JPH0667146A - Method for driving liquid crystal display device - Google Patents
Method for driving liquid crystal display deviceInfo
- Publication number
- JPH0667146A JPH0667146A JP19373492A JP19373492A JPH0667146A JP H0667146 A JPH0667146 A JP H0667146A JP 19373492 A JP19373492 A JP 19373492A JP 19373492 A JP19373492 A JP 19373492A JP H0667146 A JPH0667146 A JP H0667146A
- Authority
- JP
- Japan
- Prior art keywords
- liquid crystal
- display device
- wiring
- signal
- voltage
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Liquid Crystal (AREA)
- Liquid Crystal Display Device Control (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、薄膜トランジスタ(以
下TFTと呼ぶ)等のスイッチング素子と画素電極とを
マトリックス状に有するアクティブマトリックスを用い
て、液晶などの表示材料を交流駆動して画像表示をおこ
なう表示装置の表示画質を駆動方法により改善すること
を目的とするものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention uses an active matrix having a switching element such as a thin film transistor (hereinafter referred to as a TFT) and a pixel electrode in a matrix to drive a display material such as liquid crystal with an alternating current to display an image. It is an object of the present invention to improve the display image quality of a display device to be performed by a driving method.
【0002】[0002]
【従来の技術】アクティブマトリックス液晶表示装置に
よる表示画質は近年きわめて改善され、CRTのそれに
匹敵すると言われるまでに達している。しかしながら、
画質の面では、フリッカー・画面上下方向の輝度変化、
即ち輝度傾斜・固定画像を表示した直後に前記固定画像
のイメージが焼き付いたように残存する画像メモリー現
象・階調表示性能・視角依存性等は未だCRTに比べる
と遜色がないとは言えない。2. Description of the Related Art The display image quality of an active matrix liquid crystal display device has been remarkably improved in recent years, and has reached a level comparable to that of a CRT. However,
In terms of image quality, flicker, brightness change in the vertical direction of the screen,
That is, it cannot be said that the image memory phenomenon, the gradation display performance, the viewing angle dependency, etc., which remain as if the image of the fixed image was burned in immediately after displaying the brightness gradient / fixed image, is comparable to that of the CRT.
【0003】特に視角依存性の改善は、近年大画面化が
進んでいる液晶表示装置にとって重要な課題のひとつで
ある。一般に、液晶表示装置は視角依存性が大きく、表
示画面を見る角度により画像が大きく異なる性質を持っ
ている。そのため、大画面の液晶表示装置では、ある視
点から表示画面を見ると表示画面の上部と下部では表示
画像が一様でなく、画面の上下方向で輝度傾斜があるか
のように見える。In particular, the improvement of the viewing angle dependency is one of the important problems for a liquid crystal display device whose screen has been enlarged in recent years. In general, a liquid crystal display device has a large viewing angle dependency, and an image varies greatly depending on the viewing angle of the display screen. Therefore, in a large-screen liquid crystal display device, when the display screen is viewed from a certain point of view, the display image is not uniform in the upper part and the lower part of the display screen, and it looks as if there is a brightness gradient in the vertical direction of the screen.
【0004】フリッカーの改善策としては以下の技術が
公知である。即ち、表示画面のフィールド毎に信号電圧
の極性を反転するものとしては、特開昭60−1516
15号公報、同61−256325号公報、同61−2
75823号公報等がある。また表示画面の1走査線毎
に信号電圧の特性を反転するものとしては、特開昭60
−3698号公報、同60−156095号公報、同6
1−275822号公報等がある。また、フィールド反
転をしながら且つ走査線毎の反転を行なうものに特開昭
61−275824号公報がある。しかしこれらの方法
は、以下に述べる液晶等表示材料の誘電異方性や表示装
置内部の寄生容量等により不可避的に発生するDC電圧
の補償がされておらず、基本的に(表示絵素毎に)フリ
ッカーを減少させるのではなく、総合して見かけ上のフ
リッカーを減少させたものである。The following techniques are known as measures for improving flicker. That is, Japanese Patent Application Laid-Open No. 60-1516 discloses that the polarity of the signal voltage is inverted for each field on the display screen.
No. 15, JP 61-256325, and JP 61-2.
There is, for example, Japanese Patent No. 75823. Japanese Patent Laid-Open No. Sho 60-1985 discloses that the characteristics of the signal voltage are inverted every scanning line on the display screen.
No. 3698, No. 60-156095, No. 6
There is a publication such as 1-275522. Further, Japanese Patent Application Laid-Open No. 61-275824 discloses an apparatus which inverts every scanning line while performing field inversion. However, these methods do not compensate for the DC voltage that is inevitably generated due to the dielectric anisotropy of the display material such as liquid crystal described below and the parasitic capacitance inside the display device. (2) Instead of reducing the flicker, it is a reduction in the apparent flicker as a whole.
【0005】また特殊なアクティブマトリックス構成例
に於て、クロストークを減少させるものとして、K.オ
キ(Oki)他:ユーロ ディスプレイ(Euro D
isplay) ’87 P55 (1987)が公知
である。他のクロストーク対策としてW.E.ハワード
(Howard)他:I.D.R.C(InternationalDi
splay Research Conference) ’88 P230(19
88)が公知である。この方法は画像信号を供給した
後、クロストーク電圧分を補償するものである。これら
には後述の液晶の誘電異方性によるDC電圧を補償する
考慮は特になされてはいない。In a special active matrix configuration example, K. Oki and others: Euro Display (Euro D
isplay) '87 P55 (1987) is known. W. E. Howard et al .: I. D. R. C (InternationalDi
splay Research Conference) '88 P230 (19
88) is known. This method compensates for a crosstalk voltage component after supplying an image signal. There is no particular consideration for compensating a DC voltage due to the dielectric anisotropy of the liquid crystal described later.
