JPH0667188A - Line defect detection circuit - Google Patents

Line defect detection circuit

Info

Publication number
JPH0667188A
JPH0667188A JP22038392A JP22038392A JPH0667188A JP H0667188 A JPH0667188 A JP H0667188A JP 22038392 A JP22038392 A JP 22038392A JP 22038392 A JP22038392 A JP 22038392A JP H0667188 A JPH0667188 A JP H0667188A
Authority
JP
Japan
Prior art keywords
transistor
line defect
line
detection circuit
defect detection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP22038392A
Other languages
Japanese (ja)
Other versions
JP3108776B2 (en
Inventor
Yuji Kawachi
裕二 河内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP22038392A priority Critical patent/JP3108776B2/en
Publication of JPH0667188A publication Critical patent/JPH0667188A/en
Application granted granted Critical
Publication of JP3108776B2 publication Critical patent/JP3108776B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Liquid Crystal (AREA)
  • Liquid Crystal Display Device Control (AREA)
  • Thin Film Transistor (AREA)

Abstract

PURPOSE:To prevent a cross-talk defect occurring due to a leakage current in a detecting transistor in a line defect detection circuit on an active matrix substrate. CONSTITUTION:In the line defect detection circuit on the active matrix substrate incorporating a horizontal scanning driver circuit, the detecting transistor 32 is made to be an LDD (Lightly Doped Drain) structure or an off-set structure. An off current in the transistor is reduced by these structures, and the cross-talk defect between source lines 34 is prevented. In the section of the transistor, a structure where no impurity atom exists in the thin film silicon of the bottom part of a gate electrode 4 and no impurity atom exists between AB as well is the off-set structure, and the structure where the impurity with lower density than a source drain part 2 exists between AB is the LCD structure.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は液晶表示体に関する。FIELD OF THE INVENTION The present invention relates to a liquid crystal display.

【0002】[0002]

【従来の技術】アクティブマトリックス液晶パネルは、
高画質で高解像度の表示が得られるので近年広く薄型表
示体として用いられている。但し画面を構成する画素単
位にトランジスタを用いたり積層構造であることから製
造歩留りが課題となっている。特にパネル組立て工程で
発見される不良は、TFT基板との対向電極であるカラ
ーフィルター基板のコストも含んでいるのでコストダウ
ンの面からTFT基板での検査で不良を落とす必要があ
る。TFT基板上にドライバー回路を内蔵したTFT基
板では各データ線に液晶パネル用ビデオ信号を、書き込
むタイミングを利用して正常な信号が書き込まれるか否
かを判定しデータ線の線欠陥を検出する回路を活用でき
る。
2. Description of the Related Art Active matrix liquid crystal panels are
Since high-quality and high-resolution display can be obtained, it has been widely used as a thin display body in recent years. However, since a transistor is used for each pixel forming a screen or a laminated structure is used, manufacturing yield is a problem. In particular, the defects found in the panel assembling process include the cost of the color filter substrate, which is the opposite electrode to the TFT substrate, so it is necessary to drop the defects by inspection on the TFT substrate from the viewpoint of cost reduction. A circuit that detects line defects in the data line by determining whether a normal signal is written using the timing of writing the liquid crystal panel video signal to each data line in the TFT substrate that has a driver circuit built in on the TFT substrate. Can be utilized.

【0003】図3に上記線欠陥検出回路の説明図を示
す。水平走査を行なうX側シフトレジスタ37によって
サンプルホールドトランジスタ35のゲート信号が順次
スキャンされ、各データラインにビデオ信号が取り込ま
れる。このデータラインの信号をサンプルホールドトラ
ンジスタの動作タイミングに合わせて検出するのが線欠
陥検出回路で検出トランジスタ32と検出端子33、検
出トランジスタゲート入力31で構成される。検出トラ
ンジスタのゲート入力をオンして検出トランジスタ32
を導通状態にするとデータラインの信号がサンプルホー
ルドトランジスタの選択期間ごとに検出端子33に生じ
る。この信号を検出し正常波形と比較することでデータ
線の断線及び線欠陥となるその他の不良、つまりサンプ
ルホールドトランジスタの不良やデータ線のショート欠
陥などを発見しどのデータラインかを特定できる。
FIG. 3 shows an explanatory diagram of the line defect detection circuit. The gate signal of the sample-hold transistor 35 is sequentially scanned by the X-side shift register 37 that performs horizontal scanning, and the video signal is captured in each data line. The line defect detection circuit detects the signal of the data line in accordance with the operation timing of the sample and hold transistor, and is composed of the detection transistor 32, the detection terminal 33, and the detection transistor gate input 31. The detection transistor 32 is turned on by turning on the gate input of the detection transistor.
When is turned on, a signal on the data line is generated at the detection terminal 33 every selection period of the sample hold transistor. By detecting this signal and comparing it with a normal waveform, it is possible to identify a data line disconnection and other defects such as a line defect, that is, a sample / hold transistor defect or a data line short circuit defect, and specify which data line.

