JPH0669034A - Magnetizing coil for rodlike multipolar magnet and magnetizing device thereof - Google Patents
Magnetizing coil for rodlike multipolar magnet and magnetizing device thereofInfo
- Publication number
- JPH0669034A JPH0669034A JP24115892A JP24115892A JPH0669034A JP H0669034 A JPH0669034 A JP H0669034A JP 24115892 A JP24115892 A JP 24115892A JP 24115892 A JP24115892 A JP 24115892A JP H0669034 A JPH0669034 A JP H0669034A
- Authority
- JP
- Japan
- Prior art keywords
- coil
- magnet
- rod
- magnetizing
- shaped
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Permanent Field Magnets Of Synchronous Machinery (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】この発明は、棒状多極磁石の着磁
コイルとその着磁装置に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnetizing coil for a rod-shaped multipole magnet and a magnetizing device therefor.
【0002】[0002]
【従来技術】例えば放牧した牛の飼育分野では、飼料中
に往々にして含まれる針金や釘等の磁性金属を、牛の胃
に飲み込ませた永久磁石に吸着保持させることが一般に
実施されている。これは、牛が飼料と共に針金や釘等を
食べてしまった場合に、これら針金等が胃壁を刺激して
ストレスや潰瘍の原因となることが経験的に知られてい
るので、胃中に飲み込ませた永久磁石により該針金等を
吸着保持しようというものである。この試み自体は新し
いものでなく、従前は図4に示す如く、通常の2極着磁
した棒状磁石10が使用されていた。しかし2極の棒状
磁石10は両端面だけが着磁面となっているので、釘や
針金12が該着磁面に吸着された状態によっては、図5
に示すように磁石10に対し直交方向または軸方向に延
出してしまうことがある。このような場合は、棒状磁石
10に吸着された釘等の金属12が却って牛の胃内壁を
強く刺激し、逆効果となってしまう。2. Description of the Related Art In the field of grazing cattle, for example, magnetic metals such as wires and nails, which are often contained in feed, are generally adsorbed and held by a permanent magnet swallowed in the stomach of cattle. . It is empirically known that when cows eat wire, nails, etc. together with feed, they cause stress and ulcers by stimulating the stomach wall, so swallow it into the stomach. It is intended to attract and hold the wire or the like by means of a permanent magnet provided. This trial itself is not new, and in the past, as shown in FIG. 4, the ordinary rod-shaped magnet 10 magnetized with two poles was used. However, since the two-pole bar-shaped magnet 10 has magnetized surfaces only on both end surfaces, depending on the state in which the nail or the wire 12 is attracted to the magnetized surface, the magnet shown in FIG.
As shown in, the magnet 10 may extend in the direction orthogonal to the magnet 10 or in the axial direction. In such a case, the metal 12 such as a nail attracted to the rod-shaped magnet 10 rather strongly stimulates the inner wall of the stomach of the cow, which has the opposite effect.
【0003】そこで図6に示す如く、棒状磁石の形態で
はあるが在来の2極着磁ではなく、軸方向にS極・N極
の極性が交互に表われるようにした棒状多極磁石14も
採用されている。図示例の棒状多極磁石14は、左より
1極(N),2極(S),3極(N),4極(S),5極(N),6極
(S)の6極磁石となっている。この場合は、釘や針金1
2が棒状多極磁石14に吸着されても、異なる極性が所
要間隔で連続しているために、該磁石14の長手方向に
沿った形で吸着され易い。従って、棒状多極磁石14に
吸着された金属12が牛の胃内壁を強く刺激することが
なく、ストレスや潰瘍の発生を有効かつ未然に阻止し得
るものである。Therefore, as shown in FIG. 6, although it is in the form of a rod-shaped magnet, it is not a conventional two-pole magnetized magnet but a rod-shaped multi-pole magnet 14 in which the polarities of S pole and N pole are alternately shown in the axial direction. Has also been adopted. The rod-shaped multi-pole magnet 14 of the illustrated example has 1 pole (N), 2 poles (S), 3 poles (N), 4 poles (S), 5 poles (N), 6 poles from the left.
It is a (S) 6-pole magnet. In this case, nails or wire 1
Even if 2 is attracted to the rod-shaped multi-pole magnet 14, it is easily attracted in a form along the longitudinal direction of the magnet 14 because different polarities are continuous at required intervals. Therefore, the metal 12 adsorbed on the rod-shaped multi-pole magnet 14 does not strongly stimulate the inner wall of the stomach of the cow, and can effectively and beforehand prevent the occurrence of stress and ulcer.