【0006】次に、液晶の誘電異方性により表示装置内
に不可避的に発生するDC電圧を補償し、基本的にフリ
ッカーを減少させ、且つ駆動信頼性を向上させることを
意図した公知文献として、以下の2件がある。第1は
T.ヤナギサワ(Yanagisawa)他:ジャパン
ディスプレイ(JAPAN DISPLAY) ’8
6 P192 (1986)である。これは、画像信号
電圧(Vsig)の振幅中心電圧(Vc)に対して正側と負
側の振幅を変えることにより、このDC電圧を補償する
ものである。第2は、K.スズキ(Suzuki):ユ
ーロ ディスプレイ(Euro Display) ’
87 P107 (1987)である。ここでは、走査
信号の後に負の付加信号(Ve)を印加して補償しよう
とするものである。Next, as a publicly known document intended to compensate the DC voltage inevitably generated in the display device due to the dielectric anisotropy of the liquid crystal, basically reduce the flicker and improve the driving reliability. , There are the following two cases. The first is T. Yanagisawa et al .: Japan Display '8
6 P192 (1986). This is to compensate for this DC voltage by changing the positive and negative amplitudes with respect to the amplitude center voltage (Vc) of the image signal voltage (Vsig). Secondly, K. Suzuki: Euro Display '
87 P107 (1987). Here, a negative additional signal (Ve) is applied after the scanning signal to try to compensate.
【0007】さらに、液晶表示装置では、TFTのゲー
ト・ドレイン間の寄生容量Cgdを通じて走査信号が表
示電極電位に影響を及ぼし、画像信号配線の平均的電位
と表示電極の平均的電位との間に直流電位差を発生させ
ているが、液晶を交流駆動するに際し、表示電極と対向
電極間の平均的DC電位差を零とするよう表示装置の各
部電位を設定すると、前記直流電位差は画像信号配線と
対向電極間に不可避的に現れる。この直流電位差は画像
メモリー等の重大な表示欠陥を誘起する。しかし、この
直流電位差を根本的に零とするよう補償する方法は未だ
実現されていない。Further, in the liquid crystal display device, the scanning signal affects the display electrode potential through the parasitic capacitance Cgd between the gate and drain of the TFT, and the potential between the average potential of the image signal wiring and the average potential of the display electrode is increased. Although a direct current potential difference is generated, when the liquid crystal is driven by an alternating current, if the potential of each part of the display device is set so that the average DC potential difference between the display electrode and the counter electrode becomes zero, the direct current potential difference faces the image signal wiring. Inevitably appears between the electrodes. This DC potential difference causes a serious display defect such as an image memory. However, a method for compensating the DC potential difference to be essentially zero has not been realized yet.
【0008】[0008]
【発明が解決しようとする課題】本発明は上記した課題
のうち、表示画質、とりわけ視角依存性の改善を図るも
のである。SUMMARY OF THE INVENTION The present invention is intended to improve the display image quality, especially the viewing angle dependency among the above problems.
【0009】[0009]
【課題を解決するための手段】本発明は上記課題を解決
するために、容量を介して第1の配線に接続された画素
電極をマトリックス状に有し、かつ画素電極には画像信
号配線と走査信号配線に電気的に接続されたスイッチン
グ素子が接続され、画素電極と対向電極の間に保持され
た液晶材料を交流駆動し、かつスイッチング素子のオン
期間に表示画面の1フィールド毎に信号電圧の極性を反
転した画像信号電圧を画素電極に伝達し、スイッチング
素子のオフ期間に前記第1の配線に1フィールド毎に極
性を反転した第1の変調信号を与えることにより、画素
電極の電位を変化させ、電位の変化と画像信号電圧とを
相互に重畳及び、または相殺させて表示材料に電圧を印
加する液晶表示装置において、第1の配線毎に異なる第
1の変調信号を与えることにより、ある視点において画
面全面の透過光強度を一様となる第1の変調信号を最適
値とする。In order to solve the above-mentioned problems, the present invention has a matrix of pixel electrodes connected to a first wiring via a capacitor, and the pixel electrode is provided with an image signal wiring. A switching element electrically connected to the scanning signal wiring is connected to drive the liquid crystal material held between the pixel electrode and the counter electrode by alternating current, and a signal voltage is applied to each field of the display screen during the ON period of the switching element. The image signal voltage whose polarity is inverted is transmitted to the pixel electrode, and the first modulation signal whose polarity is inverted for each field is applied to the first wiring during the OFF period of the switching element, whereby the potential of the pixel electrode is changed. In a liquid crystal display device in which a potential is changed and an image signal voltage is superimposed and / or canceled to apply a voltage to a display material, a different first modulation signal is applied to each first wiring. By Rukoto, the first modulated signal as a transmitted light intensity of the entire screen in a certain viewpoint uniform and optimum value.
【0010】[0010]
【作用】上記手段により、スイッチング素子がTFT
(薄膜トランジスタ)である場合、走査信号の電位変化
Vgがゲート・ドレイン間容量Cgdを介して誘起される
画像信号との電位変化CgdVg/ΣCが負方向に発生す
る。そこで、蓄積容量Csを介して1フィールド毎に印
加する極性を反転した非対称の正負の第1の変調信号幅
Ve(+),Ve(-)を与えることにより、負方向にCsVe
(+)/ΣC、正方向にCsVe(-)/ΣCの電位変化を画素
電極に発生させ、上述した電位変化CgdVg/ΣCに重
畳させる。ここで、これらの電位変化の関係が次式を満
足するように設定すると、液晶の誘電異方性、および走
査信号がゲート・ドレイン間容量を介して誘起する直流
成分の少なくとも一部分を補償し、フリッカー・画像メ
モリー等の発生要因を除去し、高品質の表示が可能で、
表示装置の駆動信頼性も高い。By the above means, the switching element is a TFT
In the case of (thin film transistor), the potential change Vg of the scanning signal and the potential change CgdVg / ΣC with the image signal induced via the gate-drain capacitance Cgd occur in the negative direction. Therefore, by providing asymmetrical positive and negative first modulation signal widths Ve (+) and Ve (-) with the polarity reversed for each field via the storage capacitor Cs, CsVe in the negative direction is given.
