JPH0667128A - Optical modulator bias control circuit - Google Patents

Optical modulator bias control circuit

Info

Publication number
JPH0667128A
JPH0667128A JP23997092A JP23997092A JPH0667128A JP H0667128 A JPH0667128 A JP H0667128A JP 23997092 A JP23997092 A JP 23997092A JP 23997092 A JP23997092 A JP 23997092A JP H0667128 A JPH0667128 A JP H0667128A
Authority
JP
Japan
Prior art keywords
optical
signal
output
optical modulator
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23997092A
Other languages
Japanese (ja)
Inventor
Sadao Fujita
定男 藤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP23997092A priority Critical patent/JPH0667128A/en
Publication of JPH0667128A publication Critical patent/JPH0667128A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/0121Operation of devices; Circuit arrangements, not otherwise provided for in this subclass
    • G02F1/0123Circuits for the control or stabilisation of the bias voltage, e.g. automatic bias control [ABC] feedback loops

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)

Abstract

PURPOSE:To obtain an operation point control method at the time of driving an optical modulator using a lithium niobate substrate in an optical communication system. CONSTITUTION:By this circuit, bias voltage applied to the optical modulator 2 is controlled by detecting mean output power of an optical modulation signal from the optical modulator 2 at the time of driving the optical modulator using the lithium niobate substrate and comparing it with reference voltage. Since the mean value power of an optical signal modulated by optical modulation is increased according to increase in a drift amt. in the optical modulator 2, an operation point is monitored from the mean power of the optical signal.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、光通信システムに於け
る光送信部での光変調器の制御方法に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of controlling an optical modulator in an optical transmitter in an optical communication system.

【0002】[0002]

【従来の技術】近年、大容量の情報を伝送するための光
通信システムとし、伝送速度がギガビットレンジの光通
信装置が開発されている。このような大容量の光通信シ
ステムに用いる光通信部としては、変調時にもスペクト
ル拡がりが小さく、光ファイバの分散の影響を受けずに
長距離伝送が可能となりリチウムナイオベート(ニオブ
酸リチウム)を用いたマッハツェンダ型の光変調器が有
望である。しかしながら、リチウムナイオベートを用い
たマッハツェンダ型の光変調器では、変調電圧に対する
光変調特性の動作点ドリフト(DCドリフト)が存在す
るため、実用化に際しては、この動作点の安定化を行う
制御回路が必要となる。この様なマッハツェンダ型の制
御回路としては、変調する電気信号に低周波信号を重畳
させる方法が提案されている(例えば:桑田らによる
“マッハツェンダ型光変調器用自動バイアス制御回路の
検討”1990年電子情報通信学会春季全国大会B−9
76)この制御方法では、1KHzの低周波信号を伝送
速度2.5Gb/sの電気信号に重畳して、光信号を変
調して変調された光信号を電気信号に変換して1KHz
の低周波信号を取り出して位相検出する事により最適動
作点の制御を行っている。
2. Description of the Related Art In recent years, an optical communication device for transmitting a large amount of information has been developed, and an optical communication device having a transmission speed of gigabit range has been developed. As an optical communication unit used in such a large-capacity optical communication system, the spectrum spread is small even at the time of modulation, and long-distance transmission is possible without being affected by the dispersion of the optical fiber. The Mach-Zehnder type optical modulator used is promising. However, in the Mach-Zehnder type optical modulator using lithium niobate, there is an operating point drift (DC drift) of the optical modulation characteristic with respect to the modulation voltage. Therefore, in practical use, a control circuit for stabilizing this operating point is provided. Is required. As such a Mach-Zehnder type control circuit, a method of superimposing a low-frequency signal on an electric signal to be modulated has been proposed (for example: Kuwata et al., "Study of automatic bias control circuit for Mach-Zehnder type optical modulator", 1990 Electronic IEICE Spring National Convention B-9
76) In this control method, a low-frequency signal of 1 KHz is superimposed on an electric signal having a transmission rate of 2.5 Gb / s, the optical signal is modulated, and the modulated optical signal is converted into an electric signal to obtain 1 KHz.
The optimum operating point is controlled by extracting the low-frequency signal of and detecting the phase.

