JPH0669268B2 - Charging circuit - Google Patents

Charging circuit

Info

Publication number
JPH0669268B2
JPH0669268B2 JP60264600A JP26460085A JPH0669268B2 JP H0669268 B2 JPH0669268 B2 JP H0669268B2 JP 60264600 A JP60264600 A JP 60264600A JP 26460085 A JP26460085 A JP 26460085A JP H0669268 B2 JPH0669268 B2 JP H0669268B2
Authority
JP
Japan
Prior art keywords
voltage
circuit
switching element
transformer
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60264600A
Other languages
Japanese (ja)
Other versions
JPS62123926A (en
Inventor
多喜夫 前川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP60264600A priority Critical patent/JPH0669268B2/en
Publication of JPS62123926A publication Critical patent/JPS62123926A/en
Publication of JPH0669268B2 publication Critical patent/JPH0669268B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 (技術分野) 本発明は100V/200V電源地域共用の充電回路に関する。TECHNICAL FIELD The present invention relates to a charging circuit commonly used for 100V / 200V power source regions.

(背景技術) 第5図および第6図は既に本出願人が特開昭58-103837
号公報において提案した充電回路の構成の一例を示した
ものであり、第7図は第5図および第6図における制御
回路3の構成を示したものである。
(Background Art) FIGS. 5 and 6 are already disclosed by the present applicant in Japanese Patent Laid-Open No. 58-103837.
FIG. 7 shows an example of the configuration of the charging circuit proposed in the publication, and FIG. 7 shows the configuration of the control circuit 3 in FIGS. 5 and 6.

第5図において構成を説明すると、交流電源の接続され
る端子1a,1bにはダイオードブリッジの如き整流器DBお
よび制御回路電源用のトランスTの1次巻線が互いに
並列に接続されており、整流器DBの直流出力端子には電
力変換用のトランスTの1次巻線L,スイッチング
素子としてのトランジスタQ,電流検出用の抵抗R
よる直列回路および平滑用のコンデンサCS1が互いに並
列に接続されている。また、トランスTの1次巻線L
と並列に抵抗R,コンデンサCによるスパイク吸
収用の直列回路が接続され、2次巻線Lの両端には整
流用のダイオードDと2次電池Bの直列回路が接続さ
れている。
To explain the configuration in FIG. 5, a rectifier DB such as a diode bridge and a primary winding of a transformer T 2 for a control circuit power supply are connected in parallel to each other at terminals 1a and 1b to which an AC power supply is connected, rectifier primary winding L 1 of the transformer T 1 of the power converter to the DC output terminals of the DB, the transistor Q, parallel capacitor C S1 for the series circuit and a smoothing by the resistance R E of the current detection from each other as a switching element It is connected to the. In addition, the primary winding L of the transformer T 1
A series circuit for spike absorption by a resistor R C and a capacitor C C is connected in parallel with 1, and a series circuit of a rectifying diode D 1 and a secondary battery B is connected to both ends of a secondary winding L 2. There is.

一方、トランジスタQのベースは起動用の抵抗RB1を介
して前記整流器DBの正極に接続されると共に制御回路3
の制御出力端子OUTに接続され、更にトランジスタQの
ベース・エミッタ間には前記トランスTと磁気的結合
にある3次巻線L,抵抗RB2,スピードアップ用のコ
ンデンサCB1の直列回路が接続され、トランジスタQの
エミッタは制御回路3の検出入力端子INに抵抗RIN′を
介して接続されている。また、検出入力端子INと整流器
DBの正極との間には抵抗R′が接続されている。
On the other hand, the base of the transistor Q is connected to the positive electrode of the rectifier DB through the starting resistor R B1 and the control circuit 3
Connected to the control output terminal OUT of the transistor Q, and between the base and the emitter of the transistor Q, a series circuit of a tertiary winding L 3 magnetically coupled to the transformer T 1 , a resistor R B2 , and a speed-up capacitor C B1 . And the emitter of the transistor Q is connected to the detection input terminal IN of the control circuit 3 via the resistor R IN ′. In addition, the detection input terminal IN and the rectifier
A resistor R C ′ is connected between the positive electrode of DB and the positive electrode.