A potential change of (+) / ΣC and CsVe (−) / ΣC in the positive direction is generated in the pixel electrode and superposed on the above-described potential change CgdVg / ΣC. Here, if the relationship of these potential changes is set to satisfy the following equation, the dielectric anisotropy of the liquid crystal and at least a part of the DC component induced by the scanning signal via the gate-drain capacitance are compensated, High quality display is possible by removing factors such as flicker and image memory.
The driving reliability of the display device is also high.
【0011】 CsVe(+)/ΣC+CgdVg/ΣC=CsVe(-)/ΣC−CgdVg/ΣC=ΔV* ΣC:1画素当りに有する全静電容量 ここで、Cs,Cgd,ΣC,Vgを固定値とすると、Ve
(+),Ve(-)は、一意的には決まらないが以下に示す関
係を満たす。CsVe (+) / ΣC + CgdVg / ΣC = CsVe (−) / ΣC−CgdVg / ΣC = ΔV * ΣC: Total capacitance of one pixel Here, Cs, Cgd, ΣC, and Vg are fixed values. Then Ve
(+) And Ve (-) are not uniquely determined, but satisfy the following relationships.
【0012】 (Ve(-)−Ve(+))/2=CgdVg/Cs=Veo Veo:定数 上記式を満たしながらVe(+),Ve(-)を変化させる、つ
まり、ΔV*を変化させると、表示装置の入力信号電圧
−透過率特性を変化させることが出来る。(Ve (−) − Ve (+)) / 2 = CgdVg / Cs = Veo Veo: Constant Ve (+) and Ve (−) are changed while satisfying the above formula, that is, ΔV * is changed. Thus, the input signal voltage-transmittance characteristic of the display device can be changed.
【0013】一般に、液晶表示装置は、見る角度、特に
上下方向の角度の変化に対し入力信号電圧−透過率特性
が大きく変化する。この視角による前記特性の変化を、
ΔV*による入力信号電圧−透過率特性の変化により相
殺させることにより、ある視点において画面全面の透過
光強度を一様とすることが可能となる。Generally, in a liquid crystal display device, the input signal voltage-transmittance characteristic changes greatly with respect to changes in the viewing angle, particularly in the vertical direction. The change in the characteristics due to this viewing angle,
By canceling the change in the input signal voltage-transmittance characteristic due to ΔV *, the transmitted light intensity on the entire screen can be made uniform from a certain viewpoint.
【0014】[0014]
【実施例】以下に本発明の実施例を述べる。EXAMPLES Examples of the present invention will be described below.
【0015】図1に、TFTアクティブマトリックス駆
動LCDの表示要素の電気的等価回路を示す。各表示要
素は走査信号配線1、画像信号配線2の交点にTFT3
を有する。TFT3には寄生容量として、ゲート・ドレ
イン間容量4(Cgd)、ソース・ドレイン間容量5(C
sd)及びゲート・ソース間容量6(Cgs)がある。更に
意図的に形成された容量として、液晶容量7(Clc
*)、蓄積容量8(Cs)がある。FIG. 1 shows an electrical equivalent circuit of a display element of a TFT active matrix drive LCD. Each display element has a TFT 3 at the intersection of the scanning signal wiring 1 and the image signal wiring 2.
Have. The TFT 3 has a gate-drain capacitance 4 (Cgd) and a source-drain capacitance 5 (C
sd) and a gate-source capacitance of 6 (Cgs). Further, as a capacitance intentionally formed, a liquid crystal capacitor 7 (Clc
*), Storage capacity 8 (Cs).
【0016】これらの各要素電極には外部から駆動電圧
として、走査信号配線1には走査信号Vgを、画像信号
配線2には画像信号電圧Vsigを、蓄積容量8(Cs)の
一方の電極には1フィールド毎に反転する画像信号の極
性に対応して第1の変調信号Ve(+),Ve(-)を、液晶容
量7(Clc*)の対向電極には各フィールド毎に一定の
電圧を印加する。External drive voltages are applied to the respective element electrodes, the scanning signal Vg is applied to the scanning signal wiring 1, the image signal voltage Vsig is applied to the image signal wiring 2, and one electrode of the storage capacitor 8 (Cs) is applied. Is a first modulation signal Ve (+), Ve (-) corresponding to the polarity of the image signal inverted for each field, and a constant voltage is applied to the counter electrode of the liquid crystal capacitor 7 (Clc *) for each field. Is applied.
【0017】上記した寄生ないし意図的に設置した各種
の容量を通じて駆動電圧の影響が画素電極(図中A点)
に現れる。The influence of the drive voltage is affected by the driving voltage through the above parasitic or various capacitors intentionally installed (point A in the figure).
Appear in.
【0018】n番目の走査線に関連する電圧の変化成分
として定義した図2(a)〜(d)に示すVg,Ve
(+),Ve(-),Vt及びVsigを図1の各点に各々印加す
ると、容量結合による画素電極の電位変化はΔV*は、
偶、奇それぞれのフィールドで式(1),(2)で表さ
れる(但し、TFTをオンすることによる、画像信号配
線からの電導によるA点の電位変化成分を除く)。Vg and Ve shown in FIGS. 2 (a) to 2 (d) defined as the change component of the voltage related to the nth scanning line.
When (+), Ve (-), Vt and Vsig are applied to the respective points in FIG. 1, the potential change of the pixel electrode due to capacitive coupling is ΔV *,
It is expressed by equations (1) and (2) in even and odd fields (however, the potential change component at point A due to conduction from the image signal wiring caused by turning on the TFT is excluded).