【0003】[0003]

【発明が解決しようとする課題】上述のように、低周波
信号を変調信号に重畳することによりマッハツェンダ型
の光変調器の動作点制御が可能となる。しかしながら、
上述の方式では低周波信号が重畳されるため変調された
光信号に不要な制御信号が加わり光送信波形の劣化、お
よび波形劣化による受信感度の低下が生じる欠点があ
る。
As described above, the operating point of the Mach-Zehnder type optical modulator can be controlled by superimposing the low frequency signal on the modulation signal. However,
In the above-mentioned method, since a low-frequency signal is superposed, an unnecessary control signal is added to the modulated optical signal, which causes the deterioration of the optical transmission waveform and the deterioration of the reception sensitivity due to the waveform deterioration.

【0004】本発明の目的は、制御信号を用いることな
く、光送信波形の劣化の生じることのない、マッハツェ
ンダ型の光変調器の動作点制御法を提供することにあ
る。
An object of the present invention is to provide a method for controlling an operating point of a Mach-Zehnder type optical modulator without using a control signal and without causing deterioration of an optical transmission waveform.

【0005】[0005]

【課題を解決するための手段】本発明の光変調器バイア
ス制御回路は、光送信用の光源と、該光源の光出力の強
度変調を行う光変調器と、前記光変調器からの光信号を
送信用の光信号と制御用の光信号に分離する光回路と、
前記制御用の光信号を電気信号に変換する光電変換回路
と、該光電変換回路の出力と基準電圧信号の差分を増幅
する差動増幅器とを含み、前記差動増幅器の出力信号を
前記光変調器のバイアス信号として該光変調器のバイア
ス制御を行う事を特徴とする。
An optical modulator bias control circuit according to the present invention comprises a light source for optical transmission, an optical modulator for intensity-modulating the optical output of the light source, and an optical signal from the optical modulator. An optical circuit for separating the optical signal for transmission and the optical signal for control,
A photoelectric conversion circuit for converting the optical signal for control into an electric signal, and a differential amplifier for amplifying a difference between an output of the photoelectric conversion circuit and a reference voltage signal, and the optical modulation of the output signal of the differential amplifier Bias control of the optical modulator is performed as a bias signal of the optical modulator.

【0006】本発明の光変調器バイアス制御回路は、光
送信用の光源と、前記光源から第1の光出力と第2の光
出力を取り出す光回路と、前記第1の光出力の強度変調
を行う光変調器と、前記光変調器からの光信号を送信用
の光信号と制御用の光信号に分離する光回路と、前記第
2の光出力を電気信号に変換する第1の光電変換回路
と、強度変調された前記制御用の光信号を電気信号に変
換する第2の光電変換回路と、前記第1の光電変換回路
の出力と第2の光電変換回路の出力の差分を増幅する差
動増幅器とを含み、前記差動増幅器の出力信号を前記光
変調器のバイアス信号として該光変調器のバイアス制御
を行う事を特徴とする。
The optical modulator bias control circuit of the present invention comprises a light source for optical transmission, an optical circuit for extracting a first optical output and a second optical output from the light source, and an intensity modulation of the first optical output. And an optical circuit for separating the optical signal from the optical modulator into an optical signal for transmission and an optical signal for control, and a first photoelectric converter for converting the second optical output into an electric signal. A conversion circuit, a second photoelectric conversion circuit that converts the intensity-modulated optical signal for control into an electric signal, and a difference between the output of the first photoelectric conversion circuit and the output of the second photoelectric conversion circuit is amplified. And a bias amplifier for controlling the bias of the optical modulator by using the output signal of the differential amplifier as a bias signal of the optical modulator.