【0004】この欠陥検出検査を行なわない状態では検
出トランジスタ32は常に非導通状態である様に検出ゲ
ート入力を設定する必要がある。但し検出トランジスタ
32のオフリーク電流が大きい場合は検出用端子3を通
じてデータ線34が隣接ライン間でクロストークを起こ
し、データ信号の振幅が変化し、表示上線欠陥となり得
る場合があった。従来の技術における構造図を図2に示
す。1はトランジスタチャネル部、2はソースドレイン
部、3はゲート絶縁膜、4はゲート電極の構成となって
いる。ソースドレイン部2はゲート電極の端面Cよりも
チャンネル部側に入り込んでいる(Dのライン)。これ
は例えばゲート電極パターニング後にイオン打ち込み法
や熱拡散法でソースドレイン部を形成する様な場合、不
純物ドープ後の活性化アニールでチャネル部側に拡散さ
れたためである。この様な構造の従来型トランジスタで
はゲート電極による電界がドレイン端近傍に作用し電界
励起によってリーク電流が生じる様になる。
It is necessary to set the detection gate input so that the detection transistor 32 is always in a non-conducting state when the defect detection inspection is not performed. However, if the off-leakage current of the detection transistor 32 is large, the data line 34 may cause crosstalk between adjacent lines through the detection terminal 3, the amplitude of the data signal may change, and a line defect on the display may occur. A structural diagram of the conventional technique is shown in FIG. Reference numeral 1 is a transistor channel portion, 2 is a source / drain portion, 3 is a gate insulating film, and 4 is a gate electrode. The source / drain portion 2 is located closer to the channel portion side than the end surface C of the gate electrode (line D). This is because, for example, in the case where the source / drain portion is formed by the ion implantation method or the thermal diffusion method after the gate electrode patterning, it is diffused to the channel portion side by the activation annealing after the impurity doping. In the conventional transistor having such a structure, the electric field generated by the gate electrode acts in the vicinity of the drain end, and the electric field excitation causes a leak current.

【0005】[0005]

【発明が解決しようとする課題】従来型の検出用トラン
ジスタではオフリーク電流が大きくオフ時トランジスタ
抵抗が低いわけであるから図3におけるデータ線34は
その隣接ライン間で検出用端子線33を介して、クロス
トークが生じ、隣接ライン間で電位差がある場合はデー
タ信号の振幅の変化が生じてしまう。これは表示上では
階調差として観察され線状にコントラストの異なるライ
ン欠陥となる。又隣接ライン間のみならず電位差の生じ
るライン間でも同様のことが生じ縦ラインのむらが生じ
著しく面内コントラストの均一性が失われる。
Since the conventional detection transistor has a large off-leakage current and a low off-state transistor resistance, the data line 34 in FIG. 3 is connected between the adjacent lines via the detection terminal line 33. When crosstalk occurs and there is a potential difference between adjacent lines, the amplitude of the data signal changes. This is observed as a gradation difference on the display and becomes a line defect having a linearly different contrast. Further, the same phenomenon occurs not only between adjacent lines but also between lines where a potential difference occurs, and unevenness of vertical lines occurs, and the uniformity of in-plane contrast is significantly lost.

【0006】従来の技術では以上の様な線欠陥が画面内
コントラスト不均一性を生ずるという課題を有してい
た。
The conventional technique has a problem that the above-mentioned line defect causes nonuniformity of contrast in the screen.