【0019】 ΔV*+=(CsVe(+)+CgdVg−CsdVsig)/Ct……(1) ΔV*−=(CsVe(-)−CgdVg−CsdVsig)/Ct……(2) Ct=Cs+Cgd+Csd+Clc* =Cp+Csd+Clc* 上式(1),(2)の第1項は第1の変調信号による電
位変化である。第2項は走査信号VgがTFTの寄生容
量Cgdを通じて画素電極に誘起する電位変化である。第
3項は画像信号電圧が寄生容量を通じて画素電極に誘起
する電位変化を示す。Clc*は、信号電圧(Vsig)の大
小により液晶の配向状態が変化するに連れて、その誘電
異方性の影響を受けて変化する液晶の容量である。従っ
て、Clc*及びΔV*は液晶容量の大(Clc(h))小(Cl
c(l))に各々対応する。ここでCgsはゲート・信号電極
間の容量であるが、走査信号配線、画像信号配線は共に
低インピーダンス電源で駆動されていること、またこの
結合は直接表示電極電位に影響しないため無視する。
偶、奇フィールドでの電位変化ΔV*+,ΔV*−が等し
くなれば、液晶に直流電圧がかからず対称な交流駆動が
可能である。即ち次式を満足することである。ΔV * + = (CsVe (+) + CgdVg−CsdVsig) / Ct ... (1) ΔV * − = (CsVe (−)-CgdVg−CsdVsig) / Ct …… (2) Ct = Cs + Cgd + Csd + Clc * = Cp + Csd + * The first term in the above equations (1) and (2) is the potential change due to the first modulation signal. The second term is a potential change induced in the pixel electrode by the scanning signal Vg through the parasitic capacitance Cgd of the TFT. The third term shows a potential change that the image signal voltage induces in the pixel electrode through the parasitic capacitance. Clc * is the capacitance of the liquid crystal that changes under the influence of its dielectric anisotropy as the alignment state of the liquid crystal changes depending on the magnitude of the signal voltage (Vsig). Therefore, Clc * and ΔV * are large (Clc (h)) and small (Cl
c (l)) respectively. Here, Cgs is the capacitance between the gate and the signal electrode, but the scanning signal line and the image signal line are both driven by a low impedance power supply, and this coupling does not directly affect the display electrode potential, so it is ignored.
If the potential changes ΔV * + and ΔV * − in the even and odd fields are equal to each other, symmetrical AC drive can be performed without applying a DC voltage to the liquid crystal. That is, the following formula should be satisfied.
【0020】 (CsVe(+)+CgdVg−CsdVsig)=(CsVe(-)−C
gdVg−CsdVsig)……(3) Vsigは各フィールド毎に反転する信号をあたえるので
各フィールドで第3項CsdVsigの効果は相殺される。
従って式(3)は (CsVe(+)+CgdVg)=(CsVe(-)−CgdVg)……(4) と簡単化される。(CsVe (+) + CgdVg−CsdVsig) = (CsVe (−) − C
gdVg-CsdVsig) (3) Since Vsig gives a signal that is inverted every field, the effect of the third term CsdVsig is canceled in each field.
Therefore, the formula (3) is simplified as (CsVe (+) + CgdVg) = (CsVe (-)-CgdVg) (4).
【0021】ここで、式(4)を書き換えると (Ve(-)−Ve(+))=2CgdVg/Cs……(4a) となる。Here, rewriting the equation (4) gives (Ve (-)-Ve (+)) = 2CgdVg / Cs (4a).
【0022】注意すべき第1の点は、画素電極に誘起さ
れる電位ΔV*は、偶、奇各フィールドで対向電極に対
して液晶容量に無関係に正負等しくすることができる。
このため正負両極性の電圧が等しく液晶に印加されフリ
ッカーは本質的に減少する。The first point to note is that the electric potential ΔV * induced in the pixel electrode can be made equal to positive and negative in the even and odd fields with respect to the counter electrode regardless of the liquid crystal capacitance.
Therefore, positive and negative polarities are equally applied to the liquid crystal, and flicker is essentially reduced.
【0023】注意すべき第2の点は式(3),(4)に
Clc*が現れないことである。即ち、式(3),(4)
が満たされる条件で駆動すれば液晶の誘電異方性の影響
は消失し、Clc*に起因するDC電圧は表示装置内部に
発生しないことになる。The second point to note is that Clc * does not appear in equations (3) and (4). That is, equations (3) and (4)
If driven under a condition that satisfies the condition, the influence of the dielectric anisotropy of the liquid crystal disappears, and the DC voltage due to Clc * does not occur inside the display device.
【0024】さらに第3の点は式(3),(4)を満た
した駆動条件では、走査信号Vgが寄生容量Cgdを通じ
て画像信号配線と表示電極間に誘起する直流電位をも相
殺し、零とすることができる。また本実施例の駆動法で
は、各フィールド毎に対向電極の電位に対して正負逆極
性の信号を与えるので、2フィールドをみれば画素電
極、信号電極、および対向電極の各電位間に直流電界は
生じない。液晶に対して直流電圧を与えない駆動法なの
で信頼性上有利である。A third point is that, under the driving condition satisfying the expressions (3) and (4), the scanning signal Vg also cancels out the DC potential induced between the image signal wiring and the display electrode through the parasitic capacitance Cgd, so that it is zero. Can be Further, in the driving method of the present embodiment, a signal of positive / negative reverse polarity with respect to the potential of the counter electrode is applied for each field, so that when two fields are seen, a DC electric field is generated between the potentials of the pixel electrode, the signal electrode, and the counter electrode. Does not occur. Since the driving method does not apply a DC voltage to the liquid crystal, it is advantageous in terms of reliability.
【0025】第4の点は、条件式(3),(4)が表示
装置側で任意設定可能な2個の電圧パラメータVe(+)と
Ve(-)を有することである。このため、Ve(+)とVe(-)
を式(3),(4)に合わせて制御すれば、画素電極に
現れる電位変動ΔV*を任意の大きさに設定できる。こ
のΔV*を変化させることにより表示装置の視角特性を
変えることができ、本発明の目的である視角依存性の改
善を実現できる。また、ΔV*が液晶のしきい値電圧以
上であれば、Vsigを小さくでき省電力化に有効であ
る。一方、Vgは駆動条件により定まる半固定常数であ
るが、その影響はVe(+),Ve(-)により補正することが
できる。他方、Vsigは表示データそのものであり最大
値と最小値の間を任意に変化する。The fourth point is that the conditional expressions (3) and (4) have two voltage parameters Ve (+) and Ve (-) that can be arbitrarily set on the display device side. Therefore, Ve (+) and Ve (-)
By controlling in accordance with equations (3) and (4), the potential fluctuation ΔV * appearing in the pixel electrode can be set to an arbitrary magnitude. By changing the ΔV *, the viewing angle characteristics of the display device can be changed, and the improvement of the viewing angle dependency, which is the object of the present invention, can be realized. Further, if ΔV * is equal to or higher than the threshold voltage of the liquid crystal, Vsig can be reduced, which is effective for power saving. On the other hand, Vg is a semi-fixed constant determined by the driving condition, but its influence can be corrected by Ve (+) and Ve (-). On the other hand, Vsig is the display data itself and changes arbitrarily between the maximum value and the minimum value.
