JPH066765B2 - Composite material - Google Patents

Composite material

Info

Publication number
JPH066765B2
JPH066765B2 JP60106936A JP10693685A JPH066765B2 JP H066765 B2 JPH066765 B2 JP H066765B2 JP 60106936 A JP60106936 A JP 60106936A JP 10693685 A JP10693685 A JP 10693685A JP H066765 B2 JPH066765 B2 JP H066765B2
Authority
JP
Japan
Prior art keywords
molded body
composite material
shutter
present
composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60106936A
Other languages
Japanese (ja)
Other versions
JPS61266537A (en
Inventor
正好 山口
和教 目黒
秀逸 松尾
泰実 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Coorstek KK
Original Assignee
Toshiba Ceramics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Ceramics Co Ltd filed Critical Toshiba Ceramics Co Ltd
Priority to JP60106936A priority Critical patent/JPH066765B2/en
Priority to US06/855,448 priority patent/US4673435A/en
Priority to DE19863616578 priority patent/DE3616578A1/en
Publication of JPS61266537A publication Critical patent/JPS61266537A/en
Publication of JPH066765B2 publication Critical patent/JPH066765B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Manufacture Of Alloys Or Alloy Compounds (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 この発明は、Al2−Al−Si系複合体を有する複
合材に関する。
TECHNICAL FIELD The present invention relates to a composite material having an Al 2 O 3 —Al—Si-based composite.

従来の技術 アルミナ系セラミック材料は硬さ、機械的強度、耐熱
性、化学的安定性等に優れており、またSiCやSi
のセラミック材料と比較しても耐熱性が劣っておら
ず、しかも安価に得られることから、工業用セラミック
材料として広く用いられている。
2. Description of the Related Art Alumina-based ceramic materials are excellent in hardness, mechanical strength, heat resistance, chemical stability, etc., and also SiC and Si 3
It is not inferior in heat resistance to the N 4 ceramic material, and can be obtained at low cost, so that it is widely used as an industrial ceramic material.

従来、アルミナ系セラミック製品は、単結晶ファイバー
を除き、粉体を所定形状に成形したのち焼成するか、あ
るいは成形と焼成を同時に行うことによって製造してい
た。
Conventionally, alumina-based ceramic products have been manufactured by removing the single crystal fiber and molding the powder into a predetermined shape and then firing, or by simultaneously performing the molding and firing.

発明が解決しようとする課題 従来の製造方法によって製造されたアルミナ系セラミッ
ク材料には次のような欠点があった。
Problems to be Solved by the Invention The alumina-based ceramic material manufactured by the conventional manufacturing method has the following drawbacks.

(1)硬いため加工性が劣る。(1) Workability is poor because it is hard.

(2)脆性の強い材料であるため衝撃に弱い。一般的に
いって、セラミック材料は破壊靭性値が金属に比べ大巾
に劣っている。
(2) Since it is a brittle material, it is weak against impact. Generally speaking, the fracture toughness value of ceramic materials is far inferior to that of metals.

(3)複雑形状の製品を精密に成形加工するのが困難で
ある。
(3) It is difficult to precisely mold a product having a complicated shape.

(4)焼成温度が1500〜1900℃と高い。(4) The firing temperature is as high as 1500 to 1900 ° C.

(5)焼成収縮が大きい。(5) Firing shrinkage is large.

(6)耐熱衝撃性が小さい。(6) Small thermal shock resistance.

(7)金属に比べて潤滑性が劣っている。(7) The lubricity is inferior to that of metal.

このような欠点があるため、アルミナ系セラミック製品
は、多くの優れた基本的特性を有しながら、強度特性と
か機械的な信頼性が厳しく要求される構造材としては使
用が困難であった。
Due to these drawbacks, alumina-based ceramic products have been difficult to use as structural materials that have many excellent basic properties, but are strictly required to have strength properties and mechanical reliability.

本発明は、前述のような技術背景を勘案して、強度特性
が良好で、かつ機械的信頼性の大きい複合材を製造でき
る複合材を提供することを目的としている。
The present invention has been made in view of the above technical background, and an object of the present invention is to provide a composite material capable of producing a composite material having good strength characteristics and high mechanical reliability.