一方、トランスTの2次巻線の一端はダイオードD
を介して制御回路3の電源入力端子VCCに接続され、電
源入力端子VCCはコンデンサCS2を介しトランスT
2次巻線の他端とともに整流器DBの負極に接続されてい
る。
On the other hand, one end of the secondary winding of the transformer T 2 has a diode D 2
Is connected to the power supply input terminal V CC of the control circuit 3 via a capacitor C S2 , and the power supply input terminal V CC is connected to the negative electrode of the rectifier DB together with the other end of the secondary winding of the transformer T 2 .

また、第6図においては抵抗R′の他端の接続箇所が
異なるのみであり、トランスTの3次巻線Lと抵抗
B2の接続点に抵抗R′の他端が接続されている。
Further, in FIG. 6, only the connection point of the other end of the resistor R C ′ is different, and the other end of the resistor R C ′ is connected to the connection point of the tertiary winding L 3 of the transformer T 1 and the resistor R B2. Has been done.

第5図および第6図における制御回路3は第7図に示す
ように、電源部31,発振部32,比較部33,保持回路34,
出力部35により構成されており、これらの各部におい
て、Q〜Qはトランジスタ、Zはツェナーダイオー
ド、CP1,CP2はコンパレータ、R〜R16は抵抗、C
はコンデンサを夫々示している。
As shown in FIG. 7, the control circuit 3 in FIGS. 5 and 6 includes a power supply section 31, an oscillation section 32, a comparison section 33, a holding circuit 34,
The output section 35 is composed of Q 1 to Q 8, which are transistors, Z are zener diodes, CP 1 and CP 2 are comparators, R 1 to R 16 are resistors, and C 1 is a resistor.
Indicate capacitors respectively.

しかして、第5図および第6図に示す充電回路では、端
子1a,1bに商用電源の如き交流電源が加えられると整流
器DBおよびコンデンサCS1を介して整流・平滑された直
流電圧がトランスTの1次巻線LとトランジスタQ
の直列回路に加わり、トランジスタQは起動用の抵抗R
B1によりベース電流が供給され導通を始め、3次巻線L
の正帰還作用によりトランジスタQは急速にオンす
る。トランジスタQがオンすると、そのコレクタ電流
(トランスTの1次電流)は直線的に増加を続ける
が、その電流値はトランジスタQと直列に挿入された抵
抗Rによって検出され、一定値に達すると制御回路3
によりトランジスタQのベースは接地レベルにクランプ
されてオフに転じ、1次電流の最大値は一定に保たれ
る。一方、トランスTの2次側においては、トランジ
スタQのオン時に1次巻線Lに蓄積されたエネルギが
トランジスタQのオフ時に2次巻線Lからダイオード
を介して放出され、2次電池Bに一定の充電電流を
供給する。また、制御回路3は一定の期間クランプを続
けた後、再びトランジスタQのベースを解放し、発振周
期も一定に制御するものである。そして、これらの動作
により、端子1a,1bに印加される交流電源の値が広範囲
に変動しても2次電池Bへの充電電流の平均値を一定に
保つことができるようになっている。
Therefore, in the charging circuit shown in FIGS. 5 and 6, when an AC power source such as a commercial power source is applied to the terminals 1a and 1b, the rectified and smoothed DC voltage is passed through the rectifier DB and the capacitor C S1 to the transformer T. 1 primary winding L 1 and transistor Q
Transistor Q is added to the series circuit of
Base current is supplied by B1 to start conduction, and tertiary winding L
Due to the positive feedback action of 3 , the transistor Q turns on rapidly. When the transistor Q is turned on, its collector current (primary current of the transformer T 1 ) continues to increase linearly, but its current value is detected by the resistor R E inserted in series with the transistor Q and reaches a constant value. Then the control circuit 3
By this, the base of the transistor Q is clamped to the ground level and turned off, and the maximum value of the primary current is kept constant. On the other hand, on the secondary side of the transformer T 1 , the energy stored in the primary winding L 1 when the transistor Q is on is released from the secondary winding L 2 through the diode D 1 when the transistor Q is off, A constant charging current is supplied to the secondary battery B. In addition, the control circuit 3 releases the base of the transistor Q again after the clamp is continued for a certain period to control the oscillation period to be constant. By these operations, the average value of the charging current to the secondary battery B can be kept constant even if the value of the AC power source applied to the terminals 1a and 1b fluctuates over a wide range.