【0007】[0007]

【課題を解決するための手段】液晶表示体を構成するア
クティブマトリックス基板上に構成された線欠陥検出回
路において、構成要素である薄膜トランジスタがLDD
(Lightyl Doped Drain)構造又は
オフセットゲート構造であることを特徴とする。
In a line defect detection circuit formed on an active matrix substrate which constitutes a liquid crystal display, a thin film transistor which is a constituent element is LDD.
It is characterized in that it has a (Lightly Doped Drain) structure or an offset gate structure.

【0008】[0008]

【実施例】図3に本発明におけるアクティブマトリック
ス基板の等価回路部分図を示す。画素スイッチングトラ
ンジスタ38はゲートライン39の選択時間にデータ線
34のデータを画素容量に書き込む。データ線34ヘは
ビデオ線36よりサンプルホールドトランジスタ35を
介して選択的にデータが書き込まれる。この様な駆動方
法を点順次駆動と称している。サンプルホールドトラン
ジタ35の選択期間を決定するゲート入力タイミングを
出力するのが37のシフトレジスタ回路で水平方向の画
素数分の出力をだす役割をはたしている。これらの回路
動作を全てガラス基板上の薄膜トランジスタを用いて行
なわれ、CMOSのトランジスタを形成して回路を構成
する。この様にドライバー駆動部をアクティブマトリッ
クス基板上に形成することで多点実装を行なう必要がな
く信頼性の向上や工程削減とコストダウンに通じる。薄
膜トランジスタの電気特性を考慮するとデータラインに
かかる抵抗や容量等は大きさに限界があり現在商品化さ
れているのは1〜2インチ対角の表示体である。例とし
ては1インチ及びそれ以下の液晶表示体は手持走査可能
なビデオカメラのファインダーとして用いられたり、プ
ロジェクター用の液晶シャッターとして広く使われてい
る。
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 3 shows a partial view of an equivalent circuit of an active matrix substrate according to the present invention. The pixel switching transistor 38 writes the data on the data line 34 into the pixel capacitance during the selection time of the gate line 39. Data is selectively written to the data line 34 from the video line 36 through the sample hold transistor 35. Such a driving method is called dot-sequential driving. The shift register circuit 37 outputs the gate input timing that determines the selection period of the sample hold transistor 35, and plays the role of outputting the number of pixels in the horizontal direction. All of these circuit operations are performed using thin film transistors on a glass substrate to form a CMOS transistor to form a circuit. By thus forming the driver driving unit on the active matrix substrate, it is not necessary to perform multipoint mounting, which leads to improvement of reliability, reduction of steps, and cost reduction. Considering the electrical characteristics of the thin film transistor, the resistance and capacitance applied to the data line are limited in size, and a display body having a diagonal of 1 to 2 inches is currently commercialized. For example, a liquid crystal display having a size of 1 inch or less is used as a viewfinder of a video camera capable of hand-held scanning and is widely used as a liquid crystal shutter for a projector.

【0009】この様なアクティブマトリックス基板の製
造工程の後に対向電極であるカラーフィルター基板との
パネル組立て工程があるが、パネル組立て後の表示検査
で発見される不良の内、相当の部分がアクティブマトリ
ックス基板工程の不良が原因で生じているものが多い。
特に線欠陥は1本でも不良品となるためパネル組立て工
程の工数と対向電極基板のコストが無駄となり、コスト
低減の妨げとなる。この様なことを回避するためにアク
ティブマトリックス基板工程で表示上線欠陥となり得る
不良を検査し選別する必要が生じる。本実施例で示すド
ライバー内蔵アクティブマトリックス基板では、ドライ
バーの動作を利用して線欠陥の検査を行うことが可能と
なる。以下にその動作を説明する。
After such a manufacturing process of the active matrix substrate, there is a panel assembling process with a color filter substrate which is a counter electrode. However, among the defects found in the display inspection after the panel assembling, a considerable part is the active matrix. Many are caused by defects in the substrate process.
In particular, even one line defect is a defective product, which wastes the number of steps in the panel assembling process and the cost of the counter electrode substrate, which hinders cost reduction. In order to avoid such a situation, it becomes necessary to inspect and select defects that may become display line defects in the active matrix substrate process. In the active matrix substrate with a built-in driver shown in this embodiment, it is possible to inspect line defects by using the operation of the driver. The operation will be described below.