【0004】[0004]
【発明が解決しようとする課題】前述に係る棒状多極磁
石14は、牛の胃内に経口装入されるものであるため、
これを製造・市販するのに我国では農林省の認可が必要
とされる。この認可を受けるためには、寸法や各磁極に
おける磁束線数(G)等につき定めた以下の規格を満足し
なければならない。すなわち外形寸法は長さ80mmの直
径12mmφで、磁極から隣接する磁極までの間隔は16
±2mmである。また各磁極から発生する磁束線の数すな
わち端面磁束線数は、以下の範囲に収まるよう規定され
ている。 1極(N) 1,000〜1,300(G) 2極(S) 300〜500(G) 3極(N) 400〜700(G) 4極(S) 400〜700(G) 5極(N) 300〜500(G) 6極(S) 1,000〜1,300(G) すなわち、両端部側における磁極の磁束線数は多くなる
よう設定されると共に、その中間部位では、前記磁束線
数が比較的小さくなるよう設定される。しかし従来の技
術では、棒状多極磁石14における各磁極を、前記端面
磁束線数の範囲に収まるよう着磁することは極めて困難
であった。殊に、従来の棒状磁石材料に多極着磁させる
着磁コイルは、長尺の筒状ボビンに線材を密着状または
疎状に変化させて巻回するだけであったために、多極着
磁自体はなし得ても、各磁極における端面磁束線数まで
制御することは殆ど不可能に近かった。Since the rod-shaped multi-pole magnet 14 according to the above is to be orally loaded into the stomach of a cow,
In order to manufacture and market this, approval of the Ministry of Agriculture and Forestry is required in Japan. In order to receive this approval, the following standards, which set the dimensions and the number of magnetic flux lines (G) in each magnetic pole, must be satisfied. That is, the external dimensions are 80 mm in length and 12 mmφ in diameter, and the distance between adjacent magnetic poles is 16
± 2 mm. Further, the number of magnetic flux lines generated from each magnetic pole, that is, the number of end face magnetic flux lines is regulated to fall within the following range. 1 pole (N) 1,000 to 1,300 (G) 2 poles (S) 300 to 500 (G) 3 poles (N) 400 to 700 (G) 4 poles (S) 400 to 700 (G) 5 poles (N) 300 to 500 (G) 6 poles (S) 1,000 to 1,300 (G) That is, the number of magnetic flux lines of the magnetic poles on both end sides is set to be large, and at the intermediate portion, The number of magnetic flux lines is set to be relatively small. However, in the conventional technique, it was extremely difficult to magnetize each magnetic pole in the rod-shaped multi-pole magnet 14 so as to be within the range of the number of end face magnetic flux lines. In particular, the conventional magnetizing coil for magnetizing multi-pole magnets on rod-shaped magnets only changes the wire material to a long cylindrical bobbin in a close contact or sparse manner and winds it. Even if it could be done by itself, it was almost impossible to control the number of end face magnetic flux lines in each magnetic pole.
【0005】また多極着磁された棒状多極磁石を製造す
るための着磁装置では、棒状磁石材料における着磁され
るべき各磁極部位と、着磁コイルにおける巻線数を変え
た各巻線部とが適切に対応するようセットすることが重
要である。しかし従来の着磁装置では、これに使用され
る着磁コイルが前述した如き構成であるので、棒状磁石
材料の各磁極部位と着磁コイルの各巻線部とを適切に対
応させ得ない難点があった。また着磁コイル中に挿入セ
ットした棒状磁石材料を、多極着磁が終了した後に効率
良く取り出すことが困難で、作業者の手間と多くの時間
とを要している欠点も指摘される。Further, in a magnetizing device for manufacturing a rod-shaped multi-pole magnet which is multi-pole magnetized, each magnetic pole portion of the rod-shaped magnet material to be magnetized and each winding in which the number of windings in the magnetizing coil is changed. It is important to set up so that the department and department correspond appropriately. However, in the conventional magnetizing device, since the magnetizing coil used for the magnetizing device has the above-described structure, there is a drawback that the magnetic pole portions of the rod-shaped magnet material and the winding portions of the magnetizing coil cannot be appropriately associated with each other. there were. Further, it is also pointed out that it is difficult to efficiently take out the rod-shaped magnet material inserted and set in the magnetizing coil after the multi-pole magnetizing is completed, which requires a lot of labor and time for the operator.
