JPH0667204B2 - Power converter - Google Patents

Power converter

Info

Publication number
JPH0667204B2
JPH0667204B2 JP62252490A JP25249087A JPH0667204B2 JP H0667204 B2 JPH0667204 B2 JP H0667204B2 JP 62252490 A JP62252490 A JP 62252490A JP 25249087 A JP25249087 A JP 25249087A JP H0667204 B2 JPH0667204 B2 JP H0667204B2
Authority
JP
Japan
Prior art keywords
voltage
drive signal
signal
semiconductor switch
wave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62252490A
Other languages
Japanese (ja)
Other versions
JPH0197174A (en
Inventor
昌義 熊野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP62252490A priority Critical patent/JPH0667204B2/en
Publication of JPH0197174A publication Critical patent/JPH0197174A/en
Publication of JPH0667204B2 publication Critical patent/JPH0667204B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は直流を交流に変換する電力変換装置(インバ
ータ)、特に使用素子の耐圧に比べ高電圧出力が得られ
る直列接続型の電力変換装置に関するものである。
Description: TECHNICAL FIELD The present invention relates to a power converter (inverter) for converting direct current into alternating current, and in particular, a serial connection type power converter capable of obtaining a high voltage output compared with the withstand voltage of an element used. It is about.

[従来の技術] 第3図(A)は例えば特開昭57−80260号公報に示され
た従来の電力変換装置(インバータ)を示す構成図であ
り、図において(1)は直流電源、(2a)〜(2d)は直
列接続され、半導体スイッチを構成するトランジスタ、
(3a)〜(3d)はトランジスタ(2a)〜(2d)に逆並列
接続されたダイオード、(4)はトランジスタ(2a)〜
(2d)に印加される電圧を制限するためのコンデンサ、
(5)は負荷、(6)はコンデンサ(4)を初期充電す
るための補助電源、(7)は絶縁のための変圧器、(8
a)および(8b)は整流用ダイオード、(9a)および(9
b)はトランジスタ(2a)〜(2d)を駆動するための駆
動信号発生回路、(10a)および(10b)は駆動信号、
(10c)および(10d)は駆動信号(10a)、(10b)を論
理反転した駆動信号である。
[Prior Art] FIG. 3A is a block diagram showing a conventional power converter (inverter) disclosed in, for example, Japanese Patent Laid-Open No. 57-80260, in which (1) is a DC power source, 2a) to (2d) are connected in series and constitute a semiconductor switch,
(3a) to (3d) are diodes connected in antiparallel to the transistors (2a) to (2d), and (4) is a transistor (2a) to
A capacitor to limit the voltage applied to (2d),
(5) is a load, (6) is an auxiliary power source for initially charging the capacitor (4), (7) is a transformer for insulation, (8)
a) and (8b) are rectifying diodes, (9a) and (9
b) is a drive signal generation circuit for driving the transistors (2a) to (2d), (10a) and (10b) are drive signals,
(10c) and (10d) are drive signals obtained by logically inverting the drive signals (10a) and (10b).

