JP3583208B2 - Switching power supply - Google Patents

Switching power supply Download PDF

Info

Publication number
JP3583208B2
JP3583208B2 JP25183995A JP25183995A JP3583208B2 JP 3583208 B2 JP3583208 B2 JP 3583208B2 JP 25183995 A JP25183995 A JP 25183995A JP 25183995 A JP25183995 A JP 25183995A JP 3583208 B2 JP3583208 B2 JP 3583208B2
Authority
JP
Japan
Prior art keywords
smoothing capacitor
power supply
transformer
switch element
inductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP25183995A
Other languages
Japanese (ja)
Other versions
JPH0974762A (en
Inventor
実 田中
晴夫 渡辺
豊 関根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shindengen Electric Manufacturing Co Ltd
Original Assignee
Shindengen Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shindengen Electric Manufacturing Co Ltd filed Critical Shindengen Electric Manufacturing Co Ltd
Priority to JP25183995A priority Critical patent/JP3583208B2/en
Publication of JPH0974762A publication Critical patent/JPH0974762A/en
Application granted granted Critical
Publication of JP3583208B2 publication Critical patent/JP3583208B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P80/00Climate change mitigation technologies for sector-wide applications
    • Y02P80/10Efficient use of energy, e.g. using compressed air or pressurized fluid as energy carrier