【0007】本発明の光変調器バイアス制御回路は、光
送信用の光源と、前記光源から第1の光出力と第2の光
出力を取り出す光回路と、前記第1の光出力の強度変調
を行う光変調器と、前記光変調器からの光信号を送信用
の光信号と制御用の光信号に分離する光回路と、前記第
2の光出力を電気信号に変換する第1の光電変換回路
と、強度変調された前記制御用の光信号を電気信号に変
換する第2の光電変換回路と、前記光変調器に印加する
電気信号からディジタル信号のマーク率変化に対応する
マーク率信号を取り出すマーク率検出回路と、前記マー
ク率信号と第2の光電変換回路の出力の差分を増幅する
第1の作動増幅器と、該第1の差動増幅器の出力と前記
第1の光電変換回路の出力との差分を増幅する第2の差
動増幅器とを含み、該第2の差動増幅器の出力信号を前
記光変調器のバイアス信号として該光変調器のバイアス
制御を行う事を特徴とする。
The optical modulator bias control circuit of the present invention comprises a light source for optical transmission, an optical circuit for extracting a first optical output and a second optical output from the light source, and an intensity modulation of the first optical output. And an optical circuit for separating the optical signal from the optical modulator into an optical signal for transmission and an optical signal for control, and a first photoelectric converter for converting the second optical output into an electric signal. A conversion circuit, a second photoelectric conversion circuit for converting the intensity-modulated optical signal for control into an electric signal, and a mark rate signal corresponding to a change in the mark rate of the digital signal from the electric signal applied to the optical modulator. , A first differential amplifier for amplifying the difference between the mark ratio signal and the output of the second photoelectric conversion circuit, the output of the first differential amplifier, and the first photoelectric conversion circuit A second differential amplifier that amplifies the difference from the output of And performing bias control of the optical modulator output signal of the second differential amplifier as the bias signal of the optical modulator.

【0008】[0008]

【作用】本発明では、マッハツェンダ型光変調器で変調
された光信号の平均値検出により、光変調器の動作点の
制御を行う。
In the present invention, the operating point of the optical modulator is controlled by detecting the average value of the optical signal modulated by the Mach-Zehnder type optical modulator.

【0009】以下に図4を参照して本発明の作用を説明
する。図4はマッハツェンダ型光変調器の印加電圧と光
出力の関係を示した図である。ここでVswは光変調器の
スイッチング電圧、図4(a)の実線の余弦曲線は光変
調器の使用開始時の特性、図4(a)中の破線は時間の
変化に伴い光変調器の特性がドリフトを起した場合の特
性を示している。また図4(b)の実線の波形は、図4
(a)の実線で示される光変調器の特性に最適バイアス
状態で印加された変調信号を示している。ここで、光変
調器の特性が図4(a)の破線で示されるように、変調
信号の最適バイアス点からβのドリフトを生じた場合、
光出力Optのスィッチング特性は、 Opt=O1(1+cos((V/Vsw)π−β)) で表される。ここで、Vは印加電圧、Vswはスイッチィ
ング電圧、O1 は光出力に伴う定数である。
The operation of the present invention will be described below with reference to FIG. FIG. 4 is a diagram showing the relationship between the applied voltage and the optical output of the Mach-Zehnder interferometer type optical modulator. Here, V sw is the switching voltage of the optical modulator, the solid cosine curve of FIG. 4 (a) is the characteristic at the start of use of the optical modulator, and the broken line in FIG. 4 (a) is the optical modulator with time. Shows the characteristics when the characteristics of (4) cause drift. In addition, the waveform of the solid line in FIG.
The modulation signal applied in the optimum bias state is shown in the characteristics of the optical modulator shown by the solid line in (a). Here, when the characteristic of the optical modulator causes a β drift from the optimum bias point of the modulation signal, as shown by the broken line in FIG.
The switching characteristic of the optical output O pt is represented by O pt = O 1 (1 + cos ((V / V sw ) π−β)). Here, V is an applied voltage, V sw is a switching voltage, and O 1 is a constant associated with light output.

【0010】また、光変調器に加える変調信号をマーク
率1/2の波形とすると、変調された光信号の平均パワ
ーPopt
If the modulation signal applied to the optical modulator is a waveform with a mark ratio of 1/2, the average power P opt of the modulated optical signal is

【数1】 で近似される。光信号の平均パワーは変調信号の最適バ
イアス点からのドリフト量βの関数として検出でき、β
が小さい範囲では、光信号の平均パワーはβにたいして
の単調増加関数となる。従って、光信号の平均パワーを
検出すればマッハツェンダ型光変調器の動作点が分かる
ので、信号の印加電圧にバイアスを加えて常に光信号の
平均パワーが一定になる様にすれば、マッハツェンダ型
光変調器を図4(b)の破線の印加電圧の状態のよう
に、良好な動作点で制御できる。
[Equation 1] Is approximated by. The average power of the optical signal can be detected as a function of the amount of drift β from the optimum bias point of the modulated signal, β
In the range where is small, the average power of the optical signal is a monotonically increasing function of β. Therefore, the operating point of the Mach-Zehnder optical modulator can be found by detecting the average power of the optical signal. Therefore, if a bias is applied to the applied voltage of the signal so that the average power of the optical signal is always constant, the Mach-Zehnder optical The modulator can be controlled at a good operating point as in the state of the applied voltage indicated by the broken line in FIG. 4 (b).

