精度が悪くなり、ダイナミックコントロールによる終点制御 に悪影響を及ぼすことになっていた。すなわち、終点目標炭素量から外れる等の 問題があった。On the other hand, as described above, the thermocouple 3 is arranged in the central portion of the lower portion of the sampling container 1 so as to project from the bottom portion, and the nest 9 is located around the thermocouple 3. Therefore, the conventional probe has a problem that a space around the contact portion of the thermocouple 3 becomes a space and is in a non-contact state, and the solidification temperature sensor 2 cannot accurately measure the solidification temperature. In addition, carbon segregation may occur in the final solidification part, and there is a problem in the representativeness of the solidification temperature measured in the sample in which the cavities are left. As a result, the accuracy of carbon estimation deteriorates, which adversely affects the end point control by dynamic control. That is, there was a problem such as deviation from the target carbon amount at the end point.

【0006】 この考案は、従来技術の以上のような問題に鑑み創案されたもので、凝固温度 を精度良く測定し、もって炭素量推定の精度を向上させることのできる溶融金属 用凝固温度測定プローブを提供しようとするものである。The present invention was devised in view of the above problems of the prior art, and is a solidification temperature measuring probe for molten metal capable of measuring the solidification temperature with high accuracy and improving the accuracy of carbon content estimation. Is to provide.

【0007】[0007]

【問題点を解決するための手段】[Means for solving problems]

図4に示すように、従来のプローブでは試料採取容器1の略中央部に巣9が生 じていたが、これは溶鋼サンプルを凝固させる冷却が周囲から進行し、最終的に 中央部で完了するためである。 As shown in Fig. 4, in the conventional probe, a cavity 9 was formed in the approximate center of the sample collection container 1, but this was completed in the central part as the cooling for solidifying the molten steel sample progressed from the surroundings. This is because

【0008】 したがって、溶鋼サンプルの最終的な凝固の位置を中央部からずらせれば、発 生する巣9の位置もずれることになり、試料採取容器1中央部に位置する熱電対 3接点の周辺からも離れることになって、熱電対3周辺が空間になることによる 上記問題も解決できることになる。Therefore, if the position of the final solidification of the molten steel sample is shifted from the central portion, the position of the nest 9 that occurs is also displaced, and the periphery of the thermocouple 3 contact located in the central portion of the sampling container 1 is displaced. The above problem due to the space around the thermocouple 3 can be solved.

【0009】 本考案者らは以上のような知見に基づき、溶鋼サンプルの最終的な凝固の位置 を試料採取容器1の中央部からずらせるようなプローブの構成を検討し、本考案 を創案するに至った。Based on the above findings, the inventors of the present invention have studied the structure of a probe that shifts the final solidification position of a molten steel sample from the center of the sampling container 1, and devised the present invention. Came to.

【0010】 すなわち、本考案に係る溶融金属用凝固温度測定プローブは、試料採取容器の 底部から凝固温度センサの熱電対が突出する溶融金属用凝固温度測定プローブに おいて、試料採取容器のうち、前記熱電対付近の構成部材を、その上部側より冷 却能が大きい部材で構成させたことをその基本的特徴とするものである。That is, the solidification temperature measurement probe for molten metal according to the present invention is a solidification temperature measurement probe for molten metal in which the thermocouple of the solidification temperature sensor projects from the bottom of the sampling container. The basic feature is that the components near the thermocouple are made of a member having a higher cooling capacity than the upper side thereof.

【0011】[0011]

【作用】[Action]

本考案においては、試料採取容器のうち、前記熱電対付近の構成部材を、その 上部側より冷却能が大きい部材で構成させているので、溶鋼サンプルの熱電対付 近とその上部側で冷却速度が変化することになり、凝固は熱電対付近で開始し、 その上部側で最終的に凝固が完了することになる。すなわち、サンプルの最終凝 固部は従来のプローブのものより上部に移動することになり、熱電対接点付近の 巣および偏析の発生も有効に防げるものとなる。 In the present invention, since the components near the thermocouple in the sampling container are made of a member having a higher cooling capacity than the upper side thereof, the cooling rate at the vicinity of the thermocouple of the molten steel sample and at the upper side thereof. Will change, and solidification will start near the thermocouple, and finally solidification will be completed on the upper side. In other words, the final solidified portion of the sample will move to a position higher than that of the conventional probe, and it is possible to effectively prevent the generation of cavities and segregation near the thermocouple contact.