従来の電力変換装置は上記のように構成され、初め、コ
ンデンサ(4)は補助電源(6)より変圧器(7)およ
び整流用ダイオード(8a)を介して直流電源(1)の電
圧Eの半分の値(E/2)で、図の極性に充電される。
駆動信号発生回路(9a)から第3図(B)(a)および
(b)に示すような駆動信号のパルス列(10a)とその
論理反転された駆動信号のパルス列(10c)がそれぞれ
トランジスタ(2a)〜(2d)の制御電極に加えられる。
例えばトランジスタ(2c)と(2d)が導通すれば直流電
源電圧Eは、2つのトランジスタ(2a)と(2b)に印加
される。この時、コンデンサ(4)にはE/2の電圧に
充電されているため、たとえ上記2つのトランジスタの
スイッチング特性や静特性にバラツキがあつても、それ
ぞれE/2づつに分圧される。逆に、トランジスタ(2
a)と(2b)を導通させても同様にトランジスタ(2c)
と(2d)はE/2づつに分圧される。この結果、使用す
るトランジスタの耐圧は確実に1/2に低減できる。こ
の時、交流出力端子(21)には直流電源電圧Eと零の2
つのレベルを有し、駆動信号(10a)と相似な波形が得
られる。なお、他の相についても同様に、駆動信号発生
回路(9b)から第3図(B)(c)および(d)に示す
ような駆動信号のパルス列(10b)とその論理反転され
た駆動信号のパルス列(10d)がそれぞれ図示しないト
ランジスタ(2e)と(2f)および(2g)と(2h)に加え
られ、この結果、出力(負荷)電圧として第3図(B)
(e)に示すようなE,零,−Eの3つのレベルの波形が
得られる。
The conventional power converter is configured as described above, and first, the capacitor (4) receives the voltage E of the DC power supply (1) from the auxiliary power supply (6) through the transformer (7) and the rectifying diode (8a). At half the value (E / 2), it is charged to the polarity shown.
From the drive signal generation circuit (9a), a drive signal pulse train (10a) and a logically inverted drive signal pulse train (10c) as shown in FIGS. 3 (B), (a) and (b) are respectively provided in the transistor (2a). )-(2d) to the control electrodes.
For example, if the transistors (2c) and (2d) become conductive, the DC power supply voltage E is applied to the two transistors (2a) and (2b). At this time, since the capacitor (4) is charged to the voltage of E / 2, even if there are variations in the switching characteristics and static characteristics of the above two transistors, the voltage is divided into E / 2 each. Conversely, the transistor (2
Similarly, even if a) and (2b) are turned on, the transistor (2c)
And (2d) are divided by E / 2. As a result, the breakdown voltage of the transistor used can be surely reduced to 1/2. At this time, the AC output terminal (21) has two
With two levels, a waveform similar to the drive signal (10a) can be obtained. Similarly, for the other phases, the pulse train (10b) of the drive signal as shown in FIGS. 3 (B), (c) and (d) from the drive signal generation circuit (9b) and the drive signal whose logic is inverted. Pulse train (10d) is applied to transistors (2e) and (2f) and (2g) and (2h) not shown respectively, and as a result, the output (load) voltage is shown in FIG. 3 (B).
Waveforms at three levels E, zero, and -E as shown in (e) are obtained.

[発明が解決しようとする問題点] 上記のような従来の電力変換装置では、各直列アームの
出力では2レベル、相間(線間)出力では3レベルのパ
ルス幅変調波形となり、比較的多くの高調波成分を含ん
でいたという問題点があった。
[Problems to be Solved by the Invention] In the conventional power conversion device as described above, the output of each series arm has a pulse width modulation waveform of two levels and the interphase (line-to-line) output has a three-level pulse width modulation waveform. There was a problem that it contained harmonic components.

この発明は、かかる問題点を解決するためになされたも
ので、従来の電力変換装置が有する素子の分圧機能をそ
のまま生かし、かつ出力電圧の高調波成分の低減を図る
ことのできる電力変換装置を得ることを目的とする。
The present invention has been made to solve such a problem, and is capable of directly utilizing the voltage dividing function of the elements of the conventional power converter and reducing the harmonic component of the output voltage. Aim to get.

[問題点を解決するための手段] この発明に係る電力変換装置は、4個の直列接続された
半導体スイッチおよび上記各半導体スイッチに逆並列接
続されたダイオードから成る少なくとも1組の直列接続
体を直流電源の正負端子間に接続し、上記各直列接続体
を構成する第1の半導体スイッチと第2の半導体スイッ
チの接続点と第3の半導体スイッチと第4の半導体スイ
ッチの接続点の間にコンデンサを接続するとともに、第
2の半導体スイッチと第3の半導体スイッチの接続点に
負荷を接続した電力変換装置において、信号波を発生す
る信号波発生手段、搬送波を発生する搬送波発生手段、
上記搬送波を上記信号波で変調して第1の駆動信号と第
2の駆動信号を発生する第1の駆動信号発生手段と第2
の駆動信号発生手段を備え、上記第1の駆動信号により
上記直列接続体を構成する上記第1の半導体スイッチと
第4の半導体スイッチを交互に導通させるとともに、上
記第2の駆動信号により上記第2の半導体スイッチと第
3の半導体スイッチを交互に導通させることにより上記
直流電源から上記負荷への電力供給を制御したものであ
る。
[Means for Solving the Problems] A power conversion device according to the present invention includes at least one series connection body including four semiconductor switches connected in series and diodes connected in anti-parallel to each of the semiconductor switches. Connected between the positive and negative terminals of a DC power supply, and between the connection point of the first semiconductor switch and the second semiconductor switch, and the connection point of the third semiconductor switch and the fourth semiconductor switch, which form each of the above-mentioned series connection bodies. In a power conversion device in which a capacitor is connected and a load is connected to a connection point between the second semiconductor switch and the third semiconductor switch, a signal wave generating unit that generates a signal wave, a carrier wave generating unit that generates a carrier wave,
A first drive signal generating means for modulating the carrier wave with the signal wave to generate a first drive signal and a second drive signal; and a second drive signal generating means.
Drive signal generating means for alternately connecting the first semiconductor switch and the fourth semiconductor switch forming the series connection body by the first drive signal, and the second drive signal for the second semiconductor switch. The power supply from the DC power supply to the load is controlled by alternately connecting the second semiconductor switch and the third semiconductor switch.