【0011】[0011]

【実施例】以下、実施例を示して本発明を詳しく説明す
る。図1に請求項1に記載した発明の実施例である光変
調器バイアス制御回路を示す。
EXAMPLES The present invention will be described in detail below with reference to examples. FIG. 1 shows an optical modulator bias control circuit which is an embodiment of the invention described in claim 1.

【0012】本実施例では、半導体レーザ1からの出力
光をマッハツェンダ型の光変調器2で光変調し、光変調
器2の出力光を光分岐回路3で光信号4とモニタ用光信
号5に分岐する。このモニタ用光信号5は、光検出器と
低速のアンプによって構成される光電変換回路6によ
り、電気信号に変換される。光電変換回路6の出力信号
は作動アンプ7に入力され、基準電圧入力端子8より与
えられるリファレンス電圧との差分信号を増幅し、その
誤差信号をマッハツェンダ型の光変調器2のバイアス入
力端子9に入力し、制御ループを構成した。また、光変
調器2には、スイッチング電圧5Vで帯域11GHzの
ものを用い、駆動回路10から5.2Vppの信号電圧を
印加した。
In this embodiment, the output light from the semiconductor laser 1 is optically modulated by the Mach-Zehnder type optical modulator 2, and the output light of the optical modulator 2 is transmitted by the optical branching circuit 3 to the optical signal 4 and the monitor optical signal 5. Branch to. The monitor optical signal 5 is converted into an electric signal by the photoelectric conversion circuit 6 including a photodetector and a low-speed amplifier. The output signal of the photoelectric conversion circuit 6 is input to the operation amplifier 7, which amplifies the difference signal from the reference voltage given from the reference voltage input terminal 8 and outputs the error signal to the bias input terminal 9 of the Mach-Zehnder optical modulator 2. Input and configured the control loop. As the optical modulator 2, a switching voltage of 5 V and a band of 11 GHz was used, and a signal voltage of 5.2 V pp was applied from the drive circuit 10.

【0013】以上の構成で、伝送速度10Gb/sの電
気信号を駆動回路入力端子11に加え、光変調器2を駆
動させた。電源投入時には、光変調器2の最適バイアス
が2.5Vであったが、100時間経過後には光変調器
2の特性変化が生じて、1.1Vのドリフトが生じた。
この場合でも、本発明のバイアス制御回路は正常に動作
し、印加バイアス電圧は自動的に1.1V上昇し、光変
調器2に適性な電気信号を入力することができた。
With the above configuration, an electric signal having a transmission rate of 10 Gb / s was applied to the drive circuit input terminal 11 to drive the optical modulator 2. When the power was turned on, the optimum bias of the optical modulator 2 was 2.5 V, but after 100 hours, the characteristic change of the optical modulator 2 occurred and a 1.1 V drift occurred.
Even in this case, the bias control circuit of the present invention operated normally, the applied bias voltage was automatically increased by 1.1 V, and an appropriate electric signal could be input to the optical modulator 2.

【0014】以上の実施例では、光変調器2に加える変
調電圧は、光変調器2のスイッチング電圧よりも0.2
V大きい値としたが、変調電圧の振幅は、これに限らず
光信号の消光比の許す範囲であれば、何Vであってもよ
い。また、光変調器2へのバイアスは、光変調器の抵抗
負荷R側から供給したが、駆動回路10の出力部からバ
イアスを供給してもよい。また、本実施例では、モニタ
用光信号5の分離にハーフミラー形の光分岐回路3を用
いたが、光分岐回路には、ファイバカプラ形のものを使
用してもよい。
In the above embodiment, the modulation voltage applied to the optical modulator 2 is 0.2 than the switching voltage of the optical modulator 2.
Although the value of V is larger, the amplitude of the modulation voltage is not limited to this, and may be any voltage as long as the extinction ratio of the optical signal allows. Although the bias to the optical modulator 2 is supplied from the resistance load R side of the optical modulator, the bias may be supplied from the output part of the drive circuit 10. Further, in the present embodiment, the half mirror type optical branch circuit 3 is used for separating the monitor optical signal 5, but a fiber coupler type may be used for the optical branch circuit.