【0012】[0012]

【実施例】【Example】

本考案の具体的実施例を図面に基づき説明する。なお、本考案は以下の実施例 になんら限定されるものではない。 A specific embodiment of the present invention will be described with reference to the drawings. The present invention is not limited to the following embodiments.

【0013】 図1は本考案に係るプローブの一実施例であり、基本的な構造は図3の従来の プローブと同様である。すなわち、1は試料採取容器、5は測温・測酸センサ、 6は保護管、7は流入口穴蓋、8は試料導入部であり、前記試料採取容器1内に は上部から螺旋状の脱酸用Al部材4が配置されるとともに、その底部中央側から は凝固温度センサ2の検知部である熱電対3が突出している。FIG. 1 shows an embodiment of the probe according to the present invention, and its basic structure is the same as that of the conventional probe shown in FIG. That is, 1 is a sample collection container, 5 is a temperature measurement / acid measurement sensor, 6 is a protective tube, 7 is an inlet hole cover, 8 is a sample introduction part, and the sample collection container 1 has a spiral shape from the top. A deoxidizing Al member 4 is arranged, and a thermocouple 3 which is a detecting portion of the solidification temperature sensor 2 projects from the bottom center side thereof.

【0014】 本実施例の特徴部は、試料採取容器1の構成部材に有する。すなわち、試料採 取容器1の底部から熱電対3先端付近1aまでは、冷却能の大きい金属により形成 され、またその上部1bは冷却能の比較的小さい鋳物砂により形成されている。The characteristic part of this embodiment is included in the constituent members of the sample collection container 1. That is, from the bottom of the sample collection container 1 to the vicinity 1a of the tip of the thermocouple 3 is formed by a metal having a large cooling capacity, and the upper portion 1b is formed by molding sand having a relatively small cooling capacity.

【0015】 このような本実施例のプローブは、従来のものと同様、溶鋼中に浸漬されると 、流入口穴蓋7が溶損し、サンプルとなる溶鋼が試料導入部8を通って試料採取 容器1内に流入し、そこで凝固したものが前記凝固温度センサ2によって温度を 測定され、溶鋼の炭素量が求められ、また成分分析にかけられることになる。When the probe of the present embodiment as described above is immersed in molten steel, the probe 7 of the inlet hole is melted when the probe is immersed in molten steel, and the molten steel to be a sample passes through the sample introduction portion 8 to sample. After flowing into the container 1 and solidified therein, the temperature is measured by the solidification temperature sensor 2, the carbon content of the molten steel is obtained, and the composition is analyzed.

【0016】 ここで、試料採取容器1は底部から熱電対3先端付近1aまでは金属、その上部 1bは鋳物砂で形成されているため、サンプルの最終的凝固部は冷却能のより小さ い上部1bに接する側となる。図2は図1のプローブで採取されたサンプル10の断 面図であるが、図示のように発生する巣9はサンプル10上部側となり、熱電対3 の位置から離れることになる。Here, since the sampling container 1 is made of metal from the bottom to the vicinity 1a of the tip of the thermocouple 3 and its upper portion 1b is made of foundry sand, the final solidified portion of the sample is the upper portion having a smaller cooling capacity. It is the side that contacts 1b. FIG. 2 is a cross-sectional view of the sample 10 taken by the probe of FIG. 1, but the nest 9 generated as shown is on the upper side of the sample 10 and separated from the position of the thermocouple 3.

【0017】 したがって、本実施例では熱電対3は完全に偏析のないサンプルと接触するこ とができるので、正確に凝固温度が測定でき、精度良く炭素量を推定することが 可能となっている。Therefore, in this embodiment, the thermocouple 3 can be brought into contact with a sample that is completely free of segregation, so that the solidification temperature can be accurately measured and the carbon content can be accurately estimated. .