課題を解決するための手段 このような目的を達成するために、この発明は、Si
成形体又はSiC成形体を構成する中実部の少なく
とも表面がAl2−Al−Si系複合体からなり、上
記成形体の空隙部がAlからなることを特徴とする複合
材を要旨としている。
Means for Solving the Problems In order to achieve such an object, the present invention provides Si 3
At least the surface of the solid portion constituting the N 4 compact or SiC molded body is made of Al 2 O 3 -Al-Si-based composite, the composite gap portion of the molded body characterized by comprising the Al It is a summary.

実施例 この発明による複合材の製造方法の好適な実施例につい
て述べると、まずSi成形体又はSiC成形体を
つくり、必要に応じて所望の形状に加工する。そして、
そのような成形体を酸化雰囲気で加熱して酸化させ、そ
のあと高純度のAl融液中に浸漬し、 4Al+3SiO→2Al2+3Siの式に従って
AlとSiOを反応させ、酸化された成形体中のSi
をAl2に置換する。その結果、成形体そのもの
を構成する中実部の表面がAl2−Al−Si系複合
体からなり、成形体の空隙部(つまり中実部によって画
成された中空部分)がAlからなる複合材ができる。そ
の後、Al融液から複合材を取り出す。好ましくは、さ
らに、Al融液の温度よりも30〜200℃の高い温度
(たとえば780〜950℃)で加熱処理する。それに
より、複合体に付着している過剰のAl融液を揮散させ
るとともに、未反応のSiOをAlと反応させる。し
かも、複合体中に残留している歪みを除去する。
Example A preferred example of the method for producing a composite material according to the present invention will be described. First, a Si 3 N 4 molded body or a SiC molded body is prepared and, if necessary, processed into a desired shape. And
Such a molded body was heated in an oxidizing atmosphere to be oxidized, then immersed in a high-purity Al melt, and Al was reacted with SiO 2 according to the formula 4Al + 3SiO 2 → 2Al 2 O 3 + 3Si to be oxidized. Si in the compact
Replace O 2 with Al 2 O 3 . As a result, the surface of the solid portion constituting the molded body itself is made of Al 2 O 3 -Al-Si based composite, and the void portion of the molded body (that is, the hollow portion defined by the solid portion) is made of Al. A composite material can be made. Then, the composite material is taken out from the Al melt. Preferably, the heat treatment is further performed at a temperature higher than the temperature of the Al melt by 30 to 200 ° C. (for example, 780 to 950 ° C.). As a result, the excess Al melt adhering to the composite is volatilized and unreacted SiO 2 is reacted with Al. Moreover, the strain remaining in the composite is removed.

実施例1 第1図はこの発明による複合材の製造方法を実施するた
めの反応炉を一例の概略を示している。
Example 1 FIG. 1 schematically shows an example of a reaction furnace for carrying out the method for producing a composite material according to the present invention.

石英ガラス製の反応容器1は上部が開放されていて、下
方部が閉じられている。その内部には高純度カーボン製
のルツボ2が配置してある。反応容器1の上部にはシャ
ッター3が設けてある。シャッター3の上部には加熱部
分15が存在しており、さらにその上に出入れ部分4が
別のシャッター16を介して設けてある。出入れ部分4
の側部にはさらに別のシャッター5が設けてある。出入
れ部分4、加熱部分15およびシャッター3、16を貫
通して線状の保持器6が垂直に配装できるようになって
いる。保持器6の上部は上下駆動機構13に連結されて
いて、昇降可能になっている。保持器6の下方部はSi
成形体又はSiC成形体7を保持するようになっ
ている。
The reaction vessel 1 made of quartz glass has an open upper part and a closed lower part. A crucible 2 made of high-purity carbon is arranged inside thereof. A shutter 3 is provided above the reaction container 1. A heating portion 15 is present on the upper portion of the shutter 3, and an entrance / exit portion 4 is provided on the heating portion 15 via another shutter 16. In and out part 4
Another shutter 5 is provided on the side of the. The linear retainer 6 can be vertically installed by penetrating the inlet / outlet portion 4, the heating portion 15 and the shutters 3 and 16. The upper part of the retainer 6 is connected to the vertical drive mechanism 13 and can be moved up and down. The lower part of the cage 6 is made of Si
The 3 N 4 molded body or the SiC molded body 7 is held.

