JPH0513259B2 - - Google Patents

Info

Publication number
JPH0513259B2
JPH0513259B2 JP60245240A JP24524085A JPH0513259B2 JP H0513259 B2 JPH0513259 B2 JP H0513259B2 JP 60245240 A JP60245240 A JP 60245240A JP 24524085 A JP24524085 A JP 24524085A JP H0513259 B2 JPH0513259 B2 JP H0513259B2
Authority
JP
Japan
Prior art keywords
space
measuring
molten metal
thermoelectromotive force
manganese
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60245240A
Other languages
Japanese (ja)
Other versions
JPS62103556A (en
Inventor
Yozo Takemura
Yasuo Obana
Satoshi Tabuchi
Masao Matsuoka
Teruaki Kajikawa
Mitsuharu Tominaga
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP60245240A priority Critical patent/JPS62103556A/en
Publication of JPS62103556A publication Critical patent/JPS62103556A/en
Publication of JPH0513259B2 publication Critical patent/JPH0513259B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials Using Thermal Means (AREA)
  • Investigating And Analyzing Materials By Characteristic Methods (AREA)
  • Carbon Steel Or Casting Steel Manufacturing (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は溶融金属中のマンガン量測定方法に関
し、更に詳しくは溶融金属中のマンガン量の分析
をプローブを浸漬保持するだけで、短時間且つ正
確におこなうことができる方法に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for measuring the amount of manganese in molten metal, and more specifically, the amount of manganese in molten metal can be analyzed in a short time and by simply holding the probe immersed. Concerning how it can be done accurately.

〔従来の技術〕[Conventional technology]

例えば製鋼工程においては、溶鋼中のマンガ
ン、硅素、炭素、硫黄、リンなどの元素含有量を
正確かつ迅速に検出、測定することは、これらの
元素を除去する精錬工程や、あるいはそれらの量
を一定量に保つために、添加を行なつたりする工
程においては極めて重要な関心事であり、この作
業を効率よくおこなうことは製鋼工程全体の短縮
化、低コスト化のためには必須条件である。又、
このような状況は例えばアルミ精錬工程において
も同様であり、その他、各種溶融金属においても
特定元素の含有量を測定することは重要な課題で
ある。
For example, in the steelmaking process, accurately and quickly detecting and measuring the content of elements such as manganese, silicon, carbon, sulfur, and phosphorus in molten steel is important in the refining process to remove these elements, or in determining their amounts. This is an extremely important concern in processes where additions are made to maintain a constant amount, and performing this work efficiently is an essential condition for shortening the overall steelmaking process and reducing costs. . or,
This situation is similar, for example, in the aluminum refining process, and measuring the content of specific elements in various other molten metals is also an important issue.

従来、これら溶融金属中に含まれる元素量を測
定する方法としては、プローブ先端に固体電解質
を用いた酸素センサを装着しておこなう酸素濃度
測定法や、転炉にサブランスを浸漬して溶鋼を採
取した後、採取した溶鋼の凝固温度を測定してお
こなう炭素量測定法などが知られている。
Conventionally, methods for measuring the amount of elements contained in molten metal include the oxygen concentration measurement method, which involves attaching an oxygen sensor using a solid electrolyte to the tip of a probe, and the method of measuring molten steel by immersing a sublance in a converter. A known carbon content measurement method is to measure the solidification temperature of the sampled molten steel.

また、硅素量測定方法としては、装置本体の先
端部に外部に開口した空所を設け、該空所内に2
つの検出端としての電極を設けるとともに一方の
電極には該電極が他方の電極に対して温度差を生
じるよう降温手段を関係づけ、これら両電極間に
発生する熱起電力を測定することにより溶銑中の
硅素量を測定する熱起電力法が本出願人により出
願されている。しかし、この熱起電力法による測
定は溶銑中の硅素量測定のみに限られていた。こ
れは溶銑中に温度差を与えて浸漬した一対の電極
間に発生する熱起電力値は、硅素の含有量により
ほぼ決定され、他の元素の存在が熱起電力値にあ
たえる影響は相対的に小さいため無視してもさし
つかえないことによるが、これに対し一般的な溶
融金属中の微量元素の含有量の測定をなす場合に
は、両電極間に発生する熱起電力値は複数種の元
素による影響が複合化するため、目的とするもの
以外の元素の影響力を排除できず、特に炭素数が
既知でない場合、炭素含有量の大小が熱起電力値
に与える影響は大きく、目的とする元素の含有量
を測定することはできなかつた。
In addition, as a method for measuring the amount of silicon, a space opened to the outside is provided at the tip of the main body of the device, and two
Two electrodes are provided as detection ends, and one electrode is associated with a temperature lowering means so as to create a temperature difference between the two electrodes, and the thermoelectromotive force generated between these two electrodes is measured. The applicant has filed an application for a thermoelectromotive force method for measuring the amount of silicon in the material. However, measurement using this thermoelectromotive force method was limited to measuring the amount of silicon in hot metal. This is because the thermoelectromotive force generated between a pair of electrodes immersed in hot metal with a temperature difference is almost determined by the silicon content, and the effect of the presence of other elements on the thermoelectromotive force is relative. However, when measuring the content of trace elements in general molten metal, the thermoelectromotive force generated between the two electrodes has multiple types of thermoelectromotive force values. Because the effects of elements are compounded, it is not possible to exclude the influence of elements other than the intended one, and especially when the number of carbons is unknown, the carbon content has a large effect on the thermoelectromotive force value, It was not possible to measure the content of the elements.

したがつて、製鋼過程で添加するフエロマンガ
ンやマンガン鉱石の量を制御する工程やアルミ精
錬工程において、マンガンの含有量を測定する際
に、この熱起電力法がもちいられたことはなく、
特に溶鋼中のマンガン量の測定においては従来ど
おりの溶鋼試料を採取、冷却して行う物理的ある
いは化学的な分析手法が踏襲されていた。
Therefore, this thermoelectromotive force method has never been used to measure the manganese content in the process of controlling the amount of ferromanganese or manganese ore added in the steelmaking process or in the aluminum refining process.
In particular, when measuring the amount of manganese in molten steel, the conventional physical or chemical analysis method of collecting a molten steel sample and cooling it has been followed.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら、溶融金属中のマンガン量の測定
が上記のような分析手法に依存していたのでは、
分析に時間を要するばかりでなく、その間溶融金
属の状態は時々刻々変化するので正確な測定がで
きず、適切なフエロマンガン及びマンガン鉱石の
添加量が決定できないため、製鋼作業全体を時間
的にも経済的にも効率の悪いものとしていた。
However, the measurement of manganese content in molten metal was dependent on the above analytical method.
Not only does analysis take time, but the state of the molten metal changes from moment to moment, making it impossible to measure accurately and determining the appropriate amount of ferromanganese and manganese ore to be added. It was also considered inefficient.