【0026】図2(e),(f)は、図1の表示要素の
各電極に駆動信号Vg,Vsig、変調信号Veが入力され
た場合の画素電極(図1中A点)の電位変化を示す。例
えば、奇フィールドでVsigが図2(d)の実線のよう
にVs(h)にあるとき、T=T1で走査信号Vgが入る
と、TFTは導通しA点の電位VaをVs(h)と等しくな
るまで充電する。T=T2のTFTがオフになる前(望
ましくはTFTが導通状態にあるT1からT2の間)に
Veは負方向にVe(-)の信号を与えておく。次に走査信
号が消えると、このVgの変化はCgdを通じてA点では
ΔVgの電位変動として現れる。更に遅れ時間τd後のT
=T4に於てVeが正方向にVe(-)変化すると、この影
響が図のように電位Vaの正方向変位として現れる。そ
の後、T=T5でVsigが、Vs(h)からVs(l)に変化す
ると同様にA点の電位変動が現れる。この容量結合成分
を合わせて図ではΔV*として示す。2 (e) and 2 (f) are potential changes of the pixel electrode (point A in FIG. 1) when the drive signals Vg, Vsig and the modulation signal Ve are input to each electrode of the display element of FIG. Indicates. For example, when Vsig is Vs (h) in the odd field as shown by the solid line in FIG. 2D, when the scanning signal Vg is input at T = T1, the TFT becomes conductive and the potential Va at the point A becomes Vs (h). Charge until it becomes equal to. Before the TFT of T = T2 is turned off (preferably between T1 and T2 where the TFT is in a conductive state), Ve gives a signal of Ve (-) in the negative direction. Next, when the scanning signal disappears, this change in Vg appears as a potential change of ΔVg at point A through Cgd. T after the delay time τd
When Ve changes in the positive direction by Ve (-) at = T4, this effect appears as a positive displacement of the potential Va as shown in the figure. After that, when Vsig changes from Vs (h) to Vs (l) at T = T5, the potential fluctuation at the point A also appears. This capacitive coupling component is also shown as ΔV * in the figure.
【0027】その後、偶フィールドで走査信号が入力さ
れた場合には、TFTはA点をVsigの低レベルVs(l)
まで充電する。TFTがオフとなると、上記と同様に容
量結合電位ΔV*が現れる。上記のようにTFTがオフ
する時、Vsigが高レベル、Veが低レベルにある場合に
は、あるいはその逆にVsigが低レベル、Veが高レベル
にあり、TFTがオフ後Veが変動する場合には、画像
信号振幅Vsigppに対し、液晶への実効印加電圧振幅Ve
ffは、図のようにほぼ(2ΔV*+Vsigpp)となり、両
者は相互に重畳し合う。換言すると、画像信号出力IC
の出力振幅を2ΔV*だけ減少させることができる(以
下、VeとVsigが上記の位相関係にある場合を逆相とい
う)。After that, when a scanning signal is input in the even field, the TFT changes the point A to a low level Vs (l) of Vsig.
Charge up to. When the TFT is turned off, the capacitive coupling potential ΔV * appears as in the above. When Vsig is at a high level and Ve is at a low level when the TFT is turned off as described above, or conversely, when Vsig is at a low level and Ve is at a high level and Ve changes after the TFT is turned off. Is the amplitude of the effective voltage applied to the liquid crystal, Ve, relative to the image signal amplitude Vsigpp.
ff is almost (2ΔV * + Vsigpp) as shown in the figure, and both overlap each other. In other words, the image signal output IC
Output amplitude can be reduced by 2ΔV * (hereinafter, the case where Ve and Vsig have the above-mentioned phase relationship is referred to as antiphase).
【0028】一方、変調信号Veに対し、Vsigが図2
(d)の点線のような位相関係にあるとき(以下、同相
という)、A点の実効印加電圧振幅はほぼ(2ΔV*−
Vsigpp)となり、ΔV*とVsigは相互にその一部を相
殺しあう。On the other hand, for the modulation signal Ve, Vsig is shown in FIG.
When there is a phase relationship like the dotted line in (d) (hereinafter referred to as in-phase), the effective applied voltage amplitude at point A is almost (2ΔV * −).
Vsigpp), and ΔV * and Vsig cancel each other out.
【0029】図3は液晶の印加電圧対透過光強度の関係
を示すとともに、ΔV*およびVsigにより透過光を制御
する電圧範囲の例を示す。液晶の透過光が変化する電圧
範囲は、液晶のしきい値電圧Vthから飽和電圧Vmaxま
である。ΔV*がVth以上に設定すれば位相制御を行な
わない場合、必要最大信号電圧は(Vmax−Vth)とな
る。ΔV*による印加電圧をVCTに設定し、信号電圧
の振幅と位相を制御すれば、必要最大信号振幅電圧は
(Vmax−Vth)/2程度に減少させることができる。FIG. 3 shows the relationship between the applied voltage of the liquid crystal and the transmitted light intensity, and also shows an example of the voltage range for controlling the transmitted light by ΔV * and Vsig. The voltage range in which the transmitted light of the liquid crystal changes is from the threshold voltage Vth of the liquid crystal to the saturation voltage Vmax. If ΔV * is set to Vth or more, the required maximum signal voltage becomes (Vmax-Vth) when the phase control is not performed. By setting the applied voltage by ΔV * to VCT and controlling the amplitude and phase of the signal voltage, the required maximum signal amplitude voltage can be reduced to about (Vmax-Vth) / 2.