Description

【0001】
【発明の属する技術分野】
本発明は、交流を入力とするスイッチング式直流安定化電源装置の力率改善に関するものである。
【0002】
【従来の技術】
図1は、特開平7−15967で開示されている力率改善型スイッチング電源の基本回路図である。
この技術は1組のスイッチング素子と制御回路からなる簡単な構成で高力率、高効率な交流入力スイッチング電源を提供することを目的とするものである。
【0003】
構成は交流電源1に接続された全波整流器2、3、4、5の直流出力に平滑コンデンサ8を接続し、該平滑コンデンサ8の端子間にトランス7の1次巻線N1 とスイッチ素子9の直列回路を接続し、該トランス7の2次巻線N2に、ダイオ −ド10、11、リアクトル12及びコンデンサ13から成る整流平滑回路を接続して出力側の負荷に電力を供給するスイッチング電源に於いて、全波整流器2、3、4、5の直流出力側の一端に、インダクタ6とトランス7の制御巻線N3 の直列回路を接続して、平滑コンデンサ8の一端に接続する様に構成されている。
【0004】
その動作は、スイッチ素子9がオン期間に、平滑コンデンサ8のエネルギ−はトランス7に蓄えられ、スイッチ素子7がオフの期間にトランス7に蓄えられたエネルギ−が、トランス7の2次側N2より整流平滑回路を介して負荷に送られ る。
これと同時にインダクタ6の電流はトランス7の制御巻線N3を介して平滑コン デンサ8に流れ込み、同時に、トランス7の制御巻線N3に電流が流れた結果、 トランス7の1次巻線N1と制御巻線N3との巻数比に対応する電流が、トランス7の2次巻線N2より整流平滑回路を通して出力平滑コンデンサ13に流れる。
【0005】
即ち、スイッチ素子9がオフの期間には、インダクタ6に蓄えられていたエネルギ−が入力平滑コンデンサ8と整流平滑回路のコンデンサ13に送られる。
【0006】
この結果、インダクタ6に流れる電流波形ピ−ク値のエンベロ−プ(包絡線)が正弦波状をえがく為、インダクタンス6とトランス7の制御巻線N3を加えるだけで力率 を改善する事が出来る。
【0007】
さらに、スイッチ素子9がオフの期間にインダクタ6に印加される電圧は、従来の交流入力スイッチング電圧の場合は、平滑コンデンサ8の電圧と入力電圧との差電圧であるのに対し、図1の回路では平滑コンデンサ8の電圧とトランス7の制御巻線N3に発生している電圧の和から入力電圧を差し引いた値なので、イ ンダクタ6の電流をリセットするのに必要な平滑コンデンサ8の電圧は、従来の交流入力スイッチング電源に対し、トランス7の制御巻線N3に発生する電圧分 だけ低くすることが出来る。
即ち、スイッチ素子として低耐圧で、オン抵抗の小さいものを使用する事が出来るので、スイッチング電源の高効率化を図ることが出来る。
【0008】
図2は倍電圧整流回路を使用した力率改善型スイッチング電源の一実施例である。
図1で示したスイッチング電源に対して、第2のインダクタ6′とトランス7の第2の制御巻線N4の直列回路を設けて第2の平滑コンデンサ8′の一端に接続 し、平滑コンデンサ8及び8′のコモン点より、交流電源の電圧が低い場合オンさせる第2のスイッチ素子14を設けて、倍電圧入力回路を構成している。
【0009】
交流電源1の電圧が低い場合は第2のスイッチ素子14をオンさせる。
これにより、正の半サイクルでは、交流電源1→ダイオ−ド2→インダクタ6→制御巻線N3→平滑コンデンサ8→第2のスイッチ素子14→ダイオ−ド5→交 流電源1のル−トで電流が流れ、負の半サイクルでは、交流電源1→第2のスイッチ素子14→第2の平滑コンデンサ8′→第2の制御巻線N4→第2のインダ クタ6′→ダイオ−ド4→交流電源1のル−トで電流が流れる。
【0010】
これによって平滑コンデンサ8及び8′はそれぞれ交流入力電圧のピ−ク値で充電される為、全波整流した場合の二倍の入力電圧を得ることが出来る。
【0011】
尚交流電源1の電圧が高い場合は、第2のスイッチ素子14をオフさせれば単なる全波整流回路となる。
【0012】
力率改善に関するインダクタ及び制御巻線の動作は前述の図1の場合とほぼ同様であるので説明は省略する。
【0013】
【発明が解決しようとする課題】
これまで述べた従来技術は、入力側整流回路にインダクタとトランス制御巻線の直列回路を設けるだけで力率改善及び高効率化が実現出来る点では非常に有効な回路である。
【0014】
しかし、交流入力電圧が、例えば変動許容範囲内で急激に上昇した場合、力率改善用に設けたインダクタ及びトランスの制御巻線が逆に弊害となってしまう。すなわち、入力電圧急変により、図1の入力整流後の電圧(A点)と平滑コンデンサ8の電圧(B点)との間に電位差が発生し、インダクタ6とトランスの制御巻線N3の直列インピ−ダンスで除した過大な電流が流れる。
【0015】
この電流はトランス7の制御巻線N3から1次巻線N1に、巻数比に応じて誘起され、その結果スイッチ素子9に過大な電流が流れ、素子を破損させるおそれがある。
【0016】
又、スイッチ素子9と直列に電流検出回路が設けてある場合は、通常動作状態であるにも拘らず、過電流として検出して垂下状態となり、出力電圧を大幅に低下させてしまうおそれがある。
これらの要因によって、電源システムの信頼性を低下させてしまう原因ともなる。
【0017】
従って本発明は、かかる欠点を解決する為に、入力電圧の急激な上昇に対し、入力側回路に過大な電流が流れる事を抑制し、スイッチ素子の破壊や出力電圧の低下を防止する技術を提案するものである。
【0018】
図2の倍電圧回路の場合についても、前述と全く同様な問題点がある。
【0019】
【課題を解決するための手段】
従って本発明は、力率改善用に設けたインダクタとトランス制御巻線の直列回路と並列にダイオ−ドを設け、入力電圧が急上昇した時に生じようとする差電圧を、入力平滑コンデンサ電圧にクランプさせる様に回路構成した事を特徴とするスイッチング電源である。
【0020】
【実施例】
図3は、図1の従来技術に本発明の技術を適用したスイッチング電源の一実施例である。
図1と同一符号は同一名称であるので説明を省略する。
図3に於いて、インダクタ6とトランス7の制御巻線N3の直列回路と並列に、 平滑コンデンサ8Nの充電方向にダイオ−ド14を設けてある。
【0021】
これによって、交流電源1の電圧が入力電圧変動範囲内で急激に上昇した場合、入力整流後の電圧(A点)と平滑コンデンサ8の電圧(B点)との間に電位差が発生するが、ダイオ−ド14により入力整流後の電圧(A点)と平滑コンデンサ8の電圧(B点)との間を短絡する事により、発生しようとする電位差を速やかに低下させる。
【0022】
この結果、インダクタ6と制御巻線N3の直列インピ−ダンスで除いた電流は ほぼ零となり、従って制御巻線N3から1次巻線N1に巻線比に応じて誘起される電流も零となる。
その結果スイッチ素子9には過大電流が流れることなく、スイッチ素子9を破損させたり、過電流検出による出力電圧低下といった不具合が生ずることはなくなる。
【0023】
図4は、図1の従来技術に本発明の技術を適用したスイッチング電源の他の実施例である。図1と同一符号は同一名称であり、交流電源1の両極から各々ダイオ−ド15、16を通して平滑コンデンサ8への充電ル−トを設ける事により、入力電圧急上昇時にインダクタ6及び制御巻線N3に電位差が発生しない様にし ている。
動作の説明は図2の場合とほぼ同様であるので省略する。
【0024】
図5は、図2の倍電圧入力スイッチング電源に本発明の技術を適用した第1の実施例である。図2と同一符号は同一名称であり説明は省略する。