〔問題点を解決するための手段〕[Means for solving problems]

本発明はこのような問題点を解決せんとしてな
されたもので、同出願人による先出願の溶銑中の
硅素量測定装置で開示した原理を応用して溶融金
属中のマンガン量の測定を可能とした測定方法を
提供せんとするものである。
The present invention was made to solve these problems, and it is possible to measure the amount of manganese in molten metal by applying the principle disclosed in the device for measuring the amount of silicon in molten metal that was previously filed by the same applicant. The purpose of this study is to provide a method for measuring

溶融鉄合金中に温度差を与えた一対の電極を配
置した場合、両電極間に発生する熱起電力値の大
きさは、硅素、マンガン、炭素、リン、硫黄など
の微量元素中、硅素の含有量に大きく依存するこ
とが知られている。その原理を用いたものが前記
本出願人による先願に係る発明であつたが、硅素
以外の上記微量元素の含有量によつても熱起電力
に変化し、その変化量は硅素ほどではないにして
も充分測定可能な範囲にある。また、この変化は
溶融鉄合金に限定されず、他の溶融金属において
も発生することも、認識されている。
When a pair of electrodes with a temperature difference are placed in a molten iron alloy, the magnitude of the thermoelectromotive force generated between the two electrodes is determined by the amount of silicon among trace elements such as silicon, manganese, carbon, phosphorus, and sulfur. It is known that it depends largely on the content. This principle was used in the invention related to the earlier application by the present applicant, but the content of the above-mentioned trace elements other than silicon also changes into thermoelectromotive force, and the amount of change is not as large as that of silicon. However, it is still within a measurable range. It is also recognized that this change is not limited to molten iron alloys, but also occurs in other molten metals.

本発明者は、硅素量が未知であつたり硅素量が
変化する場合は、マンガン等の微量元素の含有量
の差が熱起電力値に与える影響を峻別して抽出で
きないものの、硅素量が既知である場合にはマン
ガン等の微量元素の含有量の差が熱起電力値に与
える影響を峻別して抽出できることに思い至り本
発明を完成させたものである。
The present inventors believe that if the amount of silicon is unknown or changes, it is not possible to clearly distinguish and extract the influence of differences in the content of trace elements such as manganese on the thermoelectromotive force value, but the amount of silicon is known. In this case, the present invention was completed based on the idea that it is possible to clearly distinguish and extract the influence of differences in the content of trace elements such as manganese on the thermoelectromotive force value.

すなわち本発明は、例えば硅素による熱起電力
への影響がほとんどない場合や、あるいはその影
響の度合が計測されている溶融金属中のマンガン
量を測定しようとするもので、例えば製鋼工程に
おける予備処理を施した溶銑では転炉工程以降で
使用され、また普通銑、脱硫黄銑の場合は転炉脱
硅後、すなわち吹練末期及び吹止、そして転炉工
程以降であつて硅素がほとんどなく、その量が変
化しない局面で使用されるものである。これらの
工程では、マンガン及び炭素以外の元素の含有量
の変化はほとんどなく、このような状況下でフエ
ロマンガン添加による脱酸が行われる。脱酸工程
は厳しい管理下で行われる必要があり、このため
添加するフエロマンガンの量を決定するために、
溶銑中のマンガン量を測定することは極めて重要
である。
In other words, the present invention aims to measure the amount of manganese in molten metal in cases where silicon has almost no effect on thermoelectromotive force or whose degree of effect is being measured, such as during preliminary treatment in the steelmaking process. In the case of molten pig iron, it is used after the converter process, and in the case of ordinary pig iron and desulfurized pig iron, it is used after the converter has been desiliconized, that is, at the end of blowing and at the end of blowing, and after the converter process, and there is almost no silicon. It is used in situations where the amount does not change. In these steps, there is almost no change in the content of elements other than manganese and carbon, and deoxidation by adding ferromanganese is performed under these conditions. The deoxidation process must be carried out under strict control, and for this reason, in order to determine the amount of ferromanganese to be added,
It is extremely important to measure the amount of manganese in hot metal.

本発明による溶融金属中のマンガン量測定方法
は、マンガン及び炭素以外の他成分が変化しない
か、あるいはその変化量が確認できている限りに
おいて、マンガンの含有量を測定するためのもの
で、この条件が満足されれば、溶銑、溶鋼に限ら
ず、合金鉄中のマンガン量測定にも使用できるも
のである。そして、このような各種溶融金属中の
マンガン量の測定をより正確になすために、本装
置の外装形状や電極配置位置などはそれぞれの溶
融金属に対し最適となるよう工夫されることがの
ぞましい。
The method for measuring the amount of manganese in molten metal according to the present invention is for measuring the content of manganese as long as other components other than manganese and carbon do not change or the amount of change can be confirmed. If the conditions are satisfied, it can be used not only for measuring the amount of manganese in hot metal and molten steel, but also in ferroalloys. In order to more accurately measure the amount of manganese in such various molten metals, it is desirable that the exterior shape of the device, the electrode arrangement position, etc. be optimized for each molten metal.