【0018】 また、本実施例のプローブを用いて、実際に炭素量を推定したところ、その精 度が従来のσnー1が0.020%から0.007%に向上した。Further, when the carbon amount was actually estimated using the probe of this example, the accuracy was improved from 0.020% to 0.007% in the conventional σn-1.

【0019】 なお、本実施例では試料採取容器1の構成部材として鋳物砂と金属を用いたが 、これに限定されるものではなく、熱電対3先端付近1aの方がその上部1bに比較 して冷却能が大きい関係にあれば、どのような部材でも良い。In the present embodiment, foundry sand and metal were used as the constituent members of the sample collection container 1, but the present invention is not limited to this, and the thermocouple 3 near the tip 1a is compared with the upper part 1b. Any member may be used as long as it has a large cooling capacity.

【0020】[0020]

【考案の効果】[Effect of device]

以上説明したように、本考案に係る溶融金属用凝固温度測定プローブによれば 、 凝固サンプルに発生する巣の位置を熱電対付近から離すことができ、熱電対は完 全に偏析のないサンプルと接触することができることになり、正確に凝固温度が 測定でき、それにより精度良く炭素量を推定することが可能となる。 As described above, according to the solidification temperature measuring probe for molten metal of the present invention, the position of the nest generated in the solidification sample can be separated from the vicinity of the thermocouple, and the thermocouple is a sample without complete segregation. Since they can come into contact with each other, the solidification temperature can be accurately measured, and thus the carbon content can be accurately estimated.

【図面の簡単な説明】[Brief description of drawings]

【図1】本考案の一実施例を示すプローブの断面図であ
る。
FIG. 1 is a sectional view of a probe showing an embodiment of the present invention.

【図2】図1のプローブで採取されたサンプルの断面図
である。
2 is a cross-sectional view of a sample taken with the probe of FIG.

【図3】従来のプローブの断面図である。FIG. 3 is a cross-sectional view of a conventional probe.

【図4】図3のプローブで採取されたサンプルの断面図
である。
4 is a cross-sectional view of a sample taken with the probe of FIG.

【符号の説明】[Explanation of symbols]

1 試料採取容器 2 凝固温度センサ 3 熱電対 4 脱酸用Al部材 5 測温・測酸センサ 6 保護管 7 流入口穴蓋 8 試料導入部 1 Sampling container 2 Freezing temperature sensor 3 Thermocouple 4 Al member for deoxidation 5 Temperature / acid sensor 6 Protective tube 7 Inlet hole cover 8 Sample introduction part

───────────────────────────────────────────────────── フロントページの続き (72)考案者 木村 一弥 東京都千代田区丸の内一丁目1番2号 日 本鋼管株式会社内 (72)考案者 和田 英作 東京都千代田区丸の内一丁目1番2号 日 本鋼管株式会社内 (72)考案者 井上 茂 東京都千代田区丸の内一丁目1番2号 日 本鋼管株式会社内 (72)考案者 佐藤 重臣 東京都千代田区丸の内一丁目1番2号 日 本鋼管株式会社内 (72)考案者 吉川 隆宏 千葉県船橋市本中山5−2−10−105 (72)考案者 恩田 孝二 千葉県船橋市東中山2−2−16−503 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Kazuya Kimura 1-2-1, Marunouchi, Chiyoda-ku, Tokyo Japan Steel Pipe Co., Ltd. (72) Eisaku Wada 1-2-1 Marunouchi, Chiyoda-ku, Tokyo Date Main Steel Pipe Co., Ltd. (72) Inventor Shigeru Inoue 1-2, Marunouchi, Chiyoda-ku, Tokyo Japan Steel Pipe Co., Ltd. (72) Inventor Shigeomi Sato 1-2-1, Marunouchi, Chiyoda-ku, Tokyo Nihon Steel Pipe (72) Inventor Takahiro Yoshikawa 5-2-10-105 Motonakayama, Funabashi City, Chiba Prefecture (72) Koji Onda 2-2-16-503 Higashi Nakayama, Funabashi City, Chiba Prefecture

Claims (2)