また、反応容器1の上方側部には排気口8が形成してあ
って、真空ポンプ9に接続してある。
An exhaust port 8 is formed on the upper side of the reaction container 1 and is connected to a vacuum pump 9.

さらに、反応容器1の外側にはヒータ10が螺旋状に配
置してある。ハータ10は、ルツボ2付近に比較して、
そこよりも上方のところで密に配装して、ルツボ2の上
方でより高温に加熱しうるようになっている。その高温
加熱領域に高純度カーボン製のパイプ11が配置してあ
る。
Further, a heater 10 is spirally arranged outside the reaction container 1. Compared to the vicinity of the crucible 2, the hatter 10
They are densely arranged above the crucible 2 and can be heated to a higher temperature above the crucible 2. A high purity carbon pipe 11 is arranged in the high temperature heating region.

符号12はルツボ2に収容されている純度99.9%の
Al融液を示している。
Reference numeral 12 indicates an Al melt having a purity of 99.9% contained in the crucible 2.

加熱部分15の外側にも、ヒータ用のコイル18が設け
てあり、それに対応して内側にカーボン製のパイプ19
が設けてある。
A coil 18 for a heater is also provided outside the heating portion 15, and a carbon pipe 19 is correspondingly provided inside the coil 18.
Is provided.

なお、ルツボ2やパイプ11を支持するための手段は図
の簡略をはかるため図示を省略している。
The means for supporting the crucible 2 and the pipe 11 are not shown for the sake of simplicity.

製造にあたっては、まず円管状のピルフォームをつく
る。すなわち、気孔率が30%程度のSiC又はSi
の成形体7を円管状につくる。シャッター5を開け
て、その成形体7を保持器6の下端に取りつけ、しかる
のちシャッター5を閉じる。つぎはシャッター16を開
けて、保持器6の下端を下降させてから、そのシャッタ
ー16を閉じる。その成形体7をパイプ19のところに
保持して、空気の存在下でかつ800〜1400℃で数
時間にわたって加熱し、成形体7を酸化させる。しかる
のち、成形体7をさらに下降させるとともにシャッター
3を開閉し、反応容器1内を不活性雰囲気または10〜
15Torrの減圧下にしてから純度99.9%のAl融
液12中に30分だけ750℃で浸漬し、 4Al+3SiO→2Al2+3Siの式にしたが
ってAlとSiOを反応させ、成形体7中のSiO
をAl2に置換し、Al7−Al−Si系複合材を
得る。その後、保持器6の下端を上昇させて、Al融液
12から複合材を取り出し、さらに、パイプ11のとこ
ろまで上昇させて、そこでAl融液12の温度よりも3
0〜200℃高い温度(つまり780〜950℃)で前
述の減圧下または不活性雰囲気下で加熱処理する。
In manufacturing, a circular pill form is first made. That is, SiC or Si 3 having a porosity of about 30%
A molded body 7 of N 4 is formed into a cylindrical shape. The shutter 5 is opened, the molded body 7 is attached to the lower end of the holder 6, and then the shutter 5 is closed. Next, the shutter 16 is opened, the lower end of the cage 6 is lowered, and then the shutter 16 is closed. The shaped body 7 is held at the pipe 19 and heated in the presence of air and at 800 to 1400 ° C. for several hours to oxidize the shaped body 7. After that, the molded body 7 is further lowered and the shutter 3 is opened / closed, and the inside of the reaction vessel 1 is filled with an inert atmosphere or
After reducing the pressure to 15 Torr, it is immersed in an Al melt 12 having a purity of 99.9% for 30 minutes at 750 ° C., and Al and SiO 2 are reacted according to the formula of 4Al + 3SiO 2 → 2Al 2 O 3 + 3Si to form a molded body. SiO 2 in 7
To Al 2 O 3 to obtain an Al 7 O 3 —Al—Si based composite material. Then, the lower end of the cage 6 is raised to take out the composite material from the Al melt 12, and further to the pipe 11, where the temperature is lower than the temperature of the Al melt 12 by 3 degrees.
Heat treatment is performed at a high temperature of 0 to 200 ° C. (that is, 780 to 950 ° C.) under the above-mentioned reduced pressure or an inert atmosphere.