上記のような着想にもとづいて本発明はなされ
たもので。その要旨とするところは、マンガン及
び炭素以外の元素の含有量が変化しないか、ある
いはその量が既知である溶融金属を測定対象とな
し、当該測定対象物である溶融金属の溶湯に投入
浸漬する装置本体の先端側に、溶融金属を導入し
て凝固させるための空所を少なくとも2個設け、
一方の空所は開口側よりも基部側が冷却能力大と
された鋳型から構成し当該空所の開口側に形成さ
れた高温側空間と基部側に形成された低温側空間
にそれぞれ熱起電力測定用の検出端を配置して当
該空所を熱起電力測定用空間となすとともに、他
方の空所は凝固温度測定用の熱電対を内設して凝
固温度測定用空間としてなり、測定対象金属への
1回の投入浸漬作業により熱起電力測定用空間及
び凝固温度測定用空間に試料を採取するととも
に、熱起電力測定用空間に採取した試料の熱起電
力値と凝固温度測定用空間に採取した試料の凝固
温度を測定し、凝固温度測定法によつて特定され
た炭素含有量から当該炭素量が熱起電力値に及ぼ
す影響を計算し、この影響度を考慮したうえ熱起
電力法によりマンガン含有量を特定してなること
を特徴としている。
The present invention was made based on the above idea. The gist of this method is to measure a molten metal whose content of elements other than manganese and carbon does not change or whose amount is known, and to immerse it in the molten metal that is the object to be measured. Provide at least two cavities on the tip side of the device body for introducing and solidifying molten metal,
One cavity is constructed from a mold with a larger cooling capacity on the base side than the opening side, and the thermoelectromotive force is measured in the high temperature side space formed on the opening side and the low temperature side space formed on the base side of the cavity. A sensing end for the metal to be measured is arranged to make this space a space for measuring thermoelectromotive force, and the other space is used as a space for measuring the solidification temperature by installing a thermocouple for measuring the solidification temperature. By one immersion operation, a sample is collected in the thermoelectromotive force measurement space and the coagulation temperature measurement space, and the thermoelectromotive force value of the sample collected in the thermoelectromotive force measurement space and the coagulation temperature measurement space are collected. The solidification temperature of the collected sample is measured, and the influence of the carbon content on the thermoelectromotive force value is calculated from the carbon content determined by the solidification temperature measurement method. It is characterized by specifying the manganese content.

〔実施例〕 次に本発明の詳細を添付図面に示した実施例に
より説明する。
[Example] Next, details of the present invention will be explained by referring to an example shown in the accompanying drawings.

第1図に示すものは、本発明にかかる溶融金属
中のマンガン量測定方法に用いる装置の一実施例
を示す断面図であり、第2図は同装置の先端部の
要部拡大断面図である。
What is shown in FIG. 1 is a sectional view showing an embodiment of the device used in the method for measuring the amount of manganese in molten metal according to the present invention, and FIG. 2 is an enlarged sectional view of the main part of the tip of the device. be.

マンガン量測定装置1は紙管・耐火材等で形成
される外装管2の先端部内部に耐熱セメント4等
により冷却能力を有する空所形成部材3を固定し
て溶融金属の導入される空所8を形成し、他方、
前記空所8の背後側にも溶融金属の導入される空
所21を形成している。空所8は熱起電力測定用
の空間を提供する為のものであり、また空所21
は凝固温度測定用空間である。空所8はその含有
量の大小が熱起電力値に影響を及ぼす元素を測定
対象とした空間で、他方、空所21はその含有量
の大小が凝固温度に影響を及ぼす元素を測定対象
とした空間で、本発明では炭素を対象としてい
る。
The manganese amount measuring device 1 is constructed by fixing a cavity forming member 3 having a cooling capacity with heat-resistant cement 4 or the like inside the tip of an exterior tube 2 made of a paper tube, a refractory material, etc., and forming a cavity into which molten metal is introduced. 8 and on the other hand,
A cavity 21 into which molten metal is introduced is also formed behind the cavity 8. The space 8 is for providing a space for thermoelectromotive force measurement, and the space 21
is a space for measuring solidification temperature. The space 8 is a space for measuring elements whose content affects the thermoelectromotive force value, and the space 21 is a space for measuring elements whose content affects the solidification temperature. The present invention targets carbon in this space.

空所形成部材3は鋳型によつて作製され、図中
で示す如く全体として、例えば先端に開口6を有
する筒状部材で、耐熱性材料、例えば鉄、銅やセ
ラミツクを、そのままで又はこれら材料のうち
で、例えば銅や鉄の如きものではその表面に無機
耐熱材をコーテイングしたもの等によつて作成さ
れている。そして、空所形成部材3を構成する鋳
型は空所底部に該空所形成部材3の肉厚を厚くし
た冷却手段5を配置して、空所底部側の冷却能力
を開口6側に比べて高めており、開口側6を高温
側空間となし、基部12側を低温側空間となして
いる。
The cavity forming member 3 is manufactured by a mold, and as shown in the figure, is a cylindrical member having, for example, an opening 6 at the tip as a whole, and is made of a heat-resistant material such as iron, copper, or ceramic, either as it is or made of these materials. Among them, for example, materials such as copper and iron are made by coating the surface with an inorganic heat-resistant material. The mold constituting the cavity forming member 3 is provided with a cooling means 5 made of a thicker wall of the cavity forming member 3 at the bottom of the cavity, so that the cooling capacity on the cavity bottom side is increased compared to the opening 6 side. The opening side 6 is a high temperature side space, and the base 12 side is a low temperature side space.

開口6のあり方は、プローブ先端に、例えばセ
ラミツク等によつて作成された円筒状流入管7が
設けられ、この流入管7から空所形成部材3の開
口6を通じて空所8と外部とを連通させ外部から
の溶融金属の導入を可能としている。この開口6
は、空所形成部材3の内部空間8をやや縮径した
状態で形成し、もつて流入管7から流入した溶融
金属が開口6を通じて空所8内部に導入された
後、本測定装置1を溶融金属から引上げた時に開
口6から溶融金属が外部へ流出しないように、こ
の部分での凝固を迅速にさせている。
The opening 6 is such that a cylindrical inflow pipe 7 made of, for example, ceramic is provided at the tip of the probe, and this inflow pipe 7 communicates between the cavity 8 and the outside through the opening 6 of the cavity forming member 3. This makes it possible to introduce molten metal from outside. This opening 6
The internal space 8 of the cavity forming member 3 is formed in a slightly reduced diameter state, and after the molten metal flowing from the inflow pipe 7 is introduced into the cavity 8 through the opening 6, the measuring device 1 is installed. Solidification in this portion is made quick so that the molten metal does not flow out from the opening 6 when pulled up from the molten metal.