【0025】
インダクタ6及び制御巻線N3の直列回路に並列に、平滑コンデンサ8を充電 する方向にダイオ−ド17を設けると共に、第2のインダクタ6′及び第2の制御巻線N′の直列回路と並列に、第2の平滑コンデンサ8′を放電する方向にダイオ−ド18が設けてある。
入力電圧急上昇時、インダクタ及び制御巻線に発生しようとする電位差をダイオ−ドによって短絡する原理については前述と同じであるので説明は省略する。
【0026】
図6は、図2の倍電圧入力のスイッチング電源に於ける本発明の他の実施例である。この場合も図2と同一符号のものは省略するが、本発明では交流入力1の両極よりダイオ−ド19、20を通して、平滑コンデンサ8への充電ル−トを設けると共に、平滑コンデンサ8′からの放電ル−トをダイオ−ド21、22を通して交流電源1の両極にそれぞれ帰還するル−トを設けている。これにより入力電圧が急上昇した時にインダクタ6及び制御巻線N3、第2のインダクタ6′及 び第2の制御巻線N4に電位差が発生しない様にしている。
【0027】
【発明の効果】
本発明によれば、入力電圧が急激に上昇した時、スイッチ素子を破損させる事もなく、又出力電圧の低下を抑制出来る為、信頼性の高い力率改善型スイッチング電源を提供し得るものである。
【図面の簡単な説明】
【図1】従来の力率改善型スイッチング電源の一実施例
【図2】倍電圧整流回路を使用した従来の力率改善型スイッチング電源の一実施例
【図3】図1の従来型スイッチング電源に本発明技術を適用したスイッチング電源の一実施例
【図4】図1の従来型スイッチング電源に本発明技術を適用したスイッチング電源の他の実施例
【図5】図2の倍電圧入力型スイッチング電源に本発明技術を適用したスイッチング電源の一実施例
【図6】図2の倍電圧入力型スイッチング電源に本発明技術を適用したスイッチング電源の他の実施例
【符号の説明】
1 交流電源
2〜5 全波整流器
6 インダクタ
6′ 第2のインダクタ
7 トランス
8 平滑コンデンサ
8′ 第2の平滑コンデンサ
9 スイッチ素子
10、11 ダイオ−ド
12 リアクトル
13 コンデンサ
14 第2のスイッチ素子
15〜22 ダイオ−ド
N1 トランス7の1次巻線
N2 トランス7の2次巻線
N3 トランス7の制御巻線
N4 トランス7の第2の制御巻線
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to improvement of a power factor of a switching type stabilized DC power supply device having an AC input.
[0002]
[Prior art]
FIG. 1 is a basic circuit diagram of a power factor correction type switching power supply disclosed in Japanese Patent Laid-Open No. 7-15967.
The purpose of this technique is to provide a high power factor and high efficiency AC input switching power supply with a simple configuration comprising a set of switching elements and a control circuit.
[0003]
The smoothing capacitor 8 is connected to the DC outputs of the full-wave rectifiers 2, 3, 4, and 5 connected to the AC power supply 1, and the primary winding N1 of the transformer 7 and the switching element 9 are connected between the terminals of the smoothing capacitor 8. A switching power supply for supplying power to a load on the output side by connecting a rectifying and smoothing circuit comprising diodes 10, 11, a reactor 12 and a capacitor 13 to a secondary winding N2 of the transformer 7 In this case, a series circuit of an inductor 6 and a control winding N3 of a transformer 7 is connected to one end of the full-wave rectifiers 2, 3, 4, and 5 on the DC output side, and connected to one end of a smoothing capacitor 8. It is configured.
[0004]
The operation is such that the energy of the smoothing capacitor 8 is stored in the transformer 7 while the switch element 9 is on, and the energy stored in the transformer 7 while the switch element 7 is off is converted to the secondary side N2 of the transformer 7. It is sent to the load via a rectifying and smoothing circuit.
At the same time, the current of the inductor 6 flows into the smoothing capacitor 8 via the control winding N3 of the transformer 7, and at the same time, the current flows in the control winding N3 of the transformer 7, so that the primary winding N1 of the transformer 7 A current corresponding to the turn ratio with the control winding N3 flows from the secondary winding N2 of the transformer 7 to the output smoothing capacitor 13 through the rectifying and smoothing circuit.
[0005]
That is, while the switch element 9 is off, the energy stored in the inductor 6 is sent to the input smoothing capacitor 8 and the capacitor 13 of the rectifying and smoothing circuit.