そのあと、シャッター3、16を開いて、保持器6の下
端を上昇させることにより複合材を出入れ部分4まで上
昇させ、シャッター3、16閉じる。そのあと、シャッ
ター5を開け、複合材を保持器6から除去する。これに
より、Si成形体又はSiC成形体を構成する中
実部の表面がAl2−Al−Si系複合体からなり、
上記成形体の空隙部がAlからなる複合材が得られた。実施例2 前述の実施例1にあっては成形体7が円管形状のプリフ
ォームであったが、それに代えて、本実施例では気孔率
が25%程度のプレート状のSiC又はSiの成
形体7を使用する。そして、実施例1と同一の条件で成
形体7を処理する。これにより、Si成形体又は
SiC成形体を構成する中実部の表面がAl2−Al
−Si系複合体からなり、上記成形体の空隙部がAlか
らなる複合材が得られた。
After that, the shutters 3 and 16 are opened, and the lower end of the cage 6 is raised to raise the composite material to the inlet / outlet portion 4, and the shutters 3 and 16 are closed. Then, the shutter 5 is opened and the composite material is removed from the cage 6. Thereby, the surface of the solid part constituting the Si 3 N 4 molded body or the SiC molded body is made of Al 2 O 3 -Al-Si based composite,
A composite material was obtained in which the voids of the molded body were made of Al. Example 2 In Example 1 described above, the molded body 7 was a cylindrical tubular preform, but instead of this, in the present Example, plate-shaped SiC or Si 3 N having a porosity of about 25%. The molded body 4 of 4 is used. Then, the molded body 7 is processed under the same conditions as in Example 1. As a result, the surface of the solid part constituting the Si 3 N 4 compact or the SiC compact is Al 2 O 3 -Al.
A composite material was obtained, which was made of a —Si-based composite and the voids of the above-mentioned molded body were made of Al.

発明の効果 本発明によれば、複合材が複雑な形状であっても容易に
製造することができるばかりでなく、複合材の機械的強
度や耐摩耗性が高い。また、金属と比較すると、この発
明により製造された複合材の比重は大巾に小さい。
EFFECTS OF THE INVENTION According to the present invention, not only can a composite material be manufactured easily even if it has a complicated shape, but also the composite material has high mechanical strength and wear resistance. Also, the specific gravity of the composite material produced according to the present invention is much smaller than that of metal.

応用例 本発明の複合材は、靭性および軽量を必要とする航空機
の製造材、オールセラミックスのエンジン、防弾チョッ
キ、戦車のそう甲板、ゴルフクラブのフェース、バイオ
セラミックス等に最適である。
Application Example The composite material of the present invention is most suitable for aircraft manufacturing materials that require toughness and light weight, all-ceramic engines, bulletproof vests, tank decks, golf club faces, bioceramics, and the like.

また、本発明の複合材は、潤滑性と耐摩耗性がよいの
で、メカニカルシールや、つり糸リングとしても最適で
ある。
Further, since the composite material of the present invention has good lubricity and wear resistance, it is optimal as a mechanical seal or a hanging thread ring.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明による複合材の製造に使用する反応炉の
一例を示す説明図である。 1.....反応容器 2.....ルツボ 3、5...シャッター 4.....出入れ部分 7.....ガラス成形体 12....Al融液
FIG. 1 is an explanatory view showing an example of a reaction furnace used for producing a composite material according to the present invention. 1. . . . . Reaction vessel 2. . . . . Crucible 3,5. . . Shutter 4. . . . . In / out section 7. . . . . Glass molded body 12. . . . Al melt