また、第5図および第6図における抵抗RIN′,R
は抵抗Rにより検出された電圧に、入力される交流電
源の電圧の大きさに応じて補正を与えるためのものであ
り、交流電源の電圧が大きくなるほど制御回路3の検出
入力端子INに加わる電圧を高め、トランスTの1次巻
線Lに流れる電流の波高値を小さくするようにしてい
る。すなわち、第5図および第6図において整流器DBの
出力端子間に並列接続されたコンデンサCS1を小型化す
る目的で小容量とすると、トランスTの1次巻線
,トランジスタQの直列回路に印加される電圧が脈
流状となり、脈流波形の電圧が小さい期間の占める割合
が最大値に応じて変化し、トランスTの1次巻線L
に流れる電流の波高値を一定に制御する場合、交流電源
の電圧が大きくなるほど平均的な充電電流が過剰となっ
てしまうからである。
In addition, the resistors R IN ′ and R C ′ shown in FIGS.
Is for correcting the voltage detected by the resistor R E according to the magnitude of the voltage of the input AC power supply, and is applied to the detection input terminal IN of the control circuit 3 as the voltage of the AC power supply increases. The voltage is increased and the peak value of the current flowing through the primary winding L 1 of the transformer T 1 is reduced. That is, when the capacitor C S1, which is connected in parallel between the output terminals of the rectifier DB in FIG. 5 and FIG. 6 a small volume for the purpose of miniaturization, the primary winding L 1 of the transformer T 1, the series of the transistor Q becomes the voltage applied to the circuit is a pulsating, the proportion of the period the voltage is less pulsating waveform changes in accordance with the maximum value, the primary winding L 1 of the transformer T 1
This is because, when the crest value of the current flowing through is controlled to be constant, the average charging current becomes excessive as the voltage of the AC power supply increases.

しかして、第8図は直流入力電圧と充電にかかる出力電
流との関係を示したものであるが、実線のa→b→cで
示すように点bから直流入力電圧の増加に応じて充電電
流が直線的に減少してゆくようになっている。そして、
このような特性から、交流電圧を入力すれば平均的な出
力電流は電圧によらず一定となる。なお、点aから点b
までの期間は回路の低電圧特性、すなわち、制御回路3
により制御が行われない自励発振の特性によって決まる
ものである。また、第9図は整流器DBで全波整流されて
入力された電圧の波形と2次電池Bに供給される出力電
流(充電電流)との関係を示したものであり、電圧がV
を越える量に応じて充電電流が小さくなる。
Then, FIG. 8 shows the relationship between the DC input voltage and the output current related to the charging. As shown by the solid line a → b → c, the charging is performed in accordance with the increase of the DC input voltage from the point b. The current decreases linearly. And
Due to such characteristics, if an AC voltage is input, the average output current becomes constant regardless of the voltage. In addition, from point a to point b
Is the low voltage characteristic of the circuit, that is, the control circuit 3
Is determined by the characteristics of self-excited oscillation that is not controlled by. Further, FIG. 9 shows the relationship between the waveform of the voltage that is full-wave rectified by the rectifier DB and is input, and the output current (charging current) supplied to the secondary battery B.
The charging current decreases as the amount exceeds b .