【0006】[0006]
【発明の目的】本発明は、棒状多極磁石の着磁コイルお
よび着磁装置に内在している前記課題に鑑み、これを好
適に解決するべく提案されたものであって、棒状多極磁
石に着磁される各磁極における端面磁束線数を精度良く
制御することができ、また棒状磁石材料の各磁極部位と
着磁コイルの各巻線部とを適切に対応させることができ
ると共に、着磁コイル中にセットした棒状磁石材料を着
磁終了後に効率良く取り出し得る手段を提供することを
目的とする。SUMMARY OF THE INVENTION The present invention has been made in view of the above problems inherent in a magnetizing coil and a magnetizing device for a rod-shaped multipole magnet, and has been proposed in order to suitably solve the problems. It is possible to control the number of end face magnetic flux lines in each magnetic pole to be magnetized with high accuracy, and it is possible to appropriately correspond each magnetic pole part of the rod-shaped magnet material to each winding part of the magnetizing coil, and It is an object of the present invention to provide a means for efficiently taking out the rod-shaped magnet material set in the coil after the magnetization is completed.
【0007】[0007]
【課題を解決するための手段】前記課題を克服し、所期
の目的を達成するため本発明は、軸方向に交互に反転し
て極性が表われ、各磁極の磁束線数が両端部側は多くな
るよう設定されると共に、中間部位では比較的少なくな
るよう設定される棒状多極磁石を着磁するための着磁コ
イルであって、独立した中空コイルと中空コイルとの間
にリング状スペーサを順次介在させて直列に連結したコ
イル本体部を構成し、前記コイル本体部に同軸的に開設
される通孔部中に、着磁されるべき棒状多極磁石の挿通
を可能とし、前記中空コイルにおける巻線数と前記リン
グ状スペーサの軸方向厚みとを、前記棒状多極磁石の各
磁極における要求される磁束線数の多少程度に応じて増
減調節し得るよう構成したことを特徴とする。SUMMARY OF THE INVENTION In order to overcome the above-mentioned problems and achieve the intended purpose, the present invention is such that the polarity is alternately inverted in the axial direction and the number of magnetic flux lines of each magnetic pole is at both ends. Is a magnetizing coil for magnetizing a rod-shaped multi-pole magnet that is set to be large and relatively small in an intermediate portion, and is a ring-shaped coil between independent hollow coils. A coil main body is formed by serially interposing spacers, and a rod-shaped multi-pole magnet to be magnetized can be inserted into a through hole coaxially formed in the coil main body. The number of windings in the hollow coil and the axial thickness of the ring-shaped spacer can be adjusted to be increased or decreased according to the required number of magnetic flux lines in each magnetic pole of the rod-shaped multipole magnet. To do.
【0008】また同じく前記課題を克服し、所期の目的
を達成するため本願の別の発明は、軸方向に交互に反転
して極性が表われ、各磁極の磁束線数が両端部側は多く
なるよう設定されると共に、中間部位では比較的少なく
なるよう設定される棒状多極磁石の着磁装置において、
独立した中空コイルと中空コイルとの間にリング状スペ
ーサを直列に順次介在させてコイル本体部を構成し、こ
のコイル本体部に同軸的に開設される通孔部中に着磁さ
れるべき棒状多極磁石の挿通を可能とした着磁コイルを
備え、前記コイル本体部における通孔部に、往復動自在
でかつ所要位置で停止させ得るノックアウトピンを臨ま
せ、前記通孔部に挿通した棒状多極磁石のコイル本体部
に対する着磁位置を、前記ノックアウトピンにより調節
可能とすると共に、着磁終了後の棒状多極磁石を該ノッ
クアウトピンによりコイル本体部の軸方向外方へ突出さ
せ得るよう構成したことを特徴とする。Further, in order to overcome the above-mentioned problems and achieve the intended purpose, another invention of the present application is that the polarity is alternately inverted in the axial direction, and the number of magnetic flux lines of each magnetic pole on both ends is In the magnetizing device for the rod-shaped multi-pole magnet, which is set to be large and relatively small in the middle part,
A ring-shaped spacer is serially interposed in series between independent hollow coils to form a coil main body, and a rod-shaped member to be magnetized in a through hole coaxially formed in the coil main body. A rod-shaped rod provided with a magnetizing coil that allows insertion of a multi-pole magnet, and a knockout pin that is reciprocally movable and that can be stopped at a required position is faced with a through hole in the coil body, and is inserted into the through hole. The magnetizing position of the multi-pole magnet with respect to the coil body can be adjusted by the knockout pin, and the rod-shaped multi-pole magnet after the magnetization can be projected outward in the axial direction of the coil body by the knockout pin. It is characterized by being configured.