【実用新案登録請求の範囲】[Scope of utility model registration request] 【請求項1】 試料採取容器の底部から凝固温度センサ
の熱電対が突出する溶融金属用凝固温度測定プローブに
おいて、試料採取容器のうち、前記熱電対付近の構成部
材を、その上部側より冷却能が大きい部材で構成させた
ことを特徴とする溶融金属凝固温度測定プローブ。
1. A solidification temperature measuring probe for molten metal, wherein a thermocouple of a solidification temperature sensor projects from the bottom of a sampling container, wherein a component near the thermocouple in the sampling container is cooled from the upper side thereof. A molten metal solidification temperature measuring probe, characterized in that it is composed of a member having a large diameter.
【請求項2】 請求項1の溶融金属用凝固温度測定プロ
ーブにおいて、前記試料採取容器のうち、前記熱電対付
近の構成部材として金属を、その上部側の構成部材とし
て鋳物砂をそれぞれ用いたことを特徴とする請求項1の
溶融金属用凝固温度測定プローブ。
2. The solidification temperature measuring probe for molten metal according to claim 1, wherein a metal is used as a constituent member near the thermocouple and a molding sand is used as a constituent member on an upper side thereof in the sampling container. A solidification temperature measuring probe for molten metal according to claim 1.
JP1683893U 1993-03-15 1993-03-15 Freezing temperature measuring probe for molten metal Withdrawn JPH0669783U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1683893U JPH0669783U (en) 1993-03-15 1993-03-15 Freezing temperature measuring probe for molten metal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1683893U JPH0669783U (en) 1993-03-15 1993-03-15 Freezing temperature measuring probe for molten metal

Publications (1)

Publication Number Publication Date
JPH0669783U true JPH0669783U (en) 1994-09-30

Family

ID=11927350

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1683893U Withdrawn JPH0669783U (en) 1993-03-15 1993-03-15 Freezing temperature measuring probe for molten metal

Country Status (1)

Country Link
JP (1) JPH0669783U (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150077966A (en) * 2013-12-30 2015-07-08 우진 일렉트로나이트(주) Porperty measuring device for slag and measuring mtethod of the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150077966A (en) * 2013-12-30 2015-07-08 우진 일렉트로나이트(주) Porperty measuring device for slag and measuring mtethod of the same

Similar Documents

Publication Publication Date Title
KR101768227B1 (en) Measuring probes for measuring and taking samples with a metal melt
US3574598A (en) Method for controlling basic oxygen steelmaking
US20140053647A1 (en) Measuring probe for sampling melted metals
GB2283325A (en) Thermal analysis of molten cast iron
US4358948A (en) Method and apparatus for predicting metallographic structure
US4842418A (en) Two temperature measuring probe
JPS596385B2 (en) Rapid determination method and device for the degree of graphite nodularity in molten cast iron
JPH0669783U (en) Freezing temperature measuring probe for molten metal
US6454459B1 (en) Device and process for thermal analysis of molten metals
EP3339848B1 (en) Method to determine the carbon equivalent content of a cast iron alloy having a hypereutectic composition and equipment to carry it out
US5720553A (en) Apparatus and process for rapid direct dip analysis of molten iron
KR101318831B1 (en) Complex probe gathering sample of molten metal and slag simultaneously
JPH0669782U (en) Freezing temperature measuring probe for molten metal
JPS62118946A (en) Device for predicting tissue of casting alloy, particularly,extent of spheroidizing of cast iron
JPH0726734U (en) Freezing temperature measuring probe for molten metal
CA1325277C (en) Method of measurement of the level of the surface of a metal bath
US6200520B1 (en) Sampling vessel for obtaining a cooling curve of molten metals
JPH0513259B2 (en)
US3572124A (en) Apparatus for simultaneous determination of carbon-temperature in liquid steel during blowing
KR100687620B1 (en) Probe for molten sample adhesion prevention of stainless steel
WO1998039629A1 (en) Direct dip thermal analysis of molten metals
US20180284043A1 (en) Method of and device for analysing a phase transformation of a material
CN115598010A (en) Aluminum alloy fluidity detection system and use method thereof
JP2953903B2 (en) Probe for molten metal
KR910006222B1 (en) Apparatus for measuring silicon amount in molten iron

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19970703