【0030】図4に視角を変えたときの印加電圧対透過
光強度の関係を示す。全ての走査線に対し同じ値のΔV
*を与えた場合、視角により印加電圧対透過光強度特性
は大きく変化する。そこで、各走査線に対応する視角に
おいて、正面の印加電圧対透過光強度特性に最も近くな
るΔV*を各走査線毎に与えると、図5に示すように各
視角における印加電圧対透過光強度特性がかなり近づ
き、表示装置正面のある視点において表示装置の全面の
透過光強度が一様となり、本発明の目的である視角依存
性の改善を達成できる。FIG. 4 shows the relationship between the applied voltage and the transmitted light intensity when the viewing angle is changed. Same value ΔV for all scanning lines
When * is given, the applied voltage-transmitted light intensity characteristic changes greatly depending on the viewing angle. Therefore, when ΔV *, which is the closest to the applied voltage vs. transmitted light intensity characteristic at the front, is given for each scanning line at the viewing angle corresponding to each scanning line, the applied voltage vs. transmitted light intensity at each viewing angle is obtained as shown in FIG. The characteristics are considerably close to each other, and the transmitted light intensity on the entire surface of the display device becomes uniform at a certain viewpoint on the front surface of the display device, and the improvement of the viewing angle dependency, which is the object of the present invention, can be achieved.
【0031】図6に本発明の第2の実施例の装置の回路
図を示す。9は走査駆動回路、10は映像信号駆動回
路、11は第1の変調回路、12は第2の変調回路であ
る。13a,13b,……13zは走査信号配線、14
a,14b,……14zは画像信号配線、15a,15
b,……15zは蓄積容量Csの共通電極、16a,1
6b,……16zは液晶の対向電極である。本実施例で
は上記のように、蓄積容量及び対向電極が走査信号配線
毎に分離して形成されており、第1の変調信号も各々の
走査信号配線に対応して印加される。走査信号・変調信
号のタイムチャートを図7に示す。図では、n番目の走
査信号配線と、n+1番目の走査信号配線に対する走査
信号・変調信号をそれぞれ示している。変調信号・画像
信号、及びΔV*,Vsigの相互関係は、本質的には図2
と同等である。即ち、映像信号・変調信号の極性は、1
フィールド毎に反転する。ここで、n番目の走査信号配
線と、n+1番目の走査信号配線に対するΔV*は異な
った値を与えている。FIG. 6 shows a circuit diagram of the apparatus of the second embodiment of the present invention. Reference numeral 9 is a scan drive circuit, 10 is a video signal drive circuit, 11 is a first modulation circuit, and 12 is a second modulation circuit. 13a, 13b, ... 13z are scanning signal wirings, 14
a, 14b, ... 14z are image signal wirings, 15a, 15
b, ... 15z is a common electrode of the storage capacitor Cs, 16a, 1
Reference numerals 6b, ..., 16z are liquid crystal counter electrodes. In the present embodiment, as described above, the storage capacitor and the counter electrode are formed separately for each scanning signal wiring, and the first modulation signal is also applied corresponding to each scanning signal wiring. FIG. 7 shows a time chart of the scanning signal / modulation signal. In the figure, the scanning signal / modulation signal for the n-th scanning signal wiring and the (n + 1) -th scanning signal wiring are respectively shown. The mutual relationship between the modulation signal / image signal and ΔV *, Vsig is essentially as shown in FIG.
Is equivalent to That is, the polarity of the video signal / modulation signal is 1
Invert every field. Here, ΔV * for the nth scanning signal wiring and the n + 1th scanning signal wiring have different values.
【0032】本実施例では、高さ約25cmの液晶表示装
置を正面方向よりおよそ40cmの距離から見る場合を想
定した。このとき、表示装置の上端および下端を見る
と、上下方向にそれぞれ約16°の角度を持つことにな
る。ここで、各走査信号配線に対応するΔV*をすべて
同じ値とすると、図4に示すように各視角での印加電圧
対透過光強度特性が大きく異なり、画面の上下方向で輝
度傾斜を生じているように見える。また、各走査信号配
線に対するΔV*を調整し、正面方向からの印加電圧対
透過光強度特性にできるだけ近づけると図5に示すよう
になる。このとき、画面上部と下部でのΔV*の差は
1.5V程度であった。これにより本発明の目的である
視角依存性の改善を実現でき、表示装置の正面から見た
場合画面上部から下部まで透過光強度がほぼ一様な表示
とすることができた。また、フリッカーが少なく信号電
圧の出力振幅を3Vppで、白から黒までの全域を駆動で
きコントラストの良い表示が可能であった。また各電極
間の直流成分がほとんどなく液晶の長期信頼性も良好で
あった。In this embodiment, it is assumed that a liquid crystal display device having a height of about 25 cm is viewed from the front side at a distance of about 40 cm. At this time, when the upper end and the lower end of the display device are viewed, they have an angle of about 16 ° in the vertical direction. Here, if ΔV * corresponding to each scanning signal wiring is all set to the same value, the applied voltage-transmitted light intensity characteristics at each viewing angle are greatly different, as shown in FIG. 4, and a luminance gradient occurs in the vertical direction of the screen. It looks like you are. In addition, when ΔV * for each scanning signal wiring is adjusted so as to be as close as possible to the applied voltage-transmitted light intensity characteristic from the front direction, it becomes as shown in FIG. At this time, the difference in ΔV * between the upper part and the lower part of the screen was about 1.5V. As a result, the improvement of the viewing angle dependency, which is the object of the present invention, can be realized, and the transmitted light intensity can be made substantially uniform from the upper part to the lower part of the screen when viewed from the front of the display device. Further, there was little flicker, the output amplitude of the signal voltage was 3 Vpp, and the entire area from white to black could be driven, and display with good contrast was possible. Further, there was almost no DC component between the electrodes, and the long-term reliability of the liquid crystal was good.