【0009】[0009]
【実施例】次に、本発明に係る棒状多極磁石の着磁コイ
ルおよび着磁装置につき、好適な実施例を挙げて、添付
図面を参照しながら以下説明する。図1は、好適実施例
に係る着磁コイルの縦断面図であって、この着磁コイル
16は、線材を所要回数だけ巻回した多数の中空コイル
18からなる。すなわち個々の独立体からなる中空コイ
ル18は、各隣接し合う別の中空コイル18との間に、
合成樹脂を材質とするリング状スペーサ20を順次介在
させ、全体として直列に連結したコイル本体部22を構
成している。このコイル本体部22には、前記コイル1
8の中空部およびスペーサ20の中空部が相俟って通孔
部24が同軸的に形成されており、該通孔部24中に着
磁されるべき棒状多極磁石14の挿脱自在な挿通を許容
している。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, a magnetizing coil and a magnetizing device for a rod-shaped multipole magnet according to the present invention will be described below with reference to the accompanying drawings with reference to preferred embodiments. FIG. 1 is a vertical cross-sectional view of a magnetizing coil according to a preferred embodiment. The magnetizing coil 16 is composed of a large number of hollow coils 18 formed by winding a wire rod a required number of times. That is, the hollow coil 18 made of an individual independent body is provided between each adjacent hollow coil 18 and
A ring-shaped spacer 20 made of a synthetic resin is sequentially interposed to form a coil body 22 connected in series as a whole. The coil body 22 has the coil 1
The hollow portion 8 and the hollow portion of the spacer 20 cooperate to form the through hole portion 24 coaxially, and the rod-shaped multi-pole magnet 14 to be magnetized in the through hole portion 24 can be inserted and removed freely. Allows insertion.
【0010】このように着磁コイル16は、独立した中
空コイル18とその間に介在させたリング状スペーサ2
0とを備えている。従って、先に述べた農林省の認可を
受けるに必要な磁束線数(G)の範囲に収まるように、棒
状多極磁石14を着磁するためには、中空コイル18に
おける巻線数とリング状スペーサ20の軸方向厚みとを
増減調節すればよいが、本実施例ではこれらの増減調節
を極めて容易になし得るものである。例えば前記規格に
よれば、棒状多極磁石14の両端部側における磁極の磁
束線数は1,000〜1,300(G)であって、充分に多
くなるよう設定され、その中間部位では300〜500
(G)および400〜700(G)の如く、該磁束線数が比
較的小さくなるよう設定される。従って、例えば図1に
示す中空コイル18は、その巻線数が左より順に32タ
ーン、5ターン、10ターン、5ターン、32ターンと
なるものを選定使用すればよい。また前記リング状スペ
ーサ20の軸方向厚みは、左より順に13.5mm、5m
m、5mm、13.5mmとなるものが選択的に使用される。
なお、このような中空コイル18の巻線数とスペーサ2
0の厚みとの増減調節を行なうのは、起磁力を求める以
下の数式に拠っている。 F=0.4πNi/l ここにF:起磁力、N:巻線数、i:電流値、l:コイ
ルの長さAs described above, the magnetizing coil 16 comprises the independent hollow coil 18 and the ring-shaped spacer 2 interposed therebetween.
It has 0 and. Therefore, in order to magnetize the rod-shaped multi-pole magnet 14 so as to be within the range of the number of magnetic flux lines (G) required to obtain the approval of the Ministry of Agriculture and Forests described above, the number of windings and the ring shape in the hollow coil 18 are required. It suffices to increase / decrease the thickness of the spacer 20 in the axial direction, but in the present embodiment, these adjustments can be made extremely easily. For example, according to the above standard, the number of magnetic flux lines of the magnetic poles on both end sides of the rod-shaped multi-pole magnet 14 is 1,000 to 1,300 (G), which is set to be sufficiently large, and 300 at the intermediate portion. ~ 500
(G) and 400 to 700 (G), the number of magnetic flux lines is set to be relatively small. Therefore, for example, the hollow coil 18 shown in FIG. 1 may be selected and used so that the number of turns thereof is 32 turns, 5 turns, 10 turns, 5 turns, 32 turns in order from the left. The axial thickness of the ring-shaped spacer 20 is 13.5 mm and 5 m in order from the left.
Those with m, 5 mm and 13.5 mm are selectively used.