[作用] この発明においては、4個の半導体スイッチで構成され
た直列接続体が第1の駆動信号と第2の駆動信号によっ
て駆動されることにより、直流電源電圧を出力する第1
の半導体スイッチと第2の半導体スイッチが導通するモ
ード、中間電圧を出力する第1の半導体スイッチと第3
の半導体スイッチまたは第2の半導体スイッチと第4の
半導体スイッチが導通するモード、零電圧を出力する第
3の半導体スイッチと第4の半導体スイッチが導通する
モードが達成され、出力電圧の高調波成分の低減を図る
ことができる。
[Operation] In the present invention, the series connection body including four semiconductor switches is driven by the first drive signal and the second drive signal to output the DC power supply voltage.
Mode in which the semiconductor switch and the second semiconductor switch are conductive, the first semiconductor switch and the third semiconductor switch that output an intermediate voltage
Of the semiconductor switch or the second semiconductor switch and the fourth semiconductor switch are conducted, and the mode in which the third semiconductor switch and the fourth semiconductor switch which output zero voltage are conducted are achieved, and the harmonic component of the output voltage is achieved. Can be reduced.

[実施例] 第1図はこの発明の一実施例を示す構成図であり、
(1)〜(7)、(8a)および(8b)は上記従来装置と
全く同一のものである。ただし、(5)の負荷と、
(6)、(7)、(8a)および(8b)から成るコンデン
サ(4)の初期充電回路の図示は省略している。
[Embodiment] FIG. 1 is a block diagram showing an embodiment of the present invention.
(1) to (7), (8a) and (8b) are exactly the same as the above conventional device. However, with the load of (5),
The illustration of the initial charging circuit for the capacitor (4) including (6), (7), (8a) and (8b) is omitted.

(9a)および(9b)は駆動信号発生手段であって、この
実施例ではコンパレータが使われており、それぞれの出
力は第3図(A)に示す従来例と異なりトランジスタ
(2a)と(2d)および(2b)と(2c)の制御電極に接続
されている。
(9a) and (9b) are drive signal generating means, and a comparator is used in this embodiment, and their outputs are different from those of the conventional example shown in FIG. ) And (2b) and (2c) control electrodes.

(11)は図示しない負荷(出力)電圧の基本波成分に相
当するパターン信号(正弦波)を発生する信号波発生回
路、(12)は搬送波発生回路、(13)および(14)はそ
れぞれ直流電源(1)およびコンデンサ(4)の電圧検
出手段、(15)は直流電源電圧の1/2の電圧とコンデ
ンサ電圧の差を積分増幅する電圧制御回路、(16)は負
荷(出力)電流の極性を検知する極性検知手段、(17)
は搬送波発生回路(12)の出力バイアスの極性を切り変
えるスイッチ、(18)は負荷電流の極性によりスイッチ
(17)を操作するスイッチ操作回路、(19)はバイアス
信号加算回路、(20)は搬送波(三角波)の符号反転回
路、(21)は交流出力端子である。
(11) is a signal wave generation circuit that generates a pattern signal (sine wave) corresponding to the fundamental wave component of the load (output) voltage (not shown), (12) is a carrier wave generation circuit, and (13) and (14) are DC Voltage detection means for the power supply (1) and the capacitor (4), (15) a voltage control circuit for integrating and amplifying the difference between the voltage of 1/2 of the DC power supply voltage and the capacitor voltage, and (16) for the load (output) current. Polarity detection means for detecting polarity, (17)
Is a switch for switching the polarity of the output bias of the carrier wave generation circuit (12), (18) is a switch operation circuit for operating the switch (17) according to the polarity of the load current, (19) is a bias signal addition circuit, and (20) is A sign inversion circuit for a carrier wave (triangular wave), and (21) is an AC output terminal.