ところで、第8図における点a,b間の特性は前述のよ
うに装置の有する低電圧特性で決定されるものである
が、この区間でも制御回路3が正常動作をするための電
源Vccは供給されており、トランジスタQがオンした時
に流れるコレクタ電流によって抵抗Rに発生する電圧
に抵抗R′,RIN′の比によって決まる電圧が加算さ
れて制御回路3の検出入力端子INに入力され、トランジ
スタQに流れるコレクタ電流を制御しようとしているわ
けであるが、点a,b間においてはトランジスタQに流
れるコレクタ電流は入力電圧が低いため小さく、また、
抵抗R′,RIN′による分圧値も小さく、制御回路3
の基準電圧に達しないため、コレクタ電流のピーク値に
制御はかからず、トランジスタQの持つ電流増幅率hfe
でコレクタ電流は決定されているわけである。
By the way, the characteristic between points a and b in FIG. 8 is determined by the low voltage characteristic of the device as described above, and the power source V cc for the control circuit 3 to operate normally in this section is also The voltage supplied to the resistor R E by the collector current flowing when the transistor Q is turned on is added to the voltage determined by the ratio of the resistors R c ′ and R IN ′ and input to the detection input terminal IN of the control circuit 3. Therefore, the collector current flowing in the transistor Q is controlled, but the collector current flowing in the transistor Q is small between points a and b because the input voltage is low.
The divided voltage value by the resistors R c ′ and R IN ′ is also small, and the control circuit 3
Since it does not reach the reference voltage of, the peak value of the collector current is not controlled and the current amplification factor h fe of the transistor Q is
Therefore, the collector current is decided.

ところで、蓄電池の急速充電の要望により、より高出力
の充電器が必要となっており、この種の回路において出
力をアップするためにはスイッチング用のトランジスタ
Qの電流増幅率hfeを大きくする等の手段によりコレク
タ電流の値を増加すれば良いわけであるが、そうすると
第8図に一点鎖線a→b′→cで示すように低電圧特性
は良好になるものの、点bが点b′のように直流入力電
圧VINの低い方へ移行してしまい、AC100V系での出力が
以前よりも低下してしまうことになる。
By the way, in order to increase the output in this kind of circuit, the current amplification factor h fe of the switching transistor Q is increased to meet the demand for quick charging of the storage battery. It suffices to increase the value of the collector current by means of the above means. Then, although the low voltage characteristic is improved as shown by the one-dot chain line a → b ′ → c in FIG. As described above, the DC input voltage V IN shifts to the lower side, and the output in the AC100V system lowers than before.

一方、AC100V系での出力を確保するには、抵抗RIN′の
抵抗値を小さくして抵抗R′と抵抗RIN′との比を大
きくすれば、点bは点b″のように直流入力電圧VIN
高い方へ移行してAC100V系での出力が確保できるわけで
あるが、抵抗R′と抵抗RIN′との比が大きくなるた
め、点b″→c″の勾配が小さくなってしまい、AC200V
系での出力が大きく増加してしまい、所定の値に制御で
きなくなるという不都合が生じる。
On the other hand, in order to secure the output in the AC100V system, if the resistance value of the resistor R IN ′ is reduced and the ratio of the resistor R C ′ and the resistor R IN ′ is increased, the point b becomes like the point b ″. It is possible to secure the output in the AC100V system by shifting to the higher DC input voltage V IN , but the ratio of the resistance R C ′ and the resistance R IN ′ becomes large, so the slope of the point b ″ → c ″. Becomes smaller, AC200V
The output of the system greatly increases, and it becomes impossible to control the output to a predetermined value.

(発明の目的) 本発明は上記の点に鑑み提案されたものであり、その目
的とするところは、高出力で、かつ100V/200V電源地域
でも充電電流の平均値を一定に制御することのできる充
電器を提供することにある。
(Object of the Invention) The present invention has been proposed in view of the above points, and an object of the present invention is to control the average value of the charging current to be constant at a high output and even in a 100V / 200V power source region. It is to provide a charger that can.

(発明の開示) 以下、実施例を示す図面に沿って本発明を詳述する。DISCLOSURE OF THE INVENTION The present invention will be described in detail below with reference to the drawings illustrating embodiments.