【0015】図2に請求項2に記載した発明の実施例で
ある光変調器バイアス制御回路を示す。本実施例では、
半導体レーザ1からの出力光の一部を取り出して、制御
回路のリファレンス電圧とする構成を採用している。こ
こで半導体レーザ1の光出力モニタを行うには、半導体
レーザ1の裏面出力光を光検出器と低速のアンプで構成
した光電変換回路12により検出している。光電変換回
路12の出力は、可変利得アンプ17で振幅の調整をし
たのち、作動アンプ7に入力している。一方、光変調器
2を介したモニタ用光信号光5は光電変換回路6で電気
信号に変換されたのち、可変利得アンプで振幅の調整を
し、作動アンプ7に入力している。
FIG. 2 shows an optical modulator bias control circuit which is an embodiment of the invention described in claim 2. In this embodiment,
A configuration is adopted in which a part of the output light from the semiconductor laser 1 is extracted and used as the reference voltage of the control circuit. Here, in order to monitor the optical output of the semiconductor laser 1, the back surface output light of the semiconductor laser 1 is detected by the photoelectric conversion circuit 12 including a photodetector and a low-speed amplifier. The output of the photoelectric conversion circuit 12 is input to the operation amplifier 7 after the amplitude is adjusted by the variable gain amplifier 17. On the other hand, the monitor optical signal light 5 passing through the optical modulator 2 is converted into an electric signal by the photoelectric conversion circuit 6, the amplitude is adjusted by the variable gain amplifier, and the result is input to the operation amplifier 7.

【0016】以上の構成で、伝送速度10Gb/sの電
気信号を駆動回路入力端子11に加え、光変調器2を駆
動させた。光変調器2は500時間経過後にも制御回路
により安定に動作した。さらに、本実施例では、半導体
レーザ1の光出力をリファレンスとしているため、半導
体レーザ1の僅かな光出力変化に対してもバイアス電圧
は正確に追従した。
With the above configuration, an electric signal having a transmission rate of 10 Gb / s was applied to the drive circuit input terminal 11 to drive the optical modulator 2. The optical modulator 2 operated stably by the control circuit even after 500 hours had passed. Further, in the present embodiment, since the optical output of the semiconductor laser 1 is used as a reference, the bias voltage accurately follows the slight change in the optical output of the semiconductor laser 1.

【0017】以上の実施例では半導体レーザ1の光出力
は、裏面出力光を用いたが、半導体レーザ1の出力モニ
タは、半導体レーザ1と光変調器2の間に光分岐回路を
挿入し、この光分岐回路から、半導体レーザ1のモニタ
光を取り出してもよい。
In the above embodiments, the backside output light was used as the optical output of the semiconductor laser 1. However, in the output monitor of the semiconductor laser 1, an optical branch circuit is inserted between the semiconductor laser 1 and the optical modulator 2, The monitor light of the semiconductor laser 1 may be extracted from this optical branch circuit.

【0018】図3に請求項3に記載した発明の実施例で
ある光変調器バイアス制御回路を示す。
FIG. 3 shows an optical modulator bias control circuit which is an embodiment of the invention described in claim 3.

【0019】本実施例では、変調信号のマーク率変化に
対しても制御回路がより安定に動作するようにマーク率
検出回路およびマーク率比較用の制御ループを備えてい
る。図3中マーク率検出回路16は、駆動回路10の負
荷抵抗RとコンデンサC2 の並列回路と低速のアンプ1
4で構成した積分回路とした。このマーク率検出回路1
6の出力は作動アンプ7に入力しており、作動アンプ7
のもう一方の入力としてはモニタ用光信号5が光電変換
された電気信号を作動アンプ7に入力している。この作
動アンプ7でおもにマーク率変動に伴う光信号の誤差を
吸収している。また、作動アンプ7の出力と半導体レー
ザ1からのリファレンス用の電気を作動アンプ13に入
力し、作動アンプ13の出力である誤差信号を光変調器
のバイアス入力端子9に入力し、制御ループを構成し
た。
In this embodiment, a mark ratio detection circuit and a control loop for mark ratio comparison are provided so that the control circuit operates more stably even when the mark ratio of the modulation signal changes. The mark ratio detection circuit 16 in FIG. 3 includes a parallel circuit of the load resistance R and the capacitor C 2 of the drive circuit 10 and the low-speed amplifier 1.
The integration circuit is composed of 4. This mark ratio detection circuit 1
The output of 6 is input to the operation amplifier 7, and the operation amplifier 7
As the other input, an electric signal obtained by photoelectrically converting the monitor optical signal 5 is input to the operation amplifier 7. This operation amplifier 7 mainly absorbs the error of the optical signal due to the mark rate variation. Further, the output of the operation amplifier 7 and the reference electricity from the semiconductor laser 1 are input to the operation amplifier 13, the error signal which is the output of the operation amplifier 13 is input to the bias input terminal 9 of the optical modulator, and the control loop is opened. Configured.