上記のように構成された電力変換装置においては第3図
(A)の従来装置と同じくコンデンサ(4)は図示され
ない初期充電回路により直流電源(1)の1/2の電圧
(E/2)まで図示の極性に充電される。信号波発生回
路(11)は第2図(A)(a)に示すように交流出力端
子(21)に発生する出力電圧の基本波成分に相当する正
弦波(信号波)を発生し、搬送波発生回路(12)から発
生する第2図(A)(a)に示す三角波(搬送波)と共
にコンパレータ(9a)に入力され、上記コンパレータ
(9a)は第2図(A)(b)に示すパルス幅変調された
駆動信号(パルス列)(10a)およびその論理反転され
駆動信号(10c)を発生し、それぞれトランジスタ(2
a)および(2d)を駆動する。一方、コンパレータ(9
b)においては、上記正弦波と符号反転回路(20)で正
負反転された三角波により第2図(A)(c)に示すパ
ルス幅変調された駆動信号(パルス列)(10b)および
その論理反転された駆動信号(10d)を発生し、トラン
ジスタ(2b)および(2c)を駆動する。この結果、交流
出力端子(21)はトランジスタ(2a)と(2b)が同時に
導通すれば直流電源電圧Eの電位に、トランジスタ(2
b)と(2d)または(2a)と(2c)が導通すればコンデ
ンサ電圧、または直流電源電圧とコンデンサ電圧の差電
圧(コンデンサ電圧がE/2ならばいずれもE/2)
に、トランジスタ(2c)と(2d)が導通すれば零電位と
なり、第2図(A)(d)に示すように高調波含有率の
少ない3レベルのパルス幅変調波形が得られる。
In the power converter configured as described above, the capacitor (4) has a voltage (E / 2) that is half that of the DC power supply (1) due to the initial charging circuit (not shown) as in the conventional device of FIG. 3 (A). Is charged to the polarity shown. The signal wave generation circuit (11) generates a sine wave (signal wave) corresponding to the fundamental wave component of the output voltage generated at the AC output terminal (21) as shown in FIGS. The triangular wave (carrier wave) shown in FIGS. 2 (A) and (a) generated from the generation circuit (12) is input to the comparator (9a), and the comparator (9a) outputs the pulse shown in FIGS. 2 (A) and (b). A width-modulated drive signal (pulse train) (10a) and its logically inverted drive signal (10c) are generated to generate a transistor (2
Drive a) and (2d). Meanwhile, the comparator (9
In b), the pulse width modulated drive signal (pulse train) (10b) and its logic inversion shown in FIGS. 2 (A) and 2 (c) by the sine wave and the triangular wave whose sign is inverted by the sign inversion circuit (20). The drive signal (10d) is generated to drive the transistors (2b) and (2c). As a result, the AC output terminal (21) is at the potential of the DC power supply voltage E when the transistors (2a) and (2b) are turned on at the same time.
If b) and (2d) or (2a) and (2c) conduct, the capacitor voltage or the voltage difference between the DC power supply voltage and the capacitor voltage (E / 2 if the capacitor voltage is E / 2)
In addition, if the transistors (2c) and (2d) become conductive, the potential becomes zero, and as shown in FIGS. 2A and 2D, a 3-level pulse width modulation waveform having a small harmonic content is obtained.