[0006]
As a result, the envelope (envelope) of the current waveform peak value flowing through the inductor 6 is sinusoidal, so that the power factor can be improved only by adding the control winding N3 of the inductor 6 and the transformer 7. .
[0007]
Further, the voltage applied to the inductor 6 while the switch element 9 is off is a difference voltage between the voltage of the smoothing capacitor 8 and the input voltage in the case of a conventional AC input switching voltage, whereas the voltage of FIG. In the circuit, since the input voltage is subtracted from the sum of the voltage of the smoothing capacitor 8 and the voltage generated in the control winding N3 of the transformer 7, the voltage of the smoothing capacitor 8 required to reset the current of the inductor 6 is The voltage can be reduced by the voltage generated in the control winding N3 of the transformer 7 as compared with the conventional AC input switching power supply.
That is, since a switch element having a low withstand voltage and a small on-resistance can be used as the switch element, the efficiency of the switching power supply can be increased.
[0008]
FIG. 2 shows an embodiment of a power factor improving type switching power supply using a voltage doubler rectifier circuit.
For the switching power supply shown in FIG. 1, a series circuit of a second inductor 6 'and a second control winding N4 of a transformer 7 is provided and connected to one end of a second smoothing capacitor 8'. And a second switch element 14 that is turned on when the voltage of the AC power supply is lower than the common point of 8 'and 8', to constitute a voltage doubler input circuit.
[0009]
When the voltage of the AC power supply 1 is low, the second switch element 14 is turned on.
Thus, in the positive half cycle, AC power supply 1 → diode 2 → inductor 6 → control winding N3 → smoothing capacitor 8 → second switch element 14 → diode 5 → route of AC power supply 1 In the negative half cycle, the AC power supply 1 → the second switch element 14 → the second smoothing capacitor 8 ′ → the second control winding N4 → the second inductor 6 ′ → the diode 4 → Current flows at the root of the AC power supply 1.
[0010]
As a result, the smoothing capacitors 8 and 8 'are each charged with the peak value of the AC input voltage, so that an input voltage twice as high as that obtained by full-wave rectification can be obtained.
[0011]
When the voltage of the AC power supply 1 is high, the second switch element 14 is turned off to provide a simple full-wave rectifier circuit.
[0012]
The operations of the inductor and the control winding relating to the power factor improvement are substantially the same as those in FIG.
[0013]
[Problems to be solved by the invention]
The prior art described so far is a very effective circuit in that power factor improvement and high efficiency can be realized only by providing a series circuit of an inductor and a transformer control winding in an input-side rectifier circuit.
[0014]
However, if the AC input voltage rises rapidly within, for example, an allowable fluctuation range, the control windings of the inductor and the transformer provided for improving the power factor adversely affect the operation. That is, the sudden change in the input voltage causes a potential difference between the voltage (point A) after the input rectification shown in FIG. 1 and the voltage (point B) of the smoothing capacitor 8, and the series impedance of the inductor 6 and the control winding N3 of the transformer. -Excessive current divided by dance flows.