【0020】以上の構成で、伝送速度10Gb/sの電
気信号を駆動回路入力端子11に加え、光変調器2を駆
動させた。本実施例では、変調信号のマーク率を1/4
から3/4まで変化させても、光変調器2のバイアスを
最適値に保ったまま制御が可能であった。また、800
時間の長時間に渡って、本光変調器バイアス制御回路は
安定に動作した。
With the above configuration, an electric signal having a transmission rate of 10 Gb / s was applied to the drive circuit input terminal 11 to drive the optical modulator 2. In this embodiment, the mark ratio of the modulation signal is set to 1/4.
It was possible to control while keeping the bias of the optical modulator 2 at an optimum value even when the value was changed from 1 to 3/4. Also, 800
This optical modulator bias control circuit operated stably over a long period of time.

【0021】以上の実施例では光変調器2に印加する変
調信号のマーク率は、光変調器2の負荷抵抗R部分から
検出したが、駆動回路内部もしくは駆動回路入力部から
検出してもよい。さらに、本制御回路では最初にモニタ
用光信号5とマーク率信号との比較をおこなったが、モ
ニタ用光信号と半導体レーザ1からのリファレンス信号
の比較を最初に行い、次にマーク率信号との比較を行っ
てもよい。
In the above embodiments, the mark ratio of the modulation signal applied to the optical modulator 2 is detected from the load resistance R portion of the optical modulator 2, but it may be detected from inside the drive circuit or from the drive circuit input section. . Further, in the present control circuit, the monitor optical signal 5 and the mark ratio signal are first compared, but the monitor optical signal and the reference signal from the semiconductor laser 1 are first compared and then the mark ratio signal is compared. May be compared.

【0022】[0022]

【発明の効果】以上に説明した様に、本発明によれば、
マッハツェンダ型の光変調器に余分な変調信号をかける
必要が無いため、波形劣化の無い良好な光送信信号を得
ることができ、しかも確実に光変調器駆動時の動作点制
御が行なえる。
As described above, according to the present invention,
Since it is not necessary to apply an extra modulation signal to the Mach-Zehnder type optical modulator, a good optical transmission signal without waveform deterioration can be obtained, and the operating point control at the time of driving the optical modulator can be surely performed.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例である光変調器バイアス制御回
路の構成図である。
FIG. 1 is a configuration diagram of an optical modulator bias control circuit that is an embodiment of the present invention.

【図2】本発明の他の実施例である光変調器バイアス制
御回路の構成図である。
FIG. 2 is a configuration diagram of an optical modulator bias control circuit according to another embodiment of the present invention.

【図3】本発明の更に他の実施例である光変調器バイア
ス制御回路の構成図である。
FIG. 3 is a configuration diagram of an optical modulator bias control circuit which is still another embodiment of the present invention.

【図4】本発明の作用を説明するための図である。FIG. 4 is a diagram for explaining the operation of the present invention.