なを、この時、非導通のトランジスタにはコンデンサ電
圧がE/2ならばE/2の電圧が印加されている。ま
た、この時、中間電位(E/2)のモードにおいては負
荷電流はコンデンサ(4)を通って流れる。即ち、負荷
電流が正でトランジスタ(2a)が導通、(2b)が非導通
(この時トランジスタ(2c)には駆動信号が与えられて
いる)ならば、直流電源(1)の正側→トランジスタ
(2a)→コンデンサ(4)→ダイオード(3c)→負荷へ
のループが形成されコンデンサは負荷電流によって充電
される(充電モードAという)。同じく負荷電流が正で
トランジスタ(2a)が非導通で、(2b)が導通(この時
トランジスタ(2d)にも駆動信号が与えられている)な
らば、直流電源(1)の負側→ダイオード(3d)→コン
デンサ(4)→トランジスタ(2b)→負荷へのループが
形成されコンデンサは負荷へ放電する(放電モードBと
いう)。また、負荷電流が負になれば上記充電モードA
と放電モードBにおけるコンデンサ(4)の充放電関係
は反対になる。この結果、第2図(A)(e)に示すよ
うに、コンデンサ(4)の充電期間と放電期間は交互に
生じ、かつ充放電量は通常出力の1サイクルでバランス
する。このためコンデンサ電圧の変動幅は比較的少なく
てすむ。しかし、過渡状態やトランジスタ特性のバラツ
キなどで非対称性が生じた場合、充放電バランスがくず
れ、コンデンサ電圧は変化しようとするが電圧検出手段
(14)でこれを検出し、電圧制御回路(15)においては
電圧検出手段(13)で検出された直流電源(1)の電圧
値の1/2との偏差を積分増幅し、バイアス加算回路
(19)で三角波信号に直流バイアスとして加えられる。
この時、極性検知手段(16)にて負荷(出力)電流の極
性を検出し、その極性に応じ、スイッチ操作回路(18)
がスイッチ(17)を切り換えて上記電圧制御回路(15)
からのバイアス信号の極性を切り換える。第2図(B)
はコンデンサ(4)の電圧が直流電源電圧Eの1/2よ
り大きくなった場合を示したもので、電圧制御回路(1
5)は正の制御信号を出し、負荷電流が正の期間は正の
バイアスを、負の期間は負のバイアスが三角波に加えら
れ第2図(A)(e)に比べ第2図(B)(d)に示す
ようにコンデンサ(4)の充電モードAが少なく、放電
モードBが増加するようにパルス幅の位相が変化し、コ
ンデンサ電圧がE/2に等しくなるように制御される。
しかもこれに伴う出力電圧波形歪の増加を抑制すること
ができる。
However, at this time, if the capacitor voltage is E / 2, the voltage of E / 2 is applied to the non-conductive transistor. Further, at this time, in the mode of the intermediate potential (E / 2), the load current flows through the capacitor (4). That is, if the load current is positive, the transistor (2a) is conducting, and (2b) is non-conducting (at this time, the drive signal is applied to the transistor (2c)), the positive side of the DC power source (1) → transistor A loop is formed from (2a) → capacitor (4) → diode (3c) → load and the capacitor is charged by the load current (called charging mode A). Similarly, if the load current is positive, the transistor (2a) is non-conductive, and (2b) is conductive (at this time, the drive signal is also applied to the transistor (2d)), the negative side of the DC power supply (1) → diode (3d) → capacitor (4) → transistor (2b) → a loop to the load is formed and the capacitor is discharged to the load (referred to as discharge mode B). If the load current becomes negative, the charge mode A
And the charge / discharge relationship of the capacitor (4) in the discharge mode B is opposite. As a result, as shown in FIGS. 2A and 2E, the charging period and the discharging period of the capacitor (4) occur alternately, and the charging / discharging amount is balanced in one cycle of normal output. Therefore, the fluctuation range of the capacitor voltage can be relatively small. However, when asymmetry occurs due to transient conditions or variations in transistor characteristics, the charge / discharge balance is lost and the capacitor voltage tries to change, but this is detected by the voltage detection means (14) and the voltage control circuit (15) In (1), the deviation of the voltage value of the DC power supply (1) detected by the voltage detection means (13) from 1/2 is integrated and amplified, and added to the triangular wave signal as a DC bias by the bias addition circuit (19).
At this time, the polarity detection means (16) detects the polarity of the load (output) current, and the switch operation circuit (18) is detected according to the polarity.
Switches the switch (17) to switch the voltage control circuit (15).
Switches the polarity of the bias signal from. Fig. 2 (B)
Shows the case where the voltage of the capacitor (4) becomes larger than 1/2 of the DC power supply voltage E. The voltage control circuit (1
5) outputs a positive control signal, a positive bias is added to the triangular wave during the period when the load current is positive, and a negative bias is added to the triangular wave during the period when the load current is negative, as compared to FIG. 2 (A) (e). (D) As shown in (d), the charge mode A of the capacitor (4) is small, the phase of the pulse width is changed so that the discharge mode B is increased, and the capacitor voltage is controlled to be equal to E / 2.
Moreover, it is possible to suppress an increase in output voltage waveform distortion that accompanies this.

なお、上記実施例では符号反転回路(20)にて三角波
(搬送波)の符号を反転していたが、逆に正弦波(信号
波)の符号を反転したものを用いるとしても同様の動作
を期待できる。
In the above embodiment, the sign of the triangular wave (carrier wave) is inverted by the sign inversion circuit (20), but the same operation is expected even if an inverted sign of the sine wave (signal wave) is used. it can.

また上記実施例では信号波発生回路(11)、搬送波発生
回路(12)、電圧制御回路(15)、スイッチ(17)、ス
イッチ操作回路(18)、バイアス信号加算回路(19)、
符号反転回路(20)、コンパレータ(9a)および(9b)
はそれぞれ独立の回路として示していたが、これらの一
部または全部をマイコン等を使用してソフトウエアの演
算処理に置き換え、一体化することや、予め上記論理に
基づき駆動信号パターンを求め、メモリーに記憶された
上記駆動信号パターンを読み出すことにより直接駆動信
号を発生させることも可能である。
In the above embodiment, the signal wave generation circuit (11), carrier wave generation circuit (12), voltage control circuit (15), switch (17), switch operation circuit (18), bias signal addition circuit (19),
Sign inversion circuit (20), comparators (9a) and (9b)
Are shown as independent circuits, but some or all of them are replaced with software arithmetic processing using a microcomputer etc. and integrated, or the drive signal pattern is calculated in advance based on the above logic, and memory It is also possible to directly generate the drive signal by reading the drive signal pattern stored in the memory.