【0033】[0033]
【発明の効果】以上のように、本発明は、視角依存性を
持つアクティブマトリックス液晶表示装置において、各
走査線に対し独立な電圧値としてVe(+),Ve(-)を与え
ることにより各走査線毎の視角依存性を変化させ、ある
視点において画面の上部から下部まで透過光強度が一様
な表示画面とすることができる。As described above, according to the present invention, in the active matrix liquid crystal display device having the viewing angle dependency, each scanning line is supplied with Ve (+) and Ve (-) as independent voltage values. By changing the viewing angle dependency for each scanning line, it is possible to obtain a display screen in which the transmitted light intensity is uniform from the upper part to the lower part of the screen at a certain viewpoint.
【図1】本発明の第1の実施例を説明するための構成図FIG. 1 is a configuration diagram for explaining a first embodiment of the present invention.
【図2】同構成に印加する電圧波形図FIG. 2 is a voltage waveform diagram applied to the same configuration.
【図3】液晶の透過光強度と印加電圧の関係を示す特性
図FIG. 3 is a characteristic diagram showing the relationship between transmitted light intensity of liquid crystal and applied voltage.
【図4】液晶表示装置の信号電圧と透過光強度の関係を
示す図FIG. 4 is a diagram showing a relationship between a signal voltage of a liquid crystal display device and transmitted light intensity.
【図5】各視角において最適なVe(+),Ve(-)を設定し
たときの印加電圧と透過光強度の関係を示す特性図FIG. 5 is a characteristic diagram showing the relationship between applied voltage and transmitted light intensity when optimal Ve (+) and Ve (-) are set at each viewing angle.
【図6】本発明の第2の実施例を説明するための構成図FIG. 6 is a configuration diagram for explaining a second embodiment of the present invention.
【図7】同構成に印加する電圧波形図FIG. 7 is a voltage waveform diagram applied to the same configuration.
1 走査信号配線 2 画像信号配線 3 TFT 4 ゲート・ドレイン間容量 5 ソース・ドレイン間容量 6 ゲート・ドレイン間容量 7 液晶容量 8 蓄積容量 9 走査駆動回路 10 映像信号駆動回路 11 第1の変調信号駆動回路 12 第2の変調信号駆動回路 13a,13b,……13z 走査信号配線 14a,14b,……14z 画像信号配線 15a,15b,……15z 蓄積容量の共通配線 16a,16b,……16z 対向電極の共通配線 1 scanning signal wiring 2 image signal wiring 3 TFT 4 gate-drain capacitance 5 source-drain capacitance 6 gate-drain capacitance 7 liquid crystal capacitance 8 storage capacitance 9 scanning drive circuit 10 video signal drive circuit 11 first modulation signal drive Circuit 12 Second modulation signal drive circuit 13a, 13b, ... 13z Scan signal wiring 14a, 14b, ... 14z Image signal wiring 15a, 15b, ... 15z Storage capacitor common wiring 16a, 16b, ... 16z Counter electrode Common wiring
Claims (9)
電極をマトリックス状に有し、画像信号配線と走査信号
配線に電気的に接続されたスイッチング素子が前記画素
電極に接続され、前記画素電極と対向電極の間に保持さ
れた液晶材料を交流駆動し、かつ前記スイッチング素子
のオン期間に表示画面の1フィールド毎に信号電圧の極
性を反転した画像信号電圧を画素電極に伝達し、前記ス
イッチング素子のオフ期間に前記第1の配線に1フィー
ルド毎に画像信号電圧と逆方向の第1の変調信号を与え
ることにより、前記画素電極の電位を変化させ、前記画
素電極の電位の変化と前記画像信号電圧とを相互に重畳
及び、または相殺させて前記液晶材料に電圧を印加する
液晶表示装置において、 前記第1の配線毎に異なる前記第1の変調信号を与える
ことにより、ある視点において画面全面の透過光強度を
一様とする液晶表示装置の駆動方法。1. A switching element electrically connected to an image signal wiring and a scanning signal wiring is connected to the pixel electrode, the pixel electrode being connected to the first wiring through a capacitor in a matrix form. The liquid crystal material held between the pixel electrode and the counter electrode is AC-driven, and an image signal voltage whose signal voltage polarity is inverted for each field of the display screen is transmitted to the pixel electrode during the ON period of the switching element. , The potential of the pixel electrode is changed by applying a first modulation signal in a direction opposite to the image signal voltage to the first wiring for each field during the OFF period of the switching element. In a liquid crystal display device that applies a voltage to the liquid crystal material by superposing and / or canceling a change and the image signal voltage with each other, the first modulation signal different for each of the first wirings is applied. A method for driving a liquid crystal display device, which gives a uniform transmitted light intensity over the entire screen from a certain viewpoint by giving a given point.
像信号電圧が、表示画面の1走査線毎に信号電圧の極性
を反転し、前記スイッチング素子のオフ期間に前記第1
の配線に与える第1の変調信号が1走査線毎に極性を反
転することを特徴とする請求項1に記載の液晶表示装置
の駆動方法。2. The image signal voltage transmitted during the on period of the switching element inverts the polarity of the signal voltage for each scanning line of the display screen, and the first during the off period of the switching element.
2. The method for driving a liquid crystal display device according to claim 1, wherein the polarity of the first modulated signal applied to the wiring is reversed every scanning line.
に印加する、極性を反転した第1の変調信号Ve(+),V
e(-)の絶対値が異なることを特徴とする請求項1、ある
いは2に記載の液晶表示装置の駆動方法。3. A first modulation signal Ve (+), V having an inverted polarity, which is applied to the first wiring during the off period of the switching element.
3. The method for driving a liquid crystal display device according to claim 1, wherein the absolute values of e (−) are different.
1の変調信号の電位の一部を変化させることを特徴とす
る請求項3に記載の液晶表示装置の駆動方法。4. The method for driving a liquid crystal display device according to claim 3, wherein a part of the potential of the first modulation signal is changed before the end of the ON period of the switching element.