図中15,15は熱電対であり、一方の熱電対
の温接点は低温側空間に位置づけられ、他方の熱
電対の温接点は高温側空間に位置づけられて、そ
れぞれの熱起電力測定用の検出端としての電極
9,10を兼ねている。図示しないが、熱起電力
測定用の電極としては、熱電対の温接点を兼ねる
ことなく、専用電極を配置することも可能であ
る。
In the figure, 15, 15 are thermocouples, the hot junction of one thermocouple is located in the low-temperature side space, and the hot junction of the other thermocouple is located in the high-temperature side space. It also serves as electrodes 9 and 10 as detection ends. Although not shown, it is also possible to arrange a dedicated electrode as an electrode for measuring thermoelectromotive force without also serving as a hot junction of a thermocouple.

尚、11は流入管に外嵌した鉄などによるキヤ
ツプで、溶融金属中へ浸漬してスラグ通過後には
溶失するようその厚みを設定している。12は前
記電極9,10を固定するための基部で、該基部
12を通じて両電極9,10からのリード線が装
置中のコネクタ13方向へ導出されている。
Reference numeral 11 denotes a cap made of iron or the like that is fitted over the inlet pipe, and its thickness is set so that it will melt away after being immersed in the molten metal and passing through the slag. Reference numeral 12 denotes a base for fixing the electrodes 9 and 10, and lead wires from both the electrodes 9 and 10 are led out toward a connector 13 in the device through the base 12.

熱起電力測定用空間としての空所8の背後に設
けられた空所21は、その含有量の大小が凝固温
度に影響を及ぼす元素の含有量を測定する為のも
ので、本発明では炭素を対象となし内部に凝固温
度測定用熱電対22を配置している。熱起電力測
定用空間としての空所8及び凝固温度測定用空間
としての空所21の相互の配置関係は図例のもの
に限定されず、他の態様のものも採用される。
The space 21 provided behind the space 8 as a space for measuring thermoelectromotive force is used to measure the content of an element whose content affects the solidification temperature. A thermocouple 22 for measuring the solidification temperature is placed inside. The mutual arrangement relationship of the space 8 serving as the thermoelectromotive force measurement space and the space 21 serving as the solidification temperature measurement space is not limited to that shown in the figure, and other configurations may also be adopted.

尚、図中24は分光発光分析用の試料採取容器
24であるが、本容器は除外することもできる。
Although 24 in the figure is a sample collection container 24 for spectroscopic emission analysis, this container can also be excluded.

このような構成の本装置1は次のようにして用
いられる。外装管2を適宜機構で把持して本装置
を目的とする溶融金属中に浸漬すると、先端のキ
ヤツプ11がまず溶失して、流入管7から溶融金
属が流入し、且つ空所形成部材3の開口6から空
所8内に流入して熱起電力測定用空間としての空
所8を満たす。この状態で流入した溶融金属は空
所形成部材3で冷却され、特に鋳型を部分的に肉
厚とすることによつて形成した冷却手段5によつ
て囲繞された空間は急激に冷却されて低温側電極
9に速やかな低温が与えられ、開口側に位置づけ
られた高温側電極10に対し、所定の温度差が与
えられる。本測定装置1を溶融金属中に浸漬した
ままでも低温側電極9と高温側電極10とが所定
の温度差を有するようにすることは可能ではある
ものの、より好ましくは、空所8内に溶融金属が
充填すると同時にこれを引きあげることが望まれ
る。
The device 1 having such a configuration is used in the following manner. When the exterior tube 2 is gripped by a suitable mechanism and the device is immersed in the intended molten metal, the cap 11 at the tip will first melt away, and the molten metal will flow in from the inlet tube 7 and the cavity forming member 3 The liquid flows into the space 8 from the opening 6 of the thermoelectromotive force and fills the space 8 as a space for measuring thermoelectromotive force. The molten metal flowing in this state is cooled by the cavity forming member 3, and in particular, the space surrounded by the cooling means 5 formed by partially thickening the mold is rapidly cooled to a low temperature. A low temperature is quickly applied to the side electrode 9, and a predetermined temperature difference is applied to the high temperature side electrode 10 located on the opening side. Although it is possible to maintain a predetermined temperature difference between the low-temperature side electrode 9 and the high-temperature side electrode 10 even when the measuring device 1 is immersed in the molten metal, it is more preferable to It is desirable to withdraw the metal at the same time as it is filled.

溶融金属から本測定装置1を引き上げることが
好ましいのは、このようにすると採取した溶融金
属は熱容量大なる炉内の溶融金属から断ち切られ
た状態となり、炉内の溶融金属の熱の影響も断ち
切ることができるので、低温側電極9と高温側電
極10との間に迅速に所定の温度差を与えるとと
もにこの温度差を維持することが容易となるため
である。
The reason why it is preferable to lift the measuring device 1 from the molten metal is that in this way, the molten metal sampled is isolated from the molten metal in the furnace, which has a large heat capacity, and the influence of the heat of the molten metal in the furnace is also cut off. This is because it becomes easy to quickly provide a predetermined temperature difference between the low-temperature side electrode 9 and the high-temperature side electrode 10, and to maintain this temperature difference.

そしてこのようにして所定の温度差を与えた低
温側電極9と高温側電極10との間に発生する熱
起電力を測定するものである。
Then, the thermoelectromotive force generated between the low temperature side electrode 9 and the high temperature side electrode 10 to which a predetermined temperature difference is given in this way is measured.

又、空所8への溶融金属の導入とともに凝固温
度測定用空間を形成する空所21内にも、外装管
2が部分的に焼失することによつて形成された開
口部分から溶融金属が流入し、当該溶融金属の凝
固過程における温度変化が凝固温度測定用熱電対
22によつて観測される。
In addition, when the molten metal is introduced into the cavity 8, the molten metal also flows into the cavity 21, which forms the space for solidification temperature measurement, from the opening formed by partially burning out the outer tube 2. The temperature change during the solidification process of the molten metal is observed by the solidification temperature measuring thermocouple 22.

又、空所8内に導入された溶融金属は空所8の
内径より縮径した開口6によつて、その流出が抑
止されるとともに開口6部分で速やかに凝固する
ので、溶融金属中へ本装置を浸漬後即座に引きあ
げても流入した溶融金属が空所8から外部へもれ
る恐れはないのである。
In addition, the molten metal introduced into the cavity 8 is prevented from flowing out by the opening 6 whose diameter is smaller than the inner diameter of the cavity 8, and is quickly solidified at the opening 6, so that the molten metal does not flow into the molten metal. Even if the device is immediately pulled up after being immersed, there is no risk that the molten metal that has flowed into the device will leak out from the cavity 8.