【0010】シフトレジスタを所定の電圧、タイミング
で電圧波形を印加し動作させる。サンプルホルダーはシ
フトレジスタの出力タイミングに応じて点順次駆動しビ
デオ信号をソースラインに読み込む。ビデオ信号として
一定電圧を印加しておくとソースラインにサンプルホル
ダー選択期間にその電圧が印加される。検出回路のトラ
ンジスタの導通状態にすると検出用端子線(図3−3
3)にサンプルホルダー選択タイミングに応じてソース
ライン電圧が印加される。この信号を検出し、正常な信
号と比較検査することで不良を検出可能となる。
The shift register is operated by applying a voltage waveform at a predetermined voltage and timing. The sample holder is dot-sequentially driven according to the output timing of the shift register to read the video signal into the source line. When a constant voltage is applied as a video signal, the voltage is applied to the source line during the sample holder selection period. When the transistor of the detection circuit is turned on, the detection terminal line (Fig. 3-3
The source line voltage is applied to 3) according to the timing of selecting the sample holder. A defect can be detected by detecting this signal and performing a comparison inspection with a normal signal.

【0011】以上が検出動作であるが液晶駆動時にこの
検出回路は動作しないように検出トランジスタ(図3−
32)のゲート入力をオフ状態にして非導通にする必要
がある。このトランジスタのオフ抵抗が低い値であると
ソースラインはその間に電位差が生じる場合、クロスト
ークが生じ各ソースラインの振幅が変化して正確な階調
表示ができなくなる可能性がある。
The above is the detection operation, but the detection transistor (see FIG.
It is necessary to turn off the gate input of 32) to make it non-conductive. When the off-resistance of this transistor is low, if a potential difference occurs between the source lines, crosstalk may occur and the amplitude of each source line may change, which may prevent accurate gradation display.

【0012】本発明のLDD構造のトランジスタ又はオ
フセットゲート構造のトランジスタを採用すればオフ抵
抗の充分高い状態が実現できるので上記のクロストーク
を生じさせないことが可能となる。
By adopting the LDD structure transistor or the offset gate structure transistor of the present invention, a sufficiently high off-resistance can be realized, so that it is possible to prevent the above crosstalk.