第1図は本発明の第1の実施例を示したものであり、分
圧回路からなる入力電圧検出ブロックAの抵抗R′と
直列にツェナーダイオードの如き定電圧素子Zを挿入
した点に特徴を有している。なお、その他の回路構成は
前述した第5図および第7図と同様である。
FIG. 1 shows a first embodiment of the present invention, in which a constant voltage element Z D such as a Zener diode is inserted in series with a resistor R C ′ of an input voltage detection block A composed of a voltage dividing circuit. It has features. The other circuit configurations are the same as those in FIGS. 5 and 7 described above.

しかして、第2図は直流入力電圧と充電にかかる出力電
流との関係を、第3図は整流器DBで全波整流されて入力
された電圧の波形と2次電池Bに供給される出力電流
(充電電流)との関係を示したものであるが、定電圧素
子Zのブレーク電圧を点bの如く100V系の電圧が加
わった際に導通するように選べば、それよりも入力電圧
が低い区間では抵抗R′,RIN′に電圧が発生せず、
制御回路3の検出入力端子INに入力バイアスが加わらな
いので出力の低下が発生しなくなる。そして、入力電圧
が点bより高い区間ではR′/RIN′の比をb
のような適切な勾配になるように設定してやれば、
入力電圧が点bを越えた時点より抵抗R′,RIN
に電圧が発生し、抵抗Rで検出した電圧にバイアスが
加わり、出力電流を低下させてゆき、低圧側と高圧側と
で出力を一定にコントロールすることが可能となる。
Therefore, FIG. 2 shows the relationship between the DC input voltage and the output current related to charging, and FIG. 3 shows the waveform of the voltage input after being full-wave rectified by the rectifier DB and the output current supplied to the secondary battery B. It shows the relationship with (charging current), but if the break voltage of the constant voltage element Z D is selected so that it conducts when a 100 V system voltage is applied as at point b 1 , the input voltage In a section where is low, no voltage is generated in the resistors R C ′ and R IN ′,
Since the input bias is not applied to the detection input terminal IN of the control circuit 3, the output does not decrease. Then, in the section where the input voltage is higher than the point b 1 , the ratio of R C ′ / R IN ′ is b 1
If you set it so that it has an appropriate slope like c 1 ,
From the time when the input voltage exceeds the point b 1 , the resistance R C ′, R IN
A voltage is generated in the voltage, a bias is applied to the voltage detected by the resistor R E , the output current is reduced, and the output can be controlled to be constant on the low voltage side and the high voltage side.

第4図は従来例の第6図に対応した第2の実施例を示し
たものであり、3次巻線Lと抵抗R′との間に定電
圧素子Zを挿入している。なお、動作は第1図に示し
た第1の実施例と同様である。
FIG. 4 shows a second embodiment corresponding to FIG. 6 of the conventional example, in which a constant voltage element Z D is inserted between the tertiary winding L 3 and the resistor R C ′. . The operation is similar to that of the first embodiment shown in FIG.