又、高温側電極10と開口6との間に大きな空
間を設けているのは、この空間に試料採取容器と
しての機能を与えるためである。即ち、このよう
な構成とすることにより空所8内に導入した溶融
金属が凝固した後、この凝固試料を取り出せば、
当該凝固試料のうち異物としての電極10が混入
している部分は一部だけであるので、取り出した
凝固試料のほとんどの部分を物理的又は化学的分
析に供するサンプラーとして用いることができ
る。
Further, the reason why a large space is provided between the high temperature side electrode 10 and the opening 6 is to provide this space with a function as a sample collection container. That is, with such a configuration, after the molten metal introduced into the cavity 8 is solidified, if this solidified sample is taken out,
Since only a portion of the coagulated sample is contaminated with the electrode 10 as a foreign substance, most of the portion of the coagulated sample taken out can be used as a sampler for physical or chemical analysis.

そして、凝固温度測定用熱電対22によつて得
られた凝固温度カーブに基づいて炭素含有量を特
定し、該炭素含有量を考慮したうえで電極9,1
0間に発生した熱起電力を熱起電力法により処理
し、溶融金属中のマンガン量を決定するものであ
る。
Then, the carbon content is specified based on the solidification temperature curve obtained by the solidification temperature measurement thermocouple 22, and the electrodes 9 and 1 are
The amount of manganese in the molten metal is determined by processing the thermoelectromotive force generated during zero using the thermoelectromotive force method.

特に、本実施例では測温用熱電対15,15の
温接点に熱起電力測定用の低温側電極9と高温側
電極10としての機能を与えていることから、両
電極9,10の存在位置での温度測定を行つて両
電極9,10間の温度差の監視も行うことができ
るので、両電極間の温度差に変動があつても補正
することができ、より精度の高い測定が可能とな
る。又、図示したものでは各熱電対から導出され
たリード線は3線となつているが、それぞれの熱
電対のリード線のうち同極どうしを電極用のリー
ド線と兼用して第3図から第10図に示すように
2線構造となすこともできる。
In particular, in this embodiment, since the hot junction of the temperature measuring thermocouples 15, 15 is given the function of the low temperature side electrode 9 and the high temperature side electrode 10 for thermoelectromotive force measurement, the presence of both electrodes 9, 10 Since the temperature difference between the two electrodes 9 and 10 can be monitored by measuring the temperature at the same position, it is possible to compensate for fluctuations in the temperature difference between the two electrodes, allowing for more accurate measurements. It becomes possible. In addition, in the diagram, there are three lead wires led out from each thermocouple, but from FIG. A two-wire structure as shown in FIG. 10 can also be used.

第11図に示したものは、この熱電対温接点近
傍の構造を具体的に示したものであり、絶縁管3
0の内部に二つの平行貫通孔28,28を形成
し、該貫通孔内に例えばクロメル・アルメル素線
を材料とした熱電対素線27,27を導入し、両
素線27,27の先端を図例の如く溶融、固着し
て温接点26を形成している。そしてこの温接点
26は一部又は全部を露出した状態で例えば耐熱
絶縁手段29で、素線27,27とともに保持さ
れているが、この耐熱絶縁手段29としては図示
したように耐熱セメントでマウントを形成する以
外にも耐熱セメントで熱電対素線27,27を被
覆する方法などが適宜採用されうるものである。
そしてこのようにすれば、測温と含有元素量の確
定のための熱起電力の測定が同位置で可能となる
ので、より高精度な含有元素量の測定ができるも
のである。
What is shown in FIG. 11 specifically shows the structure near the hot junction of this thermocouple.
Two parallel through holes 28, 28 are formed inside the 0, and thermocouple wires 27, 27 made of, for example, chromel/alumel wires are introduced into the through holes, and the tips of both wires 27, 27 are inserted. are melted and fixed as shown in the figure to form a hot junction 26. The hot junction 26 is partially or completely exposed and is held together with the wires 27 and 27 by, for example, heat-resistant insulating means 29, which is mounted with heat-resistant cement as shown in the figure. In addition to forming the thermocouple wires 27, 27, a method of covering the thermocouple wires 27, 27 with heat-resistant cement may be adopted as appropriate.
In this way, temperature measurement and thermoelectromotive force measurement for determining the amount of contained elements can be performed at the same position, so that the amount of contained elements can be measured with higher accuracy.

第3図〜第5図は、熱起電力測定用空間の他の
実施例を示したものであり、先の各実施例が装置
先端側に開口6部分を配したものであつたのに対
して、装置側方に開口6を設け溶融金属試料流入
口とし、空所8内の底部側に熱容量の大きな冷却
部材5を配置して、開口6側を高温側空間、底部
側を低温側空間となし、それぞれの空間に低温側
電極9と高温側電極10を配した例である。
Figures 3 to 5 show other embodiments of the thermoelectromotive force measurement space, and whereas each of the previous embodiments had six openings on the tip side of the device. An opening 6 is provided on the side of the device to serve as an inlet for the molten metal sample, and a cooling member 5 with a large heat capacity is placed on the bottom side of the cavity 8, so that the opening 6 side is a high-temperature side space and the bottom side is a low-temperature side space. This is an example in which a low temperature side electrode 9 and a high temperature side electrode 10 are arranged in each space.

また、第6図として示したものは、先の実施例
と他の各種機能を組合わせた例で、装置先端部に
溶融金属測温用熱電対18、酸素濃淡電池19及
び酸素濃淡電池用溶融金属側電極20を耐火セメ
ント等に埋設して設けたものであり、酸素濃淡電
池用溶融金属測温用熱電対18により溶融金属の
温度測定を行なうとともに、酸素濃淡電池19お
よびその酸素濃淡電池用溶融金属側電極20によ
り溶融金属中の酸素濃度の測定を行なうことがで
きる。
Moreover, what is shown in FIG. 6 is an example in which the previous embodiment and various other functions are combined. The metal side electrode 20 is embedded in refractory cement, etc., and the temperature of the molten metal is measured by the thermocouple 18 for measuring the temperature of molten metal for the oxygen concentration battery. The oxygen concentration in the molten metal can be measured using the molten metal side electrode 20.