【0013】次に本発明におけるLDD構造とオフセッ
トゲート構造について詳細に説明する。本発明における
線欠陥検出回路の検出用トランジスタは図1に示す様な
断面構造を有している。ガラス透明基板5の上に薄膜シ
リコンを形成しパターニングする。ゲート絶縁膜3をそ
の上に形成し、さらにゲート電極4を形成する。次にイ
オン打ち込み法又は拡散法で不純物原子であるP(リ
ン)又はB(ボロン)を注入するわけだが注入後のソー
ス・ドレイン領域が図1に示すゲート電極の端面直下A
よりチャネル部より外側Bにある構造をオフセットゲー
ト構造と言い、AとBの間にソースドレイン部より低濃
度の不純物原子が存在する状態にある構造をLDD構造
と称している。これらの構造を用いるとソース、ドレイ
ン間に電圧を印加した場合、ドレイン端近傍の電界が緩
和され、電界励起によるリーク電流が従来の構造に比べ
減少する。その結果オフ電流が2桁も低下し、オフ抵抗
は逆に増大する。この構造に用いる薄膜シリコンの製造
法としては、減圧CVD法で多結晶シリコンを形成する
方法がある。又プラズマCVD法で非晶質シリコンを形
成し、その後熱アニールやレーザーアニールで再結晶化
させて薄膜シリコンを形成する方法がある。又LDD構
造やオフセットゲート構造を実現させるプロセスとして
は、ゲート電極となる金属又は半導体のパターニング時
にゲート長さのエッチング量の制御によってLDD構造
やオフセットゲート構造を実現する方法がある。又他の
方法としてはゲート電極となる金属又は半導体のパター
ニングの後にTEOS膜をつけ、RIE(リアクティブ
イオンエッチング)法でTEOS膜を垂直にエッチング
パターニングし、その後不純物領域を形成するものがあ
る。こうした方法をとることでLDD構造又はオフセッ
トゲート構造を実現しトランジスタのオフ電流を減少さ
せることが可能となる。線欠陥検出回路でこのトランジ
スタを用いることでソースライン間のクロストークはな
くなり、検出回路が原因で生ずる不良は低減でき、歩留
り向上に寄与できる様になる。
Next, the LDD structure and the offset gate structure in the present invention will be described in detail. The detection transistor of the line defect detection circuit according to the present invention has a sectional structure as shown in FIG. Thin film silicon is formed on the glass transparent substrate 5 and patterned. The gate insulating film 3 is formed thereon, and the gate electrode 4 is further formed. Next, P (phosphorus) or B (boron), which is an impurity atom, is implanted by an ion implantation method or a diffusion method, but the source / drain region after implantation is A directly below the end face of the gate electrode shown in FIG.
The structure that is more outside B than the channel part is called an offset gate structure, and the structure in which a lower concentration of impurity atoms exists between A and B than the source / drain part is called an LDD structure. When these structures are used, when a voltage is applied between the source and the drain, the electric field in the vicinity of the drain end is relaxed, and the leak current due to electric field excitation is reduced as compared with the conventional structure. As a result, the off current is reduced by two digits, and the off resistance is increased. As a method of manufacturing thin film silicon used for this structure, there is a method of forming polycrystalline silicon by a low pressure CVD method. There is also a method of forming amorphous silicon by plasma CVD and then recrystallizing it by thermal annealing or laser annealing to form thin film silicon. As a process for realizing the LDD structure or the offset gate structure, there is a method for realizing the LDD structure or the offset gate structure by controlling the etching amount of the gate length at the time of patterning a metal or a semiconductor serving as a gate electrode. As another method, there is a method in which a TEOS film is applied after patterning a metal or a semiconductor to be a gate electrode, the TEOS film is vertically etched and patterned by a RIE (reactive ion etching) method, and then an impurity region is formed. By adopting such a method, it is possible to realize an LDD structure or an offset gate structure and reduce the off current of the transistor. By using this transistor in the line defect detection circuit, crosstalk between the source lines is eliminated, defects caused by the detection circuit can be reduced, and the yield can be improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の線欠陥検出用トランジスタ断面図。FIG. 1 is a sectional view of a transistor for line defect detection according to the present invention.

【図2】従来の技術における線欠陥検出用トラジスタ断
面図。
FIG. 2 is a sectional view of a transistor for detecting a line defect according to a conventional technique.

【図3】線欠陥検出回路を含むアクティブマトリックス
基板等価回路図。
FIG. 3 is an equivalent circuit diagram of an active matrix substrate including a line defect detection circuit.

【符号の説明】[Explanation of symbols]

1 トランジスタチャネル部 2 トランジスタソースドレイン部 3 ゲート絶縁膜 4 ゲート電極 5 ガラス基板 31 線欠陥検出回路内検出トランジスタゲート電極配
線 32 線欠陥検出トランジスタ 33 線欠陥検出用端子 34 ソースライン 35 サンプルホールドトランジスタ 36 ビデオライン 37 水平走査用シフトレジスタ回路 38 画素トランジスタ 39 ゲートライン
1 Transistor Channel Part 2 Transistor Source / Drain Part 3 Gate Insulating Film 4 Gate Electrode 5 Glass Substrate 31 Line Defect Detection Circuit Detection Transistor Gate Electrode Wiring 32 Line Defect Detection Transistor 33 Line Defect Detection Terminal 34 Source Line 35 Sample Hold Transistor 36 Video Line 37 Horizontal scanning shift register circuit 38 Pixel transistor 39 Gate line

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】液晶表示体を構成するアクティブマトリッ
クス基板において、該アクティブマトリックス基板上に
形成された線欠陥検出回路を構成する薄膜トランジスタ
がLDD(Lightly Doped Drain)
構造であることを特徴とする線欠陥検出回路。
1. In an active matrix substrate constituting a liquid crystal display, a thin film transistor constituting a line defect detection circuit formed on the active matrix substrate is an LDD (Lightly Doped Drain).
A line defect detection circuit having a structure.
【請求項2】該線欠陥検出回路を構成する薄膜トランジ
スタが、オフセットゲート構造であることを特徴とする
線欠陥検出回路。
2. A line defect detecting circuit, wherein a thin film transistor forming the line defect detecting circuit has an offset gate structure.
JP22038392A 1992-08-19 1992-08-19 Active matrix display panel Expired - Lifetime JP3108776B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22038392A JP3108776B2 (en) 1992-08-19 1992-08-19 Active matrix display panel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22038392A JP3108776B2 (en) 1992-08-19 1992-08-19 Active matrix display panel