さらに、三角波は正弦波の6倍の周波数の例を示した
が、これに限定されるものでないことは明白である。
Further, although the triangular wave has been shown as an example having a frequency six times as high as that of the sine wave, it is obvious that the triangular wave is not limited to this.

ところで上記説明では、この発明を1アームの単相の場
合について述べたが、多アームの多相で構成しても利用
できることはいうまでもない。
By the way, in the above description, the present invention has been described for the case of a single-phase single phase, but it goes without saying that the present invention can also be used if it is configured with a multi-arm multiphase.

[発明の効果] この発明は以上説明したとおり、4個の直列接続された
半導体スイッチおよび上記各半導体スイッチに逆並列接
続されたダーオードから成る少なくとも1組の直列接続
体を直流電源の正負端子間に接続し、上記各直列接続体
を構成する第1の半導体スイッチと第2の半導体スイッ
チの接続点と第3の半導体スイッチと第4の半導体スイ
ッチの接続点の間にコンデンサを接続するとともに、第
2の半導体スイッチと第3の半導体スイッチの接続点に
負荷を接続した電力変換装置において、信号波を発生す
る信号波発生手段、搬送波を発生する搬送波発生手段、
上記搬送波を上記信号波で変調して第1の駆動信号と第
2の駆動信号を発生する第1の駆動信号発生手段と第2
の駆動信号発生手段を備え、上記第1の駆動信号により
上記直列接続体を構成する上記第1の半導体スイッチと
第4の半導体スイッチを交互に導通させるとともに、上
記第2の駆動信号により上記第2の半導体スイッチと第
3の半導体スイッチを交互に導通させることにより上記
直流電源から上記負荷への電力供給を制御するように構
成したので、多段レベルの波形歪の少ない出力が得られ
高周波成分の低減を図ることができ、かつ使用する半導
体スイッチの耐圧が1/2に低減できるという効果があ
る。
[Effects of the Invention] As described above, according to the present invention, at least one set of series-connected bodies composed of four semiconductor switches connected in series and each diode connected in anti-parallel to each semiconductor switch is connected between the positive and negative terminals of the DC power supply. And connecting a capacitor between the connection point of the first semiconductor switch and the second semiconductor switch and the connection point of the third semiconductor switch and the fourth semiconductor switch, which form each of the series connection bodies, In a power conversion device in which a load is connected to a connection point between the second semiconductor switch and the third semiconductor switch, a signal wave generation unit that generates a signal wave, a carrier wave generation unit that generates a carrier wave,
A first drive signal generating means for modulating the carrier wave with the signal wave to generate a first drive signal and a second drive signal; and a second drive signal generating means.
Drive signal generating means for alternately connecting the first semiconductor switch and the fourth semiconductor switch forming the series connection body by the first drive signal, and the second drive signal for the second semiconductor switch. Since the power supply from the DC power source to the load is controlled by alternately conducting the second semiconductor switch and the third semiconductor switch, an output with less waveform distortion of multi-stage level can be obtained and high frequency components There is an effect that the reduction can be achieved and the breakdown voltage of the semiconductor switch used can be reduced to half.

【図面の簡単な説明】[Brief description of drawings]