第7図は他の実施例であり、凝固温度測定用空
間としての空所21内に適宜鉄やセラミツクで形
成されたワツシヤ等を内嵌するなどして縮径部2
3を形成した場合であり、縮径部23の存在によ
り凝固温度測定用熱電対22が配置された空間内
に流入する溶融合金鉄の速度を適宜調整して凝固
温度測定に適した凝固曲線を得ることを可能とな
したものである。
FIG. 7 shows another embodiment, in which a washer or the like made of iron or ceramic is appropriately fitted into the cavity 21 serving as the space for measuring the solidification temperature, and the reduced diameter portion 2 is
3 is formed, and the speed of the molten alloy iron flowing into the space where the thermocouple 22 for solidification temperature measurement is arranged is adjusted appropriately due to the presence of the reduced diameter part 23, and a solidification curve suitable for the solidification temperature measurement is obtained. It is possible to obtain this.

第8図に示すものは、前記した装置に別の分光
発光分析用の試料採取容器24を付加したもので
ある。第3図〜第7図に示した装置においても各
空所を試料採取容器として使用することは可能で
あるが、第8図や第1図に示したように試料採取
容器を別に設ければ、採取試料が理想的な状態と
なるよう試料採取容器の構造を設定することがで
きてより好ましいものである。
What is shown in FIG. 8 is the above-described apparatus to which another sample collection container 24 for spectroscopic emission analysis is added. Although it is possible to use each space as a sample collection container in the apparatus shown in Figures 3 to 7, it is also possible to use a separate sample collection container as shown in Figures 8 and 1. This is more preferable because the structure of the sample collection container can be set so that the sample is in an ideal state.

第9図は、第7図で示した装置の先端部に溶融
金属測温用熱電対18を埋設して、前記測定以外
に溶融金属の温度測定も同時に可能とした実施例
である。また第10図は溶融金属測温用熱電対の
代わりに熱電対併設型の酸素濃淡電池25を埋設
した例であり、上記測定にくわえて酸素濃度の測
定をも可能とした例である。これら第9図、第1
0図に示す実施例においても試料採取容器を適宜
設けることができるのは言うまでもなく、また前
述した各実施例において、熱起電力測定用空所
8、凝固温度測定用空所21及び試料採取容器2
4の配置の上下関係を入れ換えることもさまたげ
るものではない。
FIG. 9 shows an embodiment in which a thermocouple 18 for measuring the temperature of molten metal is embedded in the tip of the apparatus shown in FIG. 7, thereby making it possible to simultaneously measure the temperature of the molten metal in addition to the above measurements. Furthermore, FIG. 10 shows an example in which a thermocouple-equipped oxygen concentration battery 25 is buried in place of the thermocouple for measuring the temperature of molten metal, making it possible to measure the oxygen concentration in addition to the above measurements. These Figures 9 and 1
It goes without saying that a sample collection container can be provided as appropriate in the embodiment shown in FIG. 2
It is not a problem to change the vertical relationship of the arrangement of the numbers 4 and 4.

このように、本発明にかかる溶融金属中のマン
ガン量測定方法は、熱起電力法と凝固温度測定法
を併用しているので、凝固温度測定法によつて炭
素量を測定し、熱起電力法によつて測定された熱
起電力値から前記炭素量に対応する熱起電力値を
差し引くことによつて、溶融金属中のマンガン量
を測定することができ、溶鋼中あるいはアルミ溶
湯中のマンガン量はもちろんのこと、本装置の外
装形状や電極配置位置などを適宜工夫すれば、一
般溶融金属中のマンガン量の測定も迅速且つ正確
になすことができるものである。したがつて、例
えば熱起電力法によるマンガン量測定において炭
素量の影響が無視できないときなどで、炭素量の
測定が不可欠のときは一度の測定でマンガン量算
出のためのデーターが得られるので製鋼工程の制
御がより効率的になるものである。また逆に炭素
量の測定のときには、そのマンガン量測定値を用
いることにより溶鋼の凝固曲線へのマンガン量の
影響を除くことができるので、より正確な炭素量
の測定が可能となるのである。
As described above, the method for measuring the amount of manganese in molten metal according to the present invention uses both the thermoelectromotive force method and the solidification temperature measuring method. By subtracting the thermoelectromotive force value corresponding to the carbon content from the thermoelectromotive force value measured by the method, the amount of manganese in the molten metal can be measured. Not only the amount of manganese, but also the amount of manganese in general molten metal can be measured quickly and accurately by appropriately devising the exterior shape of the device, the electrode arrangement position, etc. Therefore, when measuring the carbon content is essential, for example when measuring the amount of manganese using the thermoelectromotive force method and the influence of the amount of carbon cannot be ignored, the data for calculating the amount of manganese can be obtained with a single measurement. Process control becomes more efficient. Conversely, when measuring the carbon content, by using the measured value of the manganese content, the influence of the manganese content on the solidification curve of molten steel can be removed, making it possible to measure the carbon content more accurately.

〔発明の効果〕 本発明の溶融金属中のマンガン量測定方法は、
熱起電力測定用空間とともに凝固温度測定用空間
を有する測定装置を用い、熱起電力法による含有
元素量の測定と同時に凝固温度測定法により炭素
量の測定を行うこととしたから、マンガン及び炭
素以外の元素の含有量が変化しないか、あるいは
その量が既知である溶融金属を対象としたときに
は、熱起電力法によつて得た結果に凝固温度測定
法により特定した炭素量含有量を考慮することに
より、マンガン量を正確に測定することができる
のである、したがつて、従来のように採取容器で
試料を採取してマンガン量を測定する必要がなく
なり、測定装置を目的とする溶融金属中に浸漬す
るだけで簡単にマンガン量を測定することが可能
となり、分析に要する時間を大幅に短縮でき、
時々刻々変化する溶融金属中のマンガン量が正確
に把握できるものである。
[Effects of the Invention] The method for measuring the amount of manganese in molten metal of the present invention is as follows:
We decided to use a measuring device that has a space for measuring thermoelectromotive force and a space for measuring solidification temperature, and simultaneously measure the amount of contained elements by thermoelectromotive force method and measure the amount of carbon by solidification temperature measuring method. When the target is a molten metal in which the content of other elements does not change or whose amounts are known, the carbon content determined by the solidification temperature measurement method should be taken into account in the results obtained by the thermoelectromotive force method. By doing this, it is possible to accurately measure the amount of manganese. Therefore, there is no need to collect a sample in a collection container and measure the amount of manganese as in the past, and it is possible to It is now possible to easily measure the amount of manganese by simply immersing it in the water, greatly reducing the time required for analysis.
The amount of manganese in the molten metal, which changes from moment to moment, can be accurately grasped.