Publications (2)

Publication Number Publication Date
JPH0667188A true JPH0667188A (en) 1994-03-11
JP3108776B2 JP3108776B2 (en) 2000-11-13

Family

ID=16750265

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22038392A Expired - Lifetime JP3108776B2 (en) 1992-08-19 1992-08-19 Active matrix display panel

Country Status (1)

Country Link
JP (1) JP3108776B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7271793B2 (en) 1995-02-01 2007-09-18 Seiko Epson Corporation Liquid crystal display device, driving method for liquid crystal display devices, and inspection method for liquid crystal display devices

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH053569U (en) * 1991-07-03 1993-01-19 凸版印刷株式会社 Door to door

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7271793B2 (en) 1995-02-01 2007-09-18 Seiko Epson Corporation Liquid crystal display device, driving method for liquid crystal display devices, and inspection method for liquid crystal display devices
US7782311B2 (en) 1995-02-01 2010-08-24 Seiko Epson Corporation Liquid crystal display device, driving method for liquid crystal display devices, and inspection method for liquid crystal display devices
US7932886B2 (en) 1995-02-01 2011-04-26 Seiko Epson Corporation Liquid crystal display device, driving method for liquid crystal display devices, and inspection for liquid crystal display devices
US7940244B2 (en) 1995-02-01 2011-05-10 Seiko Epson Corporation Liquid crystal display device, driving method for liquid crystal display devices, and inspection method for liquid crystal display devices
US8704747B2 (en) 1995-02-01 2014-04-22 Seiko Epson Corporation Liquid crystal display device, driving method for liquid crystal display devices, and inspection method for liquid crystal display devices
US9275588B2 (en) 1995-02-01 2016-03-01 Seiko Epson Corporation Liquid crystal display device, driving method for liquid crystal display devices, and inspection method for liquid crystal display devices

Also Published As

Publication number Publication date
JP3108776B2 (en) 2000-11-13

Similar Documents

Publication Publication Date Title
US7372442B2 (en) Display device
US5886365A (en) Liquid crystal display device having a capacitator in the peripheral driving circuit
US6703856B2 (en) Test method of electro-optical device, test circuit of electro-optical device, electro-optical device, and electronic equipment
CN1550826B (en) Liquid crystal device ,active matrix base board, display device and electronic device
CN110085189B (en) Display substrate, display device and picture display method
JPH05188395A (en) Liquid crystal display element
CN101344694B (en) Liquid crystal display device
KR100648141B1 (en) Display device and drive method thereof
JP2004004553A (en) Liquid crystal display panel and driving circuit
KR100406454B1 (en) Display device and method of driving the same
KR100805541B1 (en) Electro-optical device, method of driving electro-optical device, and electronic apparatus
JP3263365B2 (en) Liquid crystal display panel and inspection method thereof
KR20040048756A (en) Pannel-structure for bias aging of PMOS device
JP3424302B2 (en) Liquid crystal display
JPH10111520A (en) Liquid crystal display panel and electronic equipment using it
JP3108776B2 (en) Active matrix display panel
US6670936B1 (en) Liquid crystal display
CN101556413A (en) Liquid crystal display array substrate of thin film transistor and drive method thereof
TWI274317B (en) Electro-optical apparatus and electronic machine
US7209843B2 (en) Circuit inspection method, method of manufacturing liquid-crystal display, and circuit inspection apparatus
JP2000131713A (en) Liquid crystal display device
JPH1138389A (en) Reflection type liquid crystal display device
JP3411496B2 (en) Image display device
JP2000310792A (en) Liquid crystal display device
JPH04280228A (en) Thin film field effect type transistor driving liquid crystal display element array and driving method thereof

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080914

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080914

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090914

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090914

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100914

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100914

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110914

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120914

Year of fee payment: 12

EXPY Cancellation because of completion of term