[0015]
This current is induced from the control winding N3 of the transformer 7 to the primary winding N1 according to the turn ratio, and as a result, an excessive current flows through the switch element 9, which may damage the element.
[0016]
Further, when a current detection circuit is provided in series with the switch element 9, the current is detected as an overcurrent and becomes a drooping state in spite of the normal operation state, and there is a possibility that the output voltage is greatly reduced. .
These factors also cause a reduction in the reliability of the power supply system.
[0017]
Therefore, the present invention solves such a drawback by suppressing an excessive current from flowing to the input side circuit in response to a sudden rise in the input voltage, and a technique for preventing the destruction of the switch element and the decrease in the output voltage. It is a suggestion.
[0018]
The case of the voltage doubler circuit of FIG. 2 also has exactly the same problems as described above.
[0019]
[Means for Solving the Problems]
Therefore, according to the present invention, a diode is provided in parallel with the series circuit of the inductor and the transformer control winding provided for improving the power factor, and a difference voltage which is likely to be generated when the input voltage rises sharply is clamped to the input smoothing capacitor voltage. This is a switching power supply characterized by having a circuit configuration for causing the switching power supply.
[0020]
【Example】
FIG. 3 shows an embodiment of a switching power supply in which the technology of the present invention is applied to the conventional technology of FIG.
1 have the same names as in FIG.
In FIG. 3, a diode 14 is provided in parallel with a series circuit of an inductor 6 and a control winding N3 of a transformer 7 in a charging direction of a smoothing capacitor 8N.
[0021]
As a result, when the voltage of the AC power supply 1 rises rapidly within the input voltage fluctuation range, a potential difference occurs between the voltage after the input rectification (point A) and the voltage of the smoothing capacitor 8 (point B). By short-circuiting between the voltage (point A) after input rectification and the voltage (point B) of the smoothing capacitor 8 by the diode 14, the potential difference to be generated is quickly reduced.
[0022]
As a result, the current removed by the series impedance of the inductor 6 and the control winding N3 becomes almost zero, and the current induced from the control winding N3 to the primary winding N1 according to the turn ratio becomes zero. .
As a result, an excessive current does not flow through the switch element 9, and there is no problem such as damage to the switch element 9 or a decrease in output voltage due to overcurrent detection.
[0023]