したがつて、本発明は、例えば製鋼工程におけ
る予備処理を施した溶銑では転炉工程以降に適用
することができ、また普通銑、脱硫黄銑の場合は
転炉脱硅後、すなわち吹錬末期及び吹止、そして
転炉工程以降において適用可能であり、これら工
程における溶銑中のマンガン量を正確且つ迅速に
測定することができる。したがつてこれら工程に
おいて脱酸のために添加されるフエロマンガンや
マンガン鉱石の添加量を効率的に調節することが
可能となり、ダイナミツクコントロールにより製
品の安定化がはかれるとともに、フエロマンガン
及びマンガン鉱石の歩留まりの向上ものぞめるも
のである。
Therefore, the present invention can be applied, for example, to pre-treated hot metal in the steelmaking process after the converter process, and in the case of ordinary pig iron or desulfurized pig iron, it can be applied after desiliconization in the converter, that is, at the final stage of blowing. It can be applied to processes after the blow-off, blow-off, and converter processes, and the amount of manganese in hot metal in these processes can be measured accurately and quickly. Therefore, it is possible to efficiently adjust the amount of ferromanganese and manganese ore added for deoxidation in these processes, and dynamic control stabilizes the product and improves the yield of ferromanganese and manganese ore. We also hope to improve this.

更に、本発明は溶鋼ばかりでなくアルミ精錬工
程等にも適用でき、更に合金鉄中の含有元素量の
測定も可能であるので、例えば上記添加材たるフ
エロマンガンの製造においても利用できるもので
ある。
Furthermore, the present invention can be applied not only to molten steel but also to aluminum refining processes, etc., and it is also possible to measure the amount of elements contained in ferroalloys, so it can be used, for example, in the production of ferromanganese, which is the additive mentioned above.

また本発明に用いる測定装置は投入浸漬型であ
り、且つ熱起電力測定用空間を構成する鋳型は開
口側よりも基部側が冷却能力大としているので、
一方の検出端である低温側電極を速やかに低温状
態となすことができ、高温側電極との間に所定の
温度差を速やかに与えることができるので、熱起
電力法による元素量の測定を迅速に行うことがで
き、結果としてマンガン量の測定が短時間で行え
る。
Furthermore, the measuring device used in the present invention is of the immersion type, and the mold constituting the thermoelectromotive force measurement space has a larger cooling capacity on the base side than on the opening side.
The low-temperature side electrode, which is one of the detection ends, can be quickly brought to a low temperature state, and a predetermined temperature difference can be quickly given between it and the high-temperature side electrode, making it possible to measure the amount of elements using the thermoelectromotive force method. It can be done quickly, and as a result, the amount of manganese can be measured in a short time.

【図面の簡単な説明】[Brief explanation of drawings]

図面は本発明の溶融金属中のマンガン量測定方
法に用いる測定装置の各実施例を示すもので、第
1図は測定装置の1実施例の断面説明図、第2図
は同実施例の先端部の拡大断面図、第3図〜第5
図は開口を装置側方に設けた熱起電力測定用空間
の他の実施例説明図、第6図〜第10図は他の測
定手段を複合化した装置の実施例説明図、第11
図は熱電対の具体的構造を示す説明図、第12図
は熱電対の結線状態を示す説明図である。 1……マンガン量測定装置、2……外装管、3
……空所形成部材、4……セメント、5……冷却
手段、6……開口、7……流入管、8……空所、
9……低温側電極、10……高温側電極、11…
…キヤツプ、12……基部、13……コネクタ、
15……測温用熱電対、18……溶融金属測温用
熱電対、19……酸素濃淡電池、20……酸素濃
淡電池用溶融金属側電極、21……空所、22…
…凝固温度測定用熱電対、23……縮径部、24
……試料採取容器、25……酸素濃淡電池、2
6,26′……温接点、27……素線、28……
貫通孔、29……絶縁手段、30……絶縁管。
The drawings show various embodiments of the measuring device used in the method for measuring the amount of manganese in molten metal of the present invention. FIG. 1 is a cross-sectional explanatory diagram of one embodiment of the measuring device, and FIG. Enlarged sectional view of the section, Figures 3 to 5
The figure is an explanatory diagram of another embodiment of a thermoelectromotive force measurement space with an opening provided on the side of the device, Figures 6 to 10 are explanatory diagrams of an embodiment of a device combining other measuring means, and Figure 11
The figure is an explanatory diagram showing the specific structure of the thermocouple, and FIG. 12 is an explanatory diagram showing the wiring state of the thermocouple. 1... Manganese amount measuring device, 2... Exterior tube, 3
...Vacancy forming member, 4...Cement, 5...Cooling means, 6...Opening, 7...Inflow pipe, 8...Vacancy,
9... Low temperature side electrode, 10... High temperature side electrode, 11...
...Cap, 12...Base, 13...Connector,
15... Thermocouple for temperature measurement, 18... Thermocouple for molten metal temperature measurement, 19... Oxygen concentration battery, 20... Molten metal side electrode for oxygen concentration battery, 21... Blank space, 22...
... Thermocouple for measuring solidification temperature, 23 ... Reduced diameter part, 24
... Sample collection container, 25 ... Oxygen concentration battery, 2
6, 26'... Hot junction, 27... Element wire, 28...
Through hole, 29... Insulating means, 30... Insulating tube.