(発明の効果) 以上のように本発明にあっては、トランスの1次巻線と
スイッチング素子との直列回路を交流電源を整流して得
られた直流電源に接続し、前記スイッチング素子をオン
・オフ駆動することにより前記トランスの2次巻線に得
られた電力を整流して2次電池を充電する充電回路であ
って、前記スイッチング素子の制御端に正帰還接続さ
れ、かつ前記トランスと磁気的結合にある3次巻線と、
前記スイッチング素子に出力端子が接続されると共に前
記スイッチング素子を流れる電流を検出する抵抗に検出
入力端子が接続され、かつ検出された電圧が所定値に達
した際に前記スイッチング素子の制御端を接地レベルに
クランプする制御回路とを備え、前記検出入力端子には
前記直流電源を分圧し、かつ分圧電圧が前記電流検出用
の抵抗の検出電圧と加算して前記制御回路に加えられる
分圧回路が接続され、前記スイッチング素子のオン・オ
フ繰り返し周期を一定に保ち、かつ前記交流電源の電圧
に応じてオン時間を適切に制御して前記2次電池への充
電電流を一定に制御してなる充電回路において、前記分
圧回路に定電圧素子を設けて前記直流電源が所定の値よ
り高い場合にのみ前記直流電源の分圧電圧を検出電圧に
加算するようにしたので、 (イ)交流電源の低圧側(AC100V系)で出力電流の低下
がなく、かつ高圧側(AC200V系)で出力電流が増え過ぎ
ることがない、安定した出力電流の得られる100V/200V
地域共用の充電回路が構成できる。
(Effect of the Invention) As described above, in the present invention, the series circuit of the primary winding of the transformer and the switching element is connected to the DC power source obtained by rectifying the AC power source to turn on the switching element. A charging circuit for charging a secondary battery by rectifying the electric power obtained in the secondary winding of the transformer by being driven off, the feedback circuit being connected to the control terminal of the switching element in positive feedback and A third winding that is magnetically coupled,
An output terminal is connected to the switching element, a detection input terminal is connected to a resistor that detects a current flowing through the switching element, and the control end of the switching element is grounded when the detected voltage reaches a predetermined value. And a control circuit for clamping to a level, wherein the detection input terminal divides the DC power supply, and the divided voltage is added to the detection voltage of the current detection resistor to be applied to the control circuit. Is connected, the on / off repetition cycle of the switching element is kept constant, and the on time is appropriately controlled according to the voltage of the AC power source to control the charging current to the secondary battery to be constant. In the charging circuit, a constant voltage element is provided in the voltage dividing circuit so that the divided voltage of the DC power supply is added to the detection voltage only when the DC power supply is higher than a predetermined value. Since, (b) there is no reduction in the output current at the low voltage side of the AC power source (AC100V system), and is not the output current is too increases on the high pressure side (AC200V system), obtained a stable output current 100 V / 200V
A charging circuit that is shared by the local community can be configured.

(ロ)リップル電圧が大きくてもよいため、平滑用のコ
ンデンサが小さくなり、小型化,低コスト化が可能であ
る。
(B) Since the ripple voltage may be large, the smoothing capacitor becomes small, and the size and cost can be reduced.

等の効果がある。And so on.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の充電回路の第1の実施例を示す回路構
成図、第2図および第3図はその動作説明図、第4図は
第2の実施例を示す回路構成図、第5図ないし第7図は
従来の充電回路を示す構成図、第8図および第9図はそ
の動作説明図である。 A……入力電圧検出ブロック、Z……定電圧素子、3
……制御回路、B……2次電池、Q……トランジスタ、
,RIN′,R′……抵抗
FIG. 1 is a circuit configuration diagram showing a first embodiment of a charging circuit of the present invention, FIGS. 2 and 3 are operation explanatory diagrams thereof, and FIG. 4 is a circuit configuration diagram showing a second embodiment of the present invention. 5 to 7 are configuration diagrams showing a conventional charging circuit, and FIGS. 8 and 9 are operation explanatory diagrams thereof. A ...... input voltage detection block, Z D ...... constant voltage element, 3
...... Control circuit, B ... Secondary battery, Q ... Transistor,
R E , R IN ′, R C ′ ... Resistance