り、極性を反転した正負の第1の変調信号を各々Ve
(+),Ve(-)、走査信号の電位変化をVg、蓄積容量、ゲ
ート・ドレイン間容量、およびソース・ドレイン間容量
を各々Cs,Cgd,Csd、1画素当りに有する全静電容
量をΣCとするとき、前記第1の変調信号による画素電
極の電位変化CsVe(+)/ΣC、CsVe(-)/ΣCと走査
信号電圧の変化による画素電極の電位変化CgdVg/Σ
Cとの関係が、 CsVe(+)/ΣC+CgdVg/ΣC=CsVe(-)/ΣC−
CgdVg/ΣC=ΔV*を満足し、この値ΔV*が液晶の
しきい値電圧以上であることを特徴とする請求項3に記
載の液晶表示装置の駆動方法。5. The switching element is a thin film transistor, and the positive and negative first modulation signals with inverted polarities are respectively supplied to Ve.
(+), Ve (-), the potential change of the scanning signal is Vg, the storage capacitance, the gate-drain capacitance, and the source-drain capacitance are Cs, Cgd, Csd, and the total capacitance per pixel. When ΣC, the potential change CsVe (+) / ΣC, CsVe (-) / ΣC of the pixel electrode due to the first modulation signal and the potential change CgdVg / Σ of the pixel electrode due to the change of the scanning signal voltage
The relationship with C is CsVe (+) / ΣC + CgdVg / ΣC = CsVe (-) / ΣC-
4. The method of driving a liquid crystal display device according to claim 3, wherein CgdVg / ΣC = ΔV * is satisfied, and the value ΔV * is not less than a threshold voltage of the liquid crystal.
圧を画素電極に伝達し、対向電極、信号配線、表示電極
間に生じる平均的直流電圧がCgdVg/ΣCより小であ
ることを特徴とする請求項5に記載の液晶表示装置の駆
動方法。6. An image signal voltage is transmitted to a pixel electrode during an ON period of a switching element, and an average DC voltage generated between a counter electrode, a signal wire and a display electrode is smaller than CgdVg / ΣC. Item 6. A method for driving a liquid crystal display device according to item 5.
持されていることを特徴とする請求項3に記載の液晶表
示装置の駆動方法。7. The method of driving a liquid crystal display device according to claim 3, wherein the potential of the counter electrode is held in an electrically floating state.
気的構成をなし、走査信号に重畳して第1の変調信号を
走査信号配線に印加することを特徴とする請求項3に記
載の液晶表示装置の駆動方法。8. The electric wiring according to claim 3, wherein the first wiring is shared with the scanning signal wiring, and the first modulation signal is applied to the scanning signal wiring by superimposing it on the scanning signal. A method for driving the described liquid crystal display device.
も各フィールド期間で一定であることを特徴とする請求
項1、あるいは2に記載の液晶表示装置の駆動方法。9. The method of driving a liquid crystal display device according to claim 1, wherein the potential of the counter electrode of the liquid crystal display device is constant at least in each field period.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP19373492A JPH0667146A (en) | 1992-07-21 | 1992-07-21 | Method for driving liquid crystal display device |
EP19930111573 EP0588019A3 (en) | 1992-07-21 | 1993-07-20 | Active matrix liquid crystal display |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP19373492A JPH0667146A (en) | 1992-07-21 | 1992-07-21 | Method for driving liquid crystal display device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0667146A true JPH0667146A (en) | 1994-03-11 |
Family
ID=16312926
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP19373492A Pending JPH0667146A (en) | 1992-07-21 | 1992-07-21 | Method for driving liquid crystal display device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0667146A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100296152B1 (en) * | 1994-07-26 | 2001-10-24 | 구본준, 론 위라하디락사 | Driving method of liquid crystal display |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61261793A (en) * | 1985-05-16 | 1986-11-19 | 松下電器産業株式会社 | Driving of liquid crystal display panel |
JPH0335218A (en) * | 1989-06-30 | 1991-02-15 | Matsushita Electric Ind Co Ltd | Method for driving liquid crystal display device |
-
1992
- 1992-07-21 JP JP19373492A patent/JPH0667146A/en active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61261793A (en) * | 1985-05-16 | 1986-11-19 | 松下電器産業株式会社 | Driving of liquid crystal display panel |
JPH0335218A (en) * | 1989-06-30 | 1991-02-15 | Matsushita Electric Ind Co Ltd | Method for driving liquid crystal display device |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100296152B1 (en) * | 1994-07-26 | 2001-10-24 | 구본준, 론 위라하디락사 | Driving method of liquid crystal display |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2806098B2 (en) | Driving method of display device | |
JP2568659B2 (en) | Driving method of display device | |
EP0336570B1 (en) | Method of driving display device | |
US7511791B2 (en) | Liquid crystal display device | |
TWI397734B (en) | Liquid crystal display and driving method thereof | |
JPH03168617A (en) | Method for driving display device | |
KR0127105B1 (en) | Method and apparatus of driving circuit for display apparatus | |
JP2737209B2 (en) | Driving method of display device | |
US7528815B2 (en) | Driving circuit and method for liquid crystal display panel | |
US20040263701A1 (en) | Electrophoretic display apparatus | |
JP2730286B2 (en) | Driving method of display device | |
JP4023192B2 (en) | Liquid crystal display | |
JP2002149117A (en) | Liquid crystal display | |
EP0588019A2 (en) | Active matrix liquid crystal display | |
US7961165B2 (en) | Liquid crystal display device and method for driving the same | |
JPH0667146A (en) | Method for driving liquid crystal display device | |
KR100229621B1 (en) | Driving method of active matrix liquid crystal display device | |
JPH06148675A (en) | Active matrix type liquid crystal display device | |
JP3140088B2 (en) | Driving method of liquid crystal display device | |
JP3437866B2 (en) | Driving method of display device | |
JP3431260B2 (en) | Driving method of display device | |
JP2809950B2 (en) | Driving method of display device | |
JPH1164893A (en) | Liquid crystal display panel and driving method therefor | |
JPH09179098A (en) | Display device | |
EP0907159A2 (en) | Active matrix liquid crystal display panel and method of driving the same |