第1図はこの発明の一実施例を示す構成図、第2図
(A)および(B)は第1図の動作波形を示す動作波形
図、第3図(A)および(B)は従来の電力変換装置の
構成図とその動作波形図である。 図において、(1)は直流電源、(2a)〜(2d)はトラ
ンジスタ、(3a)〜(3d)はダイオード、(4)はコン
デンサ、(9a)および(9b)はコンパレータ、(10
a)、(10b)、(10c)および(10d)は駆動信号(パル
ス幅変調されたパルス列)、(11)は信号波発生回路、
(12)は搬送波発生回路、(13)および(14)は電圧検
出手段、(15)は電圧制御回路、(16)は極性検出手
段、(17)はスイッチ、(18)はスイッチ操作回路、
(19)はバイアス信号加算回路、(20)は符号反転回
路、(21)は交流出力端子である。 なお、各図中同一符号は同一または相当部分を示す。
1 is a block diagram showing an embodiment of the present invention, FIGS. 2 (A) and 2 (B) are operation waveform diagrams showing the operation waveforms of FIG. 1, and FIGS. 3 (A) and 3 (B) are conventional. FIG. 3 is a configuration diagram of the power conversion device of FIG. In the figure, (1) is a DC power supply, (2a) to (2d) are transistors, (3a) to (3d) are diodes, (4) is a capacitor, (9a) and (9b) are comparators, and (10
a), (10b), (10c) and (10d) are drive signals (pulse width modulated pulse trains), (11) is a signal wave generation circuit,
(12) is a carrier wave generation circuit, (13) and (14) are voltage detection means, (15) is a voltage control circuit, (16) is polarity detection means, (17) is a switch, (18) is a switch operation circuit,
(19) is a bias signal addition circuit, (20) is a sign inversion circuit, and (21) is an AC output terminal. In the drawings, the same reference numerals indicate the same or corresponding parts.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】4個の直列接続された半導体スイッチおよ
び上記各半導体スイッチに逆並列接続されたダイオード
から成る少なくとも1組の直列接続体を直流電源の正負
端子間に接続し、上記各直列接続体を構成する第1の半
導体スイッチと第2の半導体スイッチの接続点と第3の
半導体スイッチと第4の半導体スイッチの接続点の間に
コンデンサを接続するとともに、第2の半導体スイッチ
と第3の半導体スイッチの接続点に負荷を接続した電力
変換装置において、信号波を発生する信号波発生手段、
搬送波を発生する搬送波発生手段、上記搬送波を上記信
号波で変調して第1の駆動信号と第2の駆動信号を発生
する第1の駆動信号発生手段と第2の駆動信号発生手段
を備え、上記第1の駆動信号により上記直列接続体を構
成する上記第1の半導体スイッチと第4の半導体スイッ
チを交互に導通させるとともに、上記第2の駆動信号に
より上記第2の半導体スイッチと第3の半導体スイッチ
を交互に導通させることにより上記直流電源から上記負
荷への電力供給を制御することを特徴とする電力変換装
置。
1. At least one set of a series connection body composed of four semiconductor switches connected in series and a diode connected in anti-parallel to each of the semiconductor switches is connected between positive and negative terminals of a DC power supply, and each of the series connections is connected. A capacitor is connected between a connection point between the first semiconductor switch and the second semiconductor switch and a connection point between the third semiconductor switch and the fourth semiconductor switch, which form the body, and the second semiconductor switch and the third semiconductor switch are connected. In the power conversion device in which a load is connected to the connection point of the semiconductor switch, a signal wave generating unit that generates a signal wave,
A carrier wave generating means for generating a carrier wave; a first drive signal generating means and a second drive signal generating means for modulating the carrier wave with the signal wave to generate a first drive signal and a second drive signal, The first drive signal and the fourth semiconductor switch forming the series connection body are alternately turned on by the first drive signal, and the second drive switch and the third semiconductor switch are turned on by the second drive signal. A power conversion device, characterized in that power supply from the DC power supply to the load is controlled by alternately conducting semiconductor switches.
【請求項2】信号波が負荷電圧の基本波成分に相当する
信号波であり、搬送波が上記信号波に同期した搬送波で
あり、第1の駆動信号発生手段は上記信号波と上記搬送
波をパルス幅変調することにより第1の駆動信号である
第1のパルス信号を発生し、第2の駆動信号発生手段は
上記信号波と上記搬送波のいずれか一方を符号反転して
パルス幅変調することにより第2の駆動信号である第2
のパルス信号を発生することを特徴とする特許請求の範
囲第1項記載の電力変換装置。
2. A signal wave is a signal wave corresponding to a fundamental wave component of a load voltage, a carrier wave is a carrier wave synchronized with the signal wave, and a first drive signal generating means pulses the signal wave and the carrier wave. The first pulse signal which is the first drive signal is generated by the width modulation, and the second drive signal generating means performs the pulse width modulation by inverting the sign of one of the signal wave and the carrier wave. The second drive signal is the second
The power conversion device according to claim 1, wherein the pulse signal is generated.
【請求項3】負荷に流れる負荷電流の極性を検知する極
性検知手段、直流電源の電圧を検出する第1の電圧検出
手段、コンデンサの電圧を検出する第2の電圧検出手
段、及び上記直流電源の電圧の1/2と上記コンデンサ
の電圧との偏差を出力する電圧制御手段を備え、上記極
性検知手段で検知した負荷電流の極性と上記電圧制御手
段の出力である偏差に基づいて搬送波を制御することを
特徴とする特許請求の範囲第1項または第2項記載の電
力変換装置。
3. A polarity detecting means for detecting a polarity of a load current flowing through a load, a first voltage detecting means for detecting a voltage of a DC power supply, a second voltage detecting means for detecting a voltage of a capacitor, and the DC power supply. Voltage control means for outputting a deviation between 1/2 of the voltage of the capacitor and the voltage of the capacitor, and controls the carrier wave based on the polarity of the load current detected by the polarity detection means and the deviation which is the output of the voltage control means. The power conversion device according to claim 1 or 2, wherein:
【請求項4】極性検知手段により検知した負荷に流れる
負荷電流の極性と、電圧制御手段により出力した直流電
源の電圧の1/2とコンデンサの電圧との偏差に基づ
き、第1のパルス信号および第2のパルス信号のパルス
幅を差動的に制御したことを特徴とする特許請求の範囲
第3項記載の電力変換装置。
4. A first pulse signal based on the polarity of the load current flowing through the load detected by the polarity detection means and the deviation between 1/2 of the voltage of the DC power source output by the voltage control means and the voltage of the capacitor. The power converter according to claim 3, wherein the pulse width of the second pulse signal is controlled differentially.
【請求項5】極性検知手段により検知した負荷に流れる
負荷電流の極性と、電圧制御手段により出力した直流電
源の電圧の1/2とコンデンサの電圧との偏差に基づ
き、搬送波を直流バイアスすることにより上記コンデン
サ電圧を制御したことを特徴とする特許請求の範囲第3
項または第4項記載の電力変換装置。
5. A direct current bias is applied to the carrier wave on the basis of the polarity of the load current flowing through the load detected by the polarity detection means and the deviation between the voltage of the DC power supply output by the voltage control means and the voltage of the capacitor. Claim 3 characterized in that the capacitor voltage is controlled by
The power converter according to item 4 or item 4.
JP62252490A 1987-10-08 1987-10-08 Power converter Expired - Lifetime JPH0667204B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62252490A JPH0667204B2 (en) 1987-10-08 1987-10-08 Power converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62252490A JPH0667204B2 (en) 1987-10-08 1987-10-08 Power converter