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】トランスの1次巻線とスイッチング素子と
の直列回路を交流電源を整流して得られた直流電源に接
続し、前記スイッチング素子をオン・オフ駆動すること
により前記トランスの2次巻線に得られた電力を整流し
て2次電池を充電する充電回路であって、前記スイッチ
ング素子の制御端に正帰還接続され、かつ前記トランス
と磁気的結合にある3次巻線と、前記スイッチング素子
に出力端子が接続されると共に前記スイッチング素子を
流れる電流を検出する抵抗に検出入力端子が接続され、
かつ検出された電圧が所定値に達した際に前記スイッチ
ング素子の制御端を接地レベルにクランプする制御回路
とを備え、前記検出入力端子には前記直流電源を分圧
し、かつ分圧電圧が前記電流検出用の抵抗の検出電圧と
加算して前記制御回路に加えられる分圧回路が接続さ
れ、前記スイッチング素子のオン・オフ繰り返し周期を
一定に保ち、かつ前記交流電源の電圧に応じてオン時間
を適切に制御して前記2次電池への充電電流を一定に制
御してなる充電回路において、前記分圧回路に定電圧素
子を設けて前記直流電源が所定の値より高い場合にのみ
前記直流電源の分圧電圧を検出電圧に加算するようにし
たことを特徴とする充電回路。
1. A secondary circuit of the transformer by connecting a series circuit of a primary winding of the transformer and a switching element to a DC power source obtained by rectifying an AC power source and driving the switching element on / off. A charging circuit for rectifying the electric power obtained in the winding to charge a secondary battery, the tertiary winding being positively feedback-connected to the control end of the switching element and magnetically coupled to the transformer, An output terminal is connected to the switching element and a detection input terminal is connected to a resistor that detects a current flowing through the switching element,
And a control circuit that clamps the control end of the switching element to the ground level when the detected voltage reaches a predetermined value, and divides the DC power supply into the detection input terminal, and the divided voltage is A voltage divider circuit that is added to the detection voltage of a resistor for current detection and is added to the control circuit is connected, and the ON / OFF repetition cycle of the switching element is kept constant, and the ON time depends on the voltage of the AC power supply. In a charging circuit in which the charging current to the secondary battery is controlled to be constant by providing a constant voltage element in the voltage dividing circuit, and the DC voltage is applied only when the DC power source is higher than a predetermined value. A charging circuit characterized in that a divided voltage of a power supply is added to a detection voltage.
JP60264600A 1985-11-22 1985-11-22 Charging circuit Expired - Lifetime JPH0669268B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60264600A JPH0669268B2 (en) 1985-11-22 1985-11-22 Charging circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60264600A JPH0669268B2 (en) 1985-11-22 1985-11-22 Charging circuit

Publications (2)

Publication Number Publication Date
JPS62123926A JPS62123926A (en) 1987-06-05
JPH0669268B2 true JPH0669268B2 (en) 1994-08-31

Family

ID=17405563

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60264600A Expired - Lifetime JPH0669268B2 (en) 1985-11-22 1985-11-22 Charging circuit

Country Status (1)

Country Link
JP (1) JPH0669268B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4056965B2 (en) 2003-10-29 2008-03-05 株式会社マキタ Charger
KR101586789B1 (en) 2012-12-28 2016-01-19 주식회사 종근당 Sustained-release lipid pre-concentrate of cationic pharmacologically active substance and pharmaceutical composition comprising the same

Also Published As

Publication number Publication date
JPS62123926A (en) 1987-06-05

Similar Documents

Publication Publication Date Title
US5949223A (en) Power source apparatus having first and second switching power source units
JPH0669268B2 (en) Charging circuit
JPH0343834Y2 (en)
JPH0323838Y2 (en)
JP3215273B2 (en) Switching power supply
JPH0534799B2 (en)
JP2653808B2 (en) Charging circuit
JPH0237274Y2 (en)
JPH0635661Y2 (en) Switching regulator
JP2861250B2 (en) Rectifier smoothing circuit for switching power supply
JP2728682B2 (en) Uninterruptible power supply for computer
JP2566566B2 (en) Charging circuit with automatic voltage switching function
JPH0135580B2 (en)
JP3453468B2 (en) Switching regulator
JPS6031439Y2 (en) Automatic voltage regulator for excited alternator
JPH0549182A (en) Charger for battery set
JPH0729742Y2 (en) Switching power supply current detection circuit
JPH0214315Y2 (en)
JPS6021658Y2 (en) multiple spark igniter
JPS6337586B2 (en)
JP2678632B2 (en) Constant current input type DC / DC converter
JP3583208B2 (en) Switching power supply
JPS6031440Y2 (en) Automatic voltage regulator for excited alternator
JPH0435936Y2 (en)
JP2754205B2 (en) Power supply

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term