The number of windings of the hollow coil 18 and the spacer 2
The increase / decrease adjustment with the thickness of 0 is based on the following mathematical formula for obtaining the magnetomotive force. F = 0.4πNi / l where F: magnetomotive force, N: number of windings, i: current value, l: coil length
【0011】すなわち中空コイル18の巻線数とスペー
サ20の厚みとを、先に述べた値に設定したもとで、図
2に示すように、着磁コイル16における通孔部24に
棒状の磁石材料を整列的に挿入した後、前記中空コイル
18に約6000Aの大電流を極めて短時間の間に一挙
に流すことにより、前記の規格に従った棒状多極磁石1
4が製造されることになる。That is, with the number of windings of the hollow coil 18 and the thickness of the spacer 20 set to the above-mentioned values, as shown in FIG. After the magnet materials are inserted in an aligned manner, a large current of about 6000 A is passed through the hollow coil 18 at once in an extremely short time, so that the rod-shaped multipole magnet 1 conforming to the above-mentioned standard can be obtained.
4 will be manufactured.
【0012】図3は、図1に示す着磁コイル16を使用
した着磁装置の概略構成を示すものであって、複数個の
着磁コイル16が水平基板26に所定間隔で直立配置さ
れており、各着磁コイル16は図示しない高電流値の直
流電源にスイッチを介して接続されている。水平基板2
6の下方には、これと平行に昇降板28が配設され、昇
降板28の下面は、直立配置した空気圧シリンダ30に
おけるピストンロッド32の上端に固定されている。ま
た該昇降板28の上面には、夫々の着磁コイル16の直
下に対応的に位置してノックアウトピン34が直立的に
固設され、各ノックアウトピン34は、コイル本体部2
2の通孔部24に往復動自在でかつ所要位置で停止可能
に臨んでいる。FIG. 3 shows a schematic structure of a magnetizing device using the magnetizing coil 16 shown in FIG. 1, in which a plurality of magnetizing coils 16 are vertically arranged on a horizontal substrate 26 at predetermined intervals. Each magnetizing coil 16 is connected to a DC power source having a high current value (not shown) via a switch. Horizontal board 2
An elevating plate 28 is arranged below the plate 6 in parallel therewith, and a lower surface of the elevating plate 28 is fixed to an upper end of a piston rod 32 of a pneumatic cylinder 30 arranged upright. Further, on the upper surface of the elevating plate 28, knockout pins 34 are vertically fixed and positioned correspondingly directly below the respective magnetizing coils 16, and each knockout pin 34 is fixed to the coil body portion 2.
The two through holes 24 face each other so as to be reciprocally movable and stopable at a required position.
【0013】すなわち棒状多極磁石14に多極着磁する
には、着磁コイル16への通電に先立って、コイル本体
部22の通孔部24に着磁すべき棒状材料14を上方か
ら挿入する。このとき該通孔部24の下方には、前記ノ
ックアウトピン34の上端部が臨んでいるから、挿入さ
れた前記棒状材料14は該ノックアウトピン34により
支持される。この状態で、棒状材料14における多極着
磁されるべき各磁極予定部位と、着磁コイル16におけ
る各中空コイル18とが適切に対応すれば問題はない。
しかし、この適切な対応はむしろ得られない場合が多
い。従ってこのような場合は、シリンダ30を適宜に正
逆付勢することによって、昇降板28と共にノックアウ
トピン34を各通孔部24の内部で昇降させ、棒状材料
14の各磁極予定部位と各中空コイル18とを適切に対
応させる。このようにして、先に述べたと同様に中空コ
イル18に大電流を流すことにより、前記の規格に極め
て忠実な棒状多極磁石14を製造することができる。That is, in order to magnetize the rod-shaped multipole magnet 14 in multiple poles, the rod-shaped material 14 to be magnetized is inserted into the through hole portion 24 of the coil body 22 from above before energizing the magnetizing coil 16. To do. At this time, since the upper end of the knockout pin 34 faces below the through hole 24, the inserted rod-shaped material 14 is supported by the knockout pin 34. In this state, there is no problem if the expected magnetic pole portions of the rod-shaped material 14 to be magnetized in multiple poles and the hollow coils 18 of the magnetizing coil 16 correspond appropriately.
However, this appropriate response is often not obtained. Therefore, in such a case, by appropriately urging the cylinder 30 forward and backward, the knockout pin 34 is moved up and down together with the lift plate 28 inside each through hole portion 24, and each magnetic pole planned portion of the rod-shaped material 14 and each hollow portion. Appropriately correspond to the coil 18. In this way, by passing a large current through the hollow coil 18 as described above, it is possible to manufacture the rod-shaped multipole magnet 14 that is extremely faithful to the above-mentioned standard.