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】Si成形体又はSiC成形体を構成
する中実部の少なくとも表面がAl2−Al−Si系
複合体からなり、上記成形体の空隙部がAlからなるこ
とを特徴とする複合材。
1. A solid portion constituting a Si 3 N 4 molded body or a SiC molded body, at least the surface of which is made of Al 2 O 3 -Al-Si-based composite, and the void portion of the molded body is made of Al. Is a composite material.
JP60106936A 1985-05-21 1985-05-21 Composite material Expired - Lifetime JPH066765B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP60106936A JPH066765B2 (en) 1985-05-21 1985-05-21 Composite material
US06/855,448 US4673435A (en) 1985-05-21 1986-04-24 Alumina composite body and method for its manufacture
DE19863616578 DE3616578A1 (en) 1985-05-21 1986-05-16 ALUMINUM OXIDE COMPOSITE AND METHOD FOR THE PRODUCTION THEREOF

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60106936A JPH066765B2 (en) 1985-05-21 1985-05-21 Composite material

Publications (2)

Publication Number Publication Date
JPS61266537A JPS61266537A (en) 1986-11-26
JPH066765B2 true JPH066765B2 (en) 1994-01-26

Family

ID=14446275

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60106936A Expired - Lifetime JPH066765B2 (en) 1985-05-21 1985-05-21 Composite material

Country Status (1)

Country Link
JP (1) JPH066765B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4865806A (en) * 1986-05-01 1989-09-12 Dural Aluminum Composites Corp. Process for preparation of composite materials containing nonmetallic particles in a metallic matrix
JPH0764643B2 (en) * 1986-09-17 1995-07-12 ランキサイド テクノロジー カンパニー エル ピー Manufacturing method of self-supporting ceramic containing body

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5920434A (en) * 1982-07-26 1984-02-02 Sumitomo Chem Co Ltd Production of fiber reinforced composite material

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5920434A (en) * 1982-07-26 1984-02-02 Sumitomo Chem Co Ltd Production of fiber reinforced composite material

Also Published As

Publication number Publication date
JPS61266537A (en) 1986-11-26

Similar Documents

Publication Publication Date Title
US4673435A (en) Alumina composite body and method for its manufacture
FI88019C (en) Process for manufacturing self-supporting bodies
RU1787148C (en) Method of manufacturing articles from ceramic composite material
US4040849A (en) Polycrystalline silicon articles by sintering
US5728638A (en) Metal/ceramic composites containing inert metals
US5508120A (en) Boron carbide cermet structural materials with high flexure strength at elevated temperatures
CS277420B6 (en) Refractory self-supporting ceramic composite and process for preparing thereof
EP0261063B1 (en) Method for producing self-supporting ceramic bodies with graded properties
JPH066765B2 (en) Composite material
ZA200506574B (en) Method of obtaining surface coating of silicon nitride (SI3N4) on ceramic components and parts
JPS61236604A (en) Synthesizing method for beta-si3n4
US4670320A (en) Alumina formed body and method for its manufacture
JPS61266531A (en) Al2o3-al-si-type composite material
JPH0796693B2 (en) Method for producing Al-lower 2 O-lower 3 -Al-Si composite material
US5120575A (en) Silver lined ceramic vessel and method of preparation
JPH0657859B2 (en) Al2O3-Al-Si composite material
JPH0533292B2 (en)
JPH085709B2 (en) Ceramic composite material and manufacturing method thereof
JPS6156257A (en) Method for degassing molten metal
CN1031521A (en) The methods for forming complex oxidation reaction products that comprises superconducting article
JPS6236087A (en) Granular sic-dispersed metal silicon heat-resistant material
JP2868204B2 (en) Equipment for producing lithium tetraborate single crystal
JPH0549733B2 (en)
JPH0549732B2 (en)
JPH066496B2 (en) Furnace core tube for semiconductor manufacturing and manufacturing method thereof