【符号の説明】[Explanation of symbols]

1 半導体レーザ 2 光変調路 3 光分岐回路 4 送信用光信号 5 モニタ用光信号 6 光電変換回路 7 差動アンプ 8 基準電圧入力端子 9 バイアス入力端子 10 駆動回路 11 駆動回路入力端子 12 光電変換回路 13 差動アンプ 14 アンプ 15 光分岐回路 16 マーク率検出回路 17 可変利得アンプ 18 可変利得アンプ 1 Semiconductor Laser 2 Optical Modulation Path 3 Optical Branch Circuit 4 Optical Signal for Transmission 5 Optical Signal for Monitoring 6 Photoelectric Conversion Circuit 7 Differential Amplifier 8 Reference Voltage Input Terminal 9 Bias Input Terminal 10 Drive Circuit 11 Drive Circuit Input Terminal 12 Photoelectric Conversion Circuit 13 differential amplifier 14 amplifier 15 optical branch circuit 16 mark ratio detection circuit 17 variable gain amplifier 18 variable gain amplifier

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 光送信用の光源と、該光源の光出力の強
度変調を行う光変調器と、前記光変調器からの光信号を
送信用の光信号と制御用の光信号に分離する光回路と、
前記制御用の光信号を電気信号に変換する光電変換回路
と、該光電変換回路の出力と基準電圧信号の差分を増幅
する差動増幅器とを含み、前記差動増幅器の出力信号を
前記光変調器のバイアス信号として該光変調器のバイア
ス制御を行う事を特徴とする光変調器バイアス制御回
路。
1. A light source for optical transmission, an optical modulator for performing intensity modulation of an optical output of the light source, and an optical signal from the optical modulator is separated into an optical signal for transmission and an optical signal for control. Optical circuit,
A photoelectric conversion circuit for converting the optical signal for control into an electric signal, and a differential amplifier for amplifying a difference between an output of the photoelectric conversion circuit and a reference voltage signal, and the optical modulation of the output signal of the differential amplifier An optical modulator bias control circuit for performing bias control of the optical modulator as a bias signal of the optical modulator.
【請求項2】 光送信用の光源と、前記光源から第1の
光出力と第2の光出力を取り出す光回路と、前記第1の
光出力の強度変調を行う光変調器と、前記光変調器から
の光信号を送信用の光信号と制御用の光信号に分離する
光回路と、前記第2の光出力を電気信号に変換する第1
の光電変換回路と、強度変調された前記制御用の光信号
を電気信号に変換する第2の光電変換回路と、前記第1
の光電変換回路の出力と第2の光電変換回路の出力の差
分を増幅する差動増幅器とを含み、前記差動増幅器の出
力信号を前記光変調器のバイアス信号として該光変調器
のバイアス制御を行う事を特徴とする光変調器バイアス
制御回路。
2. A light source for optical transmission, an optical circuit for extracting a first light output and a second light output from the light source, an optical modulator for performing intensity modulation of the first light output, and the light. An optical circuit for separating an optical signal from the modulator into an optical signal for transmission and an optical signal for control, and a first circuit for converting the second optical output into an electric signal.
Photoelectric conversion circuit, a second photoelectric conversion circuit for converting the intensity-modulated optical signal for control into an electric signal, and the first photoelectric conversion circuit
A differential amplifier that amplifies a difference between the output of the photoelectric conversion circuit and the output of the second photoelectric conversion circuit, and uses the output signal of the differential amplifier as the bias signal of the optical modulator to control the bias of the optical modulator. An optical modulator bias control circuit characterized by performing.
【請求項3】 光送信用の光源と、前記光源から第1の
光出力と第2の光出力を取り出す光回路と、前記第1の
光出力の強度変調を行う光変調器と、前記光変調器から
の光信号を送信用の光信号と制御用の光信号に分離する
光回路と、前記第2の光出力を電気信号に変換する第1
の光電変換回路と、強度変調された前記制御用の光信号
を電気信号に変換する第2の光電変換回路と、前記光変
調器に印加する電気信号からディジタル信号のマーク率
変化に対応するマーク率信号を取り出すマーク率検出回
路と、前記マーク率信号と第2の光電変換回路の出力の
差分を増幅する第1の作動増幅器と、該第1の差動増幅
器の出力と前記第1の光電変換回路の出力との差分を増
幅する第2の差動増幅器とを含み、該第2の差動増幅器
の出力信号を前記光変調器のバイアス信号として該光変
調器のバイアス制御を行う事を特徴とする光変調器バイ
アス制御回路。
3. A light source for optical transmission, an optical circuit for extracting a first light output and a second light output from the light source, an optical modulator for performing intensity modulation of the first light output, and the light. An optical circuit for separating an optical signal from the modulator into an optical signal for transmission and an optical signal for control, and a first circuit for converting the second optical output into an electric signal.
Photoelectric conversion circuit, a second photoelectric conversion circuit for converting the intensity-modulated optical signal for control into an electric signal, and a mark corresponding to a change in the mark ratio of the digital signal from the electric signal applied to the optical modulator. A mark rate detection circuit for extracting a rate signal, a first operational amplifier for amplifying a difference between the mark rate signal and an output of the second photoelectric conversion circuit, an output of the first differential amplifier and the first photoelectric converter. A second differential amplifier that amplifies a difference from the output of the conversion circuit, and performs bias control of the optical modulator by using an output signal of the second differential amplifier as a bias signal of the optical modulator. Characteristic optical modulator bias control circuit.
JP23997092A 1992-08-17 1992-08-17 Optical modulator bias control circuit Pending JPH0667128A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23997092A JPH0667128A (en) 1992-08-17 1992-08-17 Optical modulator bias control circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23997092A JPH0667128A (en) 1992-08-17 1992-08-17 Optical modulator bias control circuit