FIG. 4 shows another embodiment of the switching power supply in which the technology of the present invention is applied to the conventional technology of FIG. The same reference numerals as those in FIG. 1 denote the same names. Charging routes from both poles of the AC power supply 1 to the smoothing capacitor 8 through the diodes 15 and 16 are provided. So that no potential difference occurs.
The description of the operation is substantially the same as that of FIG.
[0024]
FIG. 5 shows a first embodiment in which the technique of the present invention is applied to the double voltage input switching power supply of FIG. 2 have the same names as in FIG.
[0025]
A diode 17 is provided in parallel with the series circuit of the inductor 6 and the control winding N3 in a direction for charging the smoothing capacitor 8, and is connected in parallel with the series circuit of the second inductor 6 'and the second control winding N'. In addition, a diode 18 is provided in a direction for discharging the second smoothing capacitor 8 '.
The principle of short-circuiting the potential difference between the inductor and the control winding due to the diode when the input voltage sharply rises is the same as that described above, and a description thereof will be omitted.
[0026]
FIG. 6 shows another embodiment of the present invention in the switching power supply of the double voltage input of FIG. Also in this case, the same reference numerals as those in FIG. 2 are omitted, but in the present invention, a charging route to the smoothing capacitor 8 is provided from both poles of the AC input 1 through the diodes 19 and 20, and a smoothing capacitor 8 'is provided. Are provided to return the discharge route of the AC power source 1 to both poles of the AC power supply 1 through diodes 21 and 22. This prevents a potential difference between the inductor 6 and the control winding N3, the second inductor 6 'and the second control winding N4 when the input voltage rises sharply.
[0027]
【The invention's effect】
ADVANTAGE OF THE INVENTION According to this invention, when an input voltage rises sharply, since a switch element is not damaged and a fall of an output voltage can be suppressed, a highly reliable power factor improvement type switching power supply can be provided. is there.
[Brief description of the drawings]
FIG. 1 is an example of a conventional power factor improving switching power supply. FIG. 2 is an example of a conventional power factor improving switching power supply using a voltage doubler rectifier circuit. FIG. 3 is a conventional switching power supply of FIG. FIG. 4 shows another embodiment of a switching power supply in which the present invention is applied to the conventional switching power supply of FIG. 1. FIG. 5 shows a double voltage input type switching of FIG. Embodiment of a switching power supply in which the present invention is applied to a power supply [FIG. 6] Another embodiment of a switching power supply in which the present invention is applied to a double voltage input type switching power supply of FIG.
1 AC power supply 2-5 Full-wave rectifier 6 Inductor 6 'Second inductor 7 Transformer 8 Smoothing capacitor 8' Second smoothing capacitor 9 Switch element 10, 11 Diode 12 Reactor 13 Capacitor 14 Second switch element 15- 22 Diode N1 Primary winding of transformer 7 N2 Secondary winding of transformer 7 Control winding of transformer 7 N4 Second control winding of transformer 7