Claims (1)

【特許請求の範囲】 1 マンガン及び炭素以外の元素の含有量が変化
しないか、あるいはその量が既知である溶融金属
を測定対象となし、当該測定対象物である溶融金
属の溶湯に投入浸漬する装置本体の先端側に、溶
融金属を導入して凝固させるための空所を少なく
とも2個設け、一方の空所は開口側よりも基部側
が冷却能力大とされた鋳型から構成し当該空所の
開口側に形成された高温側空間と基部側に形成さ
れた低温側空間にそれぞれ熱起電力測定用の検出
端を配置して当該空所を熱起電力測定用空間とな
すとともに、他方の空所は凝固温度測定用の熱電
対を内設して凝固温度測定用空間としてなり、測
定対象金属への1回の投入浸漬作業により熱起電
力測定用空間及び凝固温度測定用空間に試料を採
取するとともに、熱起電力測定用空間に採取した
試料の熱起電力値と凝固温度測定用空間に採取し
た試料の凝固温度を測定し、凝固温度測定法によ
つて特定された炭素含有量から当該炭素数が熱起
電力値に及ぼす影響を計算し、この影響度を考慮
したうえ熱起電力法によりマンガン含有量を特定
してなる溶融金属中のマンガン量測定方法。 2 空所内に耐熱絶縁手段で素線部分を被覆し温
接点を表面に露出させてなる熱電対を少なくとも
2個間隔あけて配置し、一方の熱電対温接点を高
温側空間に、他方の熱電対温接点を低温側空間に
位置づけ、これら両熱電対温接点を熱起電力測定
用の電極と兼用することを特徴とする前記特許請
求の範囲第1項記載の溶融金属中のマンガン量測
定方法。
[Scope of Claims] 1. A molten metal whose content of elements other than manganese and carbon does not change or whose amount is known is set as a measurement object, and the molten metal is poured into the molten metal and immersed in the molten metal that is the object to be measured. At least two cavities for introducing and solidifying molten metal are provided on the tip side of the main body of the device, and one of the cavities is constructed from a mold whose cooling capacity is larger on the base side than on the opening side. Detection ends for measuring thermo-electromotive force are arranged in the high-temperature side space formed on the opening side and the low-temperature side space formed on the base side. The space is equipped with a thermocouple for measuring solidification temperature, and is used as a space for measuring solidification temperature, and samples are collected in the space for measuring thermoelectromotive force and the space for measuring solidification temperature by one-time immersion into the metal to be measured. At the same time, the thermoelectromotive force value of the sample sampled in the thermoelectromotive force measurement space and the solidification temperature of the sample sampled in the coagulation temperature measurement space are measured, and the carbon content determined by the coagulation temperature measurement method is used to determine the relevant carbon content. A method for measuring the amount of manganese in molten metal by calculating the effect of carbon number on the thermoelectromotive force value, taking this influence into account, and determining the manganese content using the thermoelectromotive force method. 2 At least two thermocouples each having a wire portion covered with heat-resistant insulating means and a hot junction exposed on the surface are placed in a space at a distance, one thermocouple hot junction is placed in the high temperature side space, and the other thermocouple is placed in the space on the high temperature side. The method for measuring the amount of manganese in molten metal according to claim 1, characterized in that the hot junction of the thermocouple is located in the low-temperature side space, and the hot junctions of both thermocouples are also used as electrodes for measuring thermoelectromotive force. .
JP60245240A 1985-10-30 1985-10-30 Apparatus for element contained in molten metal Granted JPS62103556A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60245240A JPS62103556A (en) 1985-10-30 1985-10-30 Apparatus for element contained in molten metal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60245240A JPS62103556A (en) 1985-10-30 1985-10-30 Apparatus for element contained in molten metal

Publications (2)

Publication Number Publication Date
JPS62103556A JPS62103556A (en) 1987-05-14
JPH0513259B2 true JPH0513259B2 (en) 1993-02-22

Family

ID=17130742

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60245240A Granted JPS62103556A (en) 1985-10-30 1985-10-30 Apparatus for element contained in molten metal

Country Status (1)

Country Link
JP (1) JPS62103556A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5039760U (en) * 1973-08-09 1975-04-23
JPS6215445A (en) * 1985-07-15 1987-01-23 ゴスダルストベンニ ナウチノ− イススレドバテルスキ プロエクトニイ イ コンストルクトルスキ インステイテユト スプラボフ イ オブラボトキ ツベトニフ メタロフ”ギプロツベトメトブラボトカ” Rapid analyzing method and device for molten metal

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5039760U (en) * 1973-08-09 1975-04-23
JPS6215445A (en) * 1985-07-15 1987-01-23 ゴスダルストベンニ ナウチノ− イススレドバテルスキ プロエクトニイ イ コンストルクトルスキ インステイテユト スプラボフ イ オブラボトキ ツベトニフ メタロフ”ギプロツベトメトブラボトカ” Rapid analyzing method and device for molten metal

Also Published As

Publication number Publication date
JPS62103556A (en) 1987-05-14

Similar Documents

Publication Publication Date Title
US3463005A (en) Immersion molten metal sampler device
US3455164A (en) Immersion molten metal sampler
US3559452A (en) Thermal analysis of molten steel
US3709040A (en) Lances for taking samples of molten metal
CN102288740A (en) Measuring probes for measuring and sampling with a metal melt
US3574598A (en) Method for controlling basic oxygen steelmaking
GB1158537A (en) Improvements in or relating to an Expendable Lance
CN1333455A (en) Method for continuous measuring molten steel temperature and temp. measuring tube
JP6574225B2 (en) Slag sampling equipment
US4842418A (en) Two temperature measuring probe
JPS596385B2 (en) Rapid determination method and device for the degree of graphite nodularity in molten cast iron
RU172338U1 (en) SUBMERSIBLE PROBE FOR MEASURING TEMPERATURE, OXIDIZATION AND METRIC MELT SAMPLING
US5720553A (en) Apparatus and process for rapid direct dip analysis of molten iron
KR101318831B1 (en) Complex probe gathering sample of molten metal and slag simultaneously
JPH0513259B2 (en)
US3766772A (en) Apparatus for controlling metallurgical processes
GB2289758A (en) Sampling vessel for thermal analysis
US3572124A (en) Apparatus for simultaneous determination of carbon-temperature in liquid steel during blowing
CN2281534Y (en) Chemically sensing hydrogen determining instrument
KR910006222B1 (en) Apparatus for measuring silicon amount in molten iron
JPH0669783U (en) Freezing temperature measuring probe for molten metal
JPH0120691Y2 (en)
KR900006568Y1 (en) Slag sampler
GB1565215A (en) Two-part ceramic probe for sampling a steel converter
WO1998039629A1 (en) Direct dip thermal analysis of molten metals