Publications (1)

Publication Number Publication Date
JPH0667128A true JPH0667128A (en) 1994-03-11

Family

ID=17052547

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23997092A Pending JPH0667128A (en) 1992-08-17 1992-08-17 Optical modulator bias control circuit

Country Status (1)

Country Link
JP (1) JPH0667128A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10246874A (en) * 1997-03-04 1998-09-14 Nippon Telegr & Teleph Corp <Ntt> Optical modulator control circuit
US7308210B2 (en) 2002-04-05 2007-12-11 Kabushiki Kaisha Toshiba Optical modulating device, optical transmitting apparatus using the same, method of controlling optical modulating device, and control program recording medium
US8000612B2 (en) 2005-01-25 2011-08-16 Panasonic Corporation Optical transmission device
US8638486B2 (en) 2011-06-09 2014-01-28 Mitsubishi Electric Corporation Optical modulator and optical modulation method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10246874A (en) * 1997-03-04 1998-09-14 Nippon Telegr & Teleph Corp <Ntt> Optical modulator control circuit
US7308210B2 (en) 2002-04-05 2007-12-11 Kabushiki Kaisha Toshiba Optical modulating device, optical transmitting apparatus using the same, method of controlling optical modulating device, and control program recording medium
US8000612B2 (en) 2005-01-25 2011-08-16 Panasonic Corporation Optical transmission device
US8638486B2 (en) 2011-06-09 2014-01-28 Mitsubishi Electric Corporation Optical modulator and optical modulation method

Similar Documents

Publication Publication Date Title
EP1168038A2 (en) Optical frequency doubling device and bias control method for such a device
EP1571484A1 (en) Methods and apparatus for controlling the bias voltage of a Mach-Zehnder modulator
JP3591346B2 (en) Light modulator
CN102710336A (en) Working point control device and working point control method applied in MZ (Mach-Zehnder) modulator
JP2677234B2 (en) Light modulator
JPH10228041A (en) Wavelength converter for binary optical signal
US5726794A (en) DC bias controller for optical modulator
KR100606100B1 (en) Optical modulator with automatic bias controller and method for bias controlling using the same
JPH1188261A (en) Spread controlling method and its device
JP5881580B2 (en) Phase sensitive optical amplifier
JPH0667128A (en) Optical modulator bias control circuit
JPH10336115A (en) Analog optical transmitter
JP3990228B2 (en) Optical transmitter
JP2866901B2 (en) Light modulator
WO2003047143A1 (en) A method and apparatus of light signal modulation in light
US6728490B1 (en) Optical transmitter, optical receiver, optical transmission system, and optical transmission method
JP2869585B2 (en) Light modulator
JP3749874B2 (en) OPTICAL MODULATOR CONTROL DEVICE, OPTICAL TRANSMITTER USING SAME, OPTICAL MODULATOR CONTROL METHOD, AND CONTROL PROGRAM RECORDING MEDIUM
JPH05232412A (en) Controller for linbo3 mach-zehnder interference type modulator
JP4316212B2 (en) Light intensity modulator
JPH08248365A (en) Optical modulation device of external modulation system
JPH0876071A (en) Bias voltage control circuit for light external modulator
JPH0961768A (en) Optical modulation device by external modulation system
JP2825628B2 (en) Monitoring method and stabilization method of modulation degree in optical modulation and optical transmitter
JPH04263215A (en) Method for controlling optical modulator

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 19990105