Claims (4)

交流電源に接続された全波整流器の出力端子間に平滑コンデンサを接続し、前記平滑コンデンサの端子間にトランスの1次巻線とスイッチ素子の直列回路を接続し、前記トランスの2次巻線に整流平滑回路を接続し、前記整流平滑回路の出力端子間に接続された負荷に電力を供給するスイッチング電源に於いて、前記全波整流器と前記平滑コンデンサの間に、インダクタと前記トランスの制御巻線を直列に接続し前記インダクタと前記トランスの制御巻線の直列回路に並列に、前記平滑コンデンサを充電する極性のダイオ−ドを接続した事を特徴とするスイッチング電源。A smoothing capacitor is connected between output terminals of a full-wave rectifier connected to an AC power supply, a primary winding of a transformer and a series circuit of a switch element are connected between terminals of the smoothing capacitor, and a secondary winding of the transformer is connected. In a switching power supply for supplying power to a load connected between output terminals of the rectifying / smoothing circuit, controlling an inductor and the transformer between the full-wave rectifier and the smoothing capacitor. A switching power supply , wherein a winding is connected in series, and a diode having a polarity for charging the smoothing capacitor is connected in parallel with a series circuit of the inductor and the control winding of the transformer. 交流電源に接続された全波整流器の出力端子間に平滑コンデンサを接続し、前記平滑コンデンサの端子間にトランスの1次巻線とスイッチ素子の直列回路を接続し、前記トランスの2次巻線に整流平滑回路を接続し、前記整流平滑回路の出力端子間に接続された負荷に電力を供給するスイッチング電源に於いて、前記全波整流器と前記平滑コンデンサの間に、インダクタと前記トランスの制御巻線を直列に接続し前記交流電源の両極から各々、前記トランスの制御巻線と前記平滑コンデンサとの接続部との間に、前記平滑コンデンサを充電する極性のダイオ−ドを接続した事を特徴とするスイッチング電源。A smoothing capacitor is connected between output terminals of a full-wave rectifier connected to an AC power supply, a primary winding of a transformer and a series circuit of a switch element are connected between terminals of the smoothing capacitor, and a secondary winding of the transformer is connected. In a switching power supply for supplying power to a load connected between output terminals of the rectifying / smoothing circuit, controlling an inductor and the transformer between the full-wave rectifier and the smoothing capacitor. connect the windings in series, each from both poles of the AC power supply, between the connection portion between the smoothing capacitor and the transformer of the control winding, diode polarity to charge the smoothing capacitor - that connects the de A switching power supply. 交流電源に接続された全波整流器の出力端子間に平滑コンデンサを接続し、前記平滑コンデンサの端子間にトランスの1次巻線とスイッチ素子の直列回路を接続し、前記トランスの2次巻線に整流平滑回路を接続し、前記整流平滑回路の出力端子間に接続された負荷に電力を供給するスイッチング電源に於いて、前記全波整流器の出力端子と前記平滑コンデンサの各端子間にそれぞれインダクタと前記トランスの制御巻線の直列回路を接続するとともに、前記平滑コンデンサを第1、第2の平滑コンデンサの直列接続で構成し、第1の平滑コンデンサと第2の平滑コンデンサとの接続点と前記交流電源の一端との間にスイッチ素子を介装し、前記スイッチ素子を、前記交流電源の出力電圧が低い期間にオン状態とし、前記交流電源の出力電圧が高い期間にオフ状態にするよう構成し前記インダクタと前記トランスの制御巻線の直列回路にそれぞれ並列に、前記平滑コンデンサを充電する極性のダイオ−ドを接続した事を特徴とするスイッチング電源。A smoothing capacitor is connected between output terminals of a full-wave rectifier connected to an AC power supply, a primary winding of a transformer and a series circuit of a switch element are connected between terminals of the smoothing capacitor, and a secondary winding of the transformer is connected. In a switching power supply for supplying power to a load connected between output terminals of the rectifying and smoothing circuit, an inductor is provided between an output terminal of the full-wave rectifier and each terminal of the smoothing capacitor. And a series circuit of control windings of the transformer, and the smoothing capacitor is configured by connecting a first and a second smoothing capacitor in series, and a connection point between the first smoothing capacitor and the second smoothing capacitor. A switch element is interposed between the AC power supply and one end of the AC power supply, and the switch element is turned on during a period in which the output voltage of the AC power supply is low. And configured to turn off the high period, in parallel to the series circuit of the control winding of the said inductor transformer, diode polarity to charge the smoothing capacitor - switching power supply, characterized in that connecting the de . 交流電源に接続された全波整流器の出力端子間に平滑コンデンサを接続し、前記平滑コンデンサの端子間にトランスの1次巻線とスイッチ素子の直列回路を接続し、前記トランスの2次巻線に整流平滑回路を接続し、前記整流平滑回路の出力端子間に接続された負荷に電力を供給するスイッチング電源に於いて、前記全波整流器の出力端子と前記平滑コンデンサの各端子間にそれぞれインダクタと前記トランスの制御巻線の直列回路を接続するとともに、前記平滑コンデンサを第1、第2の平滑コンデンサの直列接続で構成し、第1の平滑コンデンサと第2の平滑コンデンサとの接続点と前記交流電源の一端との間にスイッチ素子を介装し、前記スイッチ素子を、前記交流電源の出力電圧が低い期間にオン状態とし、前記交流電源の出力電圧が高い期間にオフ状態にするよう構成し前記交流電源の両極から各々、前記トランスの制御巻線と前記平滑コンデンサとの接続部との間にそれぞれ、前記平滑コンデンサを充電する極性のダイオ−ドを接続した事を特徴とするスイッチング電源。A smoothing capacitor is connected between output terminals of a full-wave rectifier connected to an AC power supply, a primary winding of a transformer and a series circuit of a switch element are connected between terminals of the smoothing capacitor, and a secondary winding of the transformer is connected. In a switching power supply for supplying power to a load connected between output terminals of the rectifying and smoothing circuit, an inductor is provided between an output terminal of the full-wave rectifier and each terminal of the smoothing capacitor. And a series circuit of control windings of the transformer, and the smoothing capacitor is configured by connecting a first and a second smoothing capacitor in series, and a connection point between the first smoothing capacitor and the second smoothing capacitor. A switch element is interposed between the AC power supply and one end of the AC power supply, and the switch element is turned on during a period in which the output voltage of the AC power supply is low. And configured to turn off the high period, each from both poles of the AC power source, respectively between a connection portion between the smoothing capacitor and the transformer of the control winding, the polarity of charging the smoothing capacitor diode - de A switching power supply characterized by being connected to.
JP25183995A 1995-09-05 1995-09-05 Switching power supply Expired - Fee Related JP3583208B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25183995A JP3583208B2 (en) 1995-09-05 1995-09-05 Switching power supply