Publications (2)

Publication Number Publication Date
JPH0197174A JPH0197174A (en) 1989-04-14
JPH0667204B2 true JPH0667204B2 (en) 1994-08-24

Family

ID=17238096

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62252490A Expired - Lifetime JPH0667204B2 (en) 1987-10-08 1987-10-08 Power converter

Country Status (1)

Country Link
JP (1) JPH0667204B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103329431B (en) * 2010-10-27 2016-09-14 梅鲁斯音频有限公司 Use the audio frequency amplifier of many level pulse width modulation
JP5598513B2 (en) * 2012-08-29 2014-10-01 株式会社村田製作所 Power system interconnection inverter device
JP5843052B2 (en) * 2013-06-14 2016-01-13 株式会社村田製作所 Inverter device
JP5861802B2 (en) * 2013-07-02 2016-02-16 株式会社村田製作所 Inverter device
JP6123900B2 (en) * 2013-09-02 2017-05-10 株式会社村田製作所 Inverter device
CN107306083B (en) 2016-04-22 2019-09-20 台达电子企业管理(上海)有限公司 The voltage balancing control device and voltage balancing control method of striding capacitance

Also Published As

Publication number Publication date
JPH0197174A (en) 1989-04-14

Similar Documents

Publication Publication Date Title
US9001544B2 (en) Inverter device
US9013906B2 (en) Power system-interconnected inverter device
US5099408A (en) System for controlling a PWM inverter having delay time compensation
JPH09224376A (en) Power conversion method and power converter
JPWO2014061519A1 (en) Inverter device
JPWO2014030181A1 (en) Power converter
US20150180368A1 (en) Power converter, and inverter device including the power converter
JPH05211776A (en) Inverter
JPH08126352A (en) Power converter
JPH0667204B2 (en) Power converter
KR930006388B1 (en) Dc/ac converter
JP2765372B2 (en) AC / DC converter
JP2000262071A (en) Power converter
JPH09238481A (en) Power converting equipment
JP3409039B2 (en) Control device for power converter
JP4448294B2 (en) Power converter
JPS598152B2 (en) sine wave inverter
JPH07177753A (en) Control method and equipment for power converter unit
JPH05328728A (en) Ac/dc converter
SU1056147A1 (en) Three-phase-load current regulator
JP7047225B2 (en) Inverter device
JPH10304683A (en) Inverter device
KR930003008B1 (en) Pulse width modulation inverter control system
WO2020157787A1 (en) Power conversion device
JPH11243689A (en) Pwm control circuit