【0014】また夫々の着磁コイル16の内部で棒状多
極磁石14の多極着磁が終了したならば、前記シリンダ
30を付勢してピストンロッド32を上方へ延伸させ
る。これにより昇降板28と共にノックアウトピン34
は垂直に上昇し、棒状多極磁石14の上端部を、図3に
2点鎖線で示す如く上方へ突出させる。従って、着磁済
みの棒状多極磁石14を着磁コイル16から容易に取出
すことができる。なお本発明が適用されるのは、6極の
磁石に限らず、4極以上であれば任意に着磁させること
ができる。また、着磁装置における着磁コイルの数も、
任意に設定をし得るものである。When the multi-pole magnetization of the rod-shaped multi-pole magnet 14 is completed inside each magnetizing coil 16, the cylinder 30 is urged to extend the piston rod 32 upward. As a result, the lift plate 28 and the knockout pin 34
Moves vertically and causes the upper end of the rod-shaped multi-pole magnet 14 to project upward as shown by the chain double-dashed line in FIG. Therefore, the magnetized rod-shaped multi-pole magnet 14 can be easily taken out from the magnetizing coil 16. The present invention is not limited to a 6-pole magnet, but can be arbitrarily magnetized as long as it has 4 or more poles. Also, the number of magnetizing coils in the magnetizing device is
It can be set arbitrarily.
【0015】[0015]
【発明の効果】以上説明した如く、本発明に係る棒状多
極磁石の着磁コイルとその着磁装置によれば、棒状多極
磁石に着磁される各磁極における端面磁束線数を精度良
く制御することができる。また棒状磁石材料の各磁極部
位と着磁コイルの各巻線部とを適切に対応させることが
でき、しかも着磁コイル中にセットした棒状磁石材料
を、着磁終了後に効率良く取り出し得る、等の有益な利
点を有する。As described above, according to the magnetizing coil of the rod-shaped multipole magnet and the magnetizing device thereof according to the present invention, the number of end face magnetic flux lines in each magnetic pole magnetized in the rod-shaped multipole magnet can be accurately measured. Can be controlled. Further, each magnetic pole portion of the rod-shaped magnet material and each winding portion of the magnetizing coil can be appropriately corresponded to each other, and further, the rod-shaped magnet material set in the magnetizing coil can be efficiently taken out after the magnetization is completed. Has beneficial benefits.
【図1】本発明の好適実施例に係る着磁コイルの縦断面
図である。FIG. 1 is a vertical sectional view of a magnetizing coil according to a preferred embodiment of the present invention.
【図2】本発明の好適実施例に係る着磁コイルの縦断面
図であって、通孔部に棒状多極磁石を挿入した状態で示
す。FIG. 2 is a longitudinal sectional view of a magnetizing coil according to a preferred embodiment of the present invention, showing a rod-shaped multipole magnet inserted in a through hole.
【図3】図1に示す着磁コイルを使用した着磁装置の概
略構成図である。FIG. 3 is a schematic configuration diagram of a magnetizing device using the magnetizing coil shown in FIG.
【図4】通常の2極着磁した棒状磁石の外観図である。FIG. 4 is an external view of a normal two-pole magnetized rod-shaped magnet.
【図5】図4に示す2極着磁した棒状磁石では、これに
吸着された釘等の金属が、該磁石に対し直交方向または
軸方向に延出することがあり得る状態を示す説明図であ
る。FIG. 5 is an explanatory view showing a state in which the pole-like magnet magnetized with two poles shown in FIG. 4 may have a metal such as a nail attracted thereto extending in an orthogonal direction or an axial direction with respect to the magnet. Is.
【図6】棒状磁石の形態ではあるが、軸方向にS極・N
極の極性が交互に表われるようにした棒状多極磁石と、
これに吸着された釘等の金属が、該磁石から延出するこ
とが殆どないことを示す説明図である。FIG. 6 is a bar-shaped magnet, but has an S pole / N in the axial direction.
A rod-shaped multi-pole magnet in which the polarities of the poles appear alternately,
It is an explanatory view showing that metal, such as a nail adsorbed to this, hardly extends from the magnet.
14 棒状多極磁石 16 着磁コイル 18 中空コイル 20 リング状スペーサ 22 コイル本体部 24 通孔部 34 ノックアウトピン 14 bar-shaped multi-pole magnet 16 magnetizing coil 18 hollow coil 20 ring spacer 22 coil body 24 through hole 34 knockout pin
Claims (2)
各磁極の磁束線数が両端部側は多くなるよう設定される
と共に、中間部位では比較的少なくなるよう設定される
棒状多極磁石(14)を着磁するための着磁コイル(16)であ
って、 独立した中空コイル(18)と中空コイル(18)との間にリン
グ状スペーサ(20)を順次介在させて直列に連結したコイ
ル本体部(22)を構成し、 前記コイル本体部(22)に同軸的に開設される通孔部(24)
中に、着磁されるべき棒状多極磁石(14)の挿通を可能と
し、 前記中空コイル(18)における巻線数と前記リング状スペ
ーサ(20)の軸方向厚みとを、前記棒状多極磁石(14)の各
磁極における要求される磁束線数の多少程度に応じて増
減調節し得るよう構成したことを特徴とする棒状多極磁
石の着磁コイル。1. The polarity is alternately inverted in the axial direction to show a polarity,
The magnetizing coil (16) for magnetizing the rod-shaped multipole magnet (14) is set so that the number of magnetic flux lines of each magnetic pole is set to be large at both ends and relatively small in the middle part. There, a ring-shaped spacer (20) is sequentially interposed between the independent hollow coil (18) and the hollow coil (18) to form a coil main body (22) connected in series, and the coil main body ( Through hole (24) coaxially opened in (22)
The rod-shaped multipole magnet (14) to be magnetized is allowed to be inserted therein, and the number of windings in the hollow coil (18) and the axial thickness of the ring-shaped spacer (20) are set to the rod-shaped multipole. A magnetizing coil for a rod-shaped multi-pole magnet, characterized in that the magnet (14) can be increased or decreased in accordance with the required number of magnetic flux lines in each magnetic pole.
各磁極の磁束線数が両端部側は多くなるよう設定される
と共に、中間部位では比較的少なくなるよう設定される
棒状多極磁石(14)の着磁装置において、 独立した中空コイル(18)と中空コイル(18)との間にリン
グ状スペーサ(20)を直列に順次介在させてコイル本体部
(22)を構成し、このコイル本体部(22)に同軸的に開設さ
れる通孔部(24)中に着磁されるべき棒状多極磁石(14)の
挿通を可能とした着磁コイル(16)を備え、 前記コイル本体部(22)における通孔部(24)に、往復動自
在でかつ所要位置で停止させ得るノックアウトピン(34)
を臨ませ、 前記通孔部(24)に挿通した棒状多極磁石(14)のコイル本
体部(22)に対する着磁位置を、前記ノックアウトピン(3
4)により調節可能とすると共に、着磁終了後の棒状多極
磁石(14)を該ノックアウトピン(34)によりコイル本体部
(22)の軸方向外方へ突出させ得るよう構成したことを特
徴とする棒状多極磁石の着磁装置。2. The polarity is alternately inverted in the axial direction to show the polarity,
In the magnetizing device for the rod-shaped multi-pole magnet (14), the number of magnetic flux lines of each magnetic pole is set to be large at both ends and relatively small in the middle part. The ring-shaped spacer (20) is sequentially interposed in series between the hollow coil (18) and the hollow coil (18), and the coil main body is formed.
A magnetizing coil that constitutes (22) and allows insertion of a rod-shaped multipole magnet (14) to be magnetized in a through hole (24) that is coaxially opened in the coil body (22). A knockout pin (34) that includes (16) and that can reciprocate and can be stopped at a required position in the through hole (24) in the coil body (22).
Of the rod-shaped multi-pole magnet (14) inserted into the through hole (24) with respect to the coil body (22).
4) Adjustable and the rod-shaped multi-pole magnet (14) after completion of magnetization by the knockout pin (34)
(22) A magnetizing device for a rod-shaped multi-pole magnet, which is configured so as to be projected outward in the axial direction of (22).
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP24115892A JPH0669034A (en) | 1992-08-17 | 1992-08-17 | Magnetizing coil for rodlike multipolar magnet and magnetizing device thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP24115892A JPH0669034A (en) | 1992-08-17 | 1992-08-17 | Magnetizing coil for rodlike multipolar magnet and magnetizing device thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0669034A true JPH0669034A (en) | 1994-03-11 |
Family
ID=17070129
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP24115892A Pending JPH0669034A (en) | 1992-08-17 | 1992-08-17 | Magnetizing coil for rodlike multipolar magnet and magnetizing device thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0669034A (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05251353A (en) * | 1991-04-22 | 1993-09-28 | Handotai Process Kenkyusho:Kk | Semiconductor manufacturing apparatus and manufacture of semiconductor device |
JPH06124899A (en) * | 1991-02-15 | 1994-05-06 | Handotai Process Kenkyusho:Kk | Semiconductor fabricating apparatus |
JPH06140340A (en) * | 1992-10-27 | 1994-05-20 | Handotai Process Kenkyusho:Kk | Manufacturing equipment for semiconductor device |
JPH06168877A (en) * | 1992-11-30 | 1994-06-14 | Handotai Process Kenkyusho:Kk | Device for fabrication of semiconductor |
JPH06168888A (en) * | 1992-11-30 | 1994-06-14 | Handotai Process Kenkyusho:Kk | Fabrication system for semiconductor device |
EP0639839A1 (en) * | 1993-08-20 | 1995-02-22 | Innovations Rayons X Et Techniques Ressuage Magnetoscopie Ixtrem | Device for magnetising or demagnetising metal workpieces |
JP2011211001A (en) * | 2010-03-30 | 2011-10-20 | Nichia Corp | Magnetization coil and method of manufacturing the same |
GB2519811A (en) * | 2013-10-31 | 2015-05-06 | Siemens Plc | Superconducting magnet assembly |
CN109585120A (en) * | 2018-11-08 | 2019-04-05 | 中国工程物理研究院电子工程研究所 | Permanent magnet magnetization method based on magnetic seal transcription technology |
-
1992
- 1992-08-17 JP JP24115892A patent/JPH0669034A/en active Pending
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06124899A (en) * | 1991-02-15 | 1994-05-06 | Handotai Process Kenkyusho:Kk | Semiconductor fabricating apparatus |
JPH05251353A (en) * | 1991-04-22 | 1993-09-28 | Handotai Process Kenkyusho:Kk | Semiconductor manufacturing apparatus and manufacture of semiconductor device |
JPH06140340A (en) * | 1992-10-27 | 1994-05-20 | Handotai Process Kenkyusho:Kk | Manufacturing equipment for semiconductor device |
JPH06168877A (en) * | 1992-11-30 | 1994-06-14 | Handotai Process Kenkyusho:Kk | Device for fabrication of semiconductor |
JPH06168888A (en) * | 1992-11-30 | 1994-06-14 | Handotai Process Kenkyusho:Kk | Fabrication system for semiconductor device |
EP0639839A1 (en) * | 1993-08-20 | 1995-02-22 | Innovations Rayons X Et Techniques Ressuage Magnetoscopie Ixtrem | Device for magnetising or demagnetising metal workpieces |
JP2011211001A (en) * | 2010-03-30 | 2011-10-20 | Nichia Corp | Magnetization coil and method of manufacturing the same |
GB2519811A (en) * | 2013-10-31 | 2015-05-06 | Siemens Plc | Superconducting magnet assembly |
CN109585120A (en) * | 2018-11-08 | 2019-04-05 | 中国工程物理研究院电子工程研究所 | Permanent magnet magnetization method based on magnetic seal transcription technology |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH0669034A (en) | Magnetizing coil for rodlike multipolar magnet and magnetizing device thereof | |
US4065739A (en) | Reversible direction solenoid assembly | |
JPS60107809A (en) | Multipolar magnet and device and method of manufacturing said magnet | |
DE2216408A1 (en) | DYNAMOELECTRIC STEP ARRANGEMENT | |
ES8405690A1 (en) | Linear solenoid device. | |
JPS5815929B2 (en) | Manufacturing method of radially magnetized permanent magnet | |
EP0026014A1 (en) | Method of manufacturing a permanent magnet assembly which is to be arranged in an air gap of a transformer core | |
CN110189884B (en) | Planar micro-polar-distance multi-pole magnetizing method | |
JPH045246B2 (en) | ||
DE1135578B (en) | Polarized protective tube contact relay | |
DE2245151A1 (en) | ADJUSTABLE RELAY | |
JPS61208815A (en) | Magnetic field generator | |
SU1018156A1 (en) | Device for multipole electric machine magnet magnetization | |
RU2000109411A (en) | DEVICE FOR PRE-SEED TREATMENT OF SEEDS IN ELECTROMAGNETIC FIELD | |
EP1513169A3 (en) | Multipole magnetizing device and method for producing such device | |
JPH0539606Y2 (en) | ||
JPS6038844B2 (en) | magnetic attraction device | |
JPS6161137U (en) | ||
JPS6050442A (en) | Magnetic-field generator for nuclear-magnetic- resonance imaging apparatus | |
JP2000323323A (en) | Plunger type magnet device | |
DE408840C (en) | Mechanical bell ringer | |
JPH04223304A (en) | Magnet, manufacture thereof and magnetizing jig | |
SU1128268A2 (en) | Matrix-type patching panel | |
JPS5667138A (en) | Manufacturing method of color picture tube | |
DE878818C (en) | Brake magnet arrangement for electricity meters with drum armature |