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25183995A JP3583208B2 (en) 1995-09-05 1995-09-05 Switching power supply

Publications (2)

Publication Number Publication Date
JPH0974762A JPH0974762A (en) 1997-03-18
JP3583208B2 true JP3583208B2 (en) 2004-11-04

Family

ID=17228700

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25183995A Expired - Fee Related JP3583208B2 (en) 1995-09-05 1995-09-05 Switching power supply

Country Status (1)

Country Link
JP (1) JP3583208B2 (en)

Also Published As

Publication number Publication date
JPH0974762A (en) 1997-03-18

Similar Documents

Publication Publication Date Title
EP1478076A1 (en) Power factor correcting circuit for uninterrupted power supply
EP0964504B1 (en) Switching power source apparatus
JP3583208B2 (en) Switching power supply
JP3656779B2 (en) DC-DC converter
JP6963510B2 (en) Switching power supply for three-phase AC
JP4096696B2 (en) Rectifier
JPH0681498B2 (en) Snubber circuit
JPS5853195A (en) Device for firing discharge lamp
JP4463096B2 (en) Discharge load power supply
JP3993704B2 (en) Active filter device
JPH08237944A (en) Switching mode power supply
JPH08214546A (en) Dc power source and dc power supply system
JP3273572B2 (en) DC power supply
JP2861430B2 (en) Rectifier circuit
JP3400132B2 (en) Switching power supply
JPH01122329A (en) Power converting device
JP4304743B2 (en) Switching power supply that enables on / off control without auxiliary power
JPS6387176A (en) Rectifier circuit
JPH0416637Y2 (en)
JP2803278B2 (en) Switching power supply
JPH0116389Y2 (en)
JPH0644308Y2 (en) DC power supply smoothing circuit
JPH08205520A (en) Switching power supply
JPH0759357A (en) Power converter
JP2003143867A (en) Snubber energy regenerating circuit

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040510

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040518

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040624

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040720

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040728

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070806

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080806

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090806

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090806

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100806

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100806

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110806

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110806

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120806

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120806

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130806

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees