JPH04263215A - Method for controlling optical modulator - Google Patents

Method for controlling optical modulator

Info

Publication number
JPH04263215A
JPH04263215A JP2423091A JP2423091A JPH04263215A JP H04263215 A JPH04263215 A JP H04263215A JP 2423091 A JP2423091 A JP 2423091A JP 2423091 A JP2423091 A JP 2423091A JP H04263215 A JPH04263215 A JP H04263215A
Authority
JP
Japan
Prior art keywords
optical modulator
optical
polarized light
light
operating point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2423091A
Other languages
Japanese (ja)
Inventor
Sadao Fujita
定男 藤田
Yutaka Nishimoto
裕 西本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP2423091A priority Critical patent/JPH04263215A/en
Publication of JPH04263215A publication Critical patent/JPH04263215A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/0121Operation of devices; Circuit arrangements, not otherwise provided for in this subclass
    • G02F1/0123Circuits for the control or stabilisation of the bias voltage, e.g. automatic bias control [ABC] feedback loops

Abstract

PURPOSE:To allow the control of an operating point at the time of driving of an optical modulator using a lithium niobate substrate in an optical communication system. CONSTITUTION:The light of the polarization state having a TM polarization component and a TE polarization component is inputted to the optical modulator 3 and after the light is applied with intensity modulation by the optical modulator 3, the light is separated to the TM polarization component and the TE polarization component in a polarized light separating circuit 5 to control the bias voltage to be applied to a modulation signal by monitoring the operating point from the average value power of the TE polarization component 7 to the optical modulator at the time of driving the optical modulator by using the lithium niobate substrate. The average value power of the TE polarization component increases or decreases with a fluctuation in the operating point of the optical modulator and, therefore, the monitoring of the operating point from the average value power of the TE polarization component is possible.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、光通信システムに於け
る光送信部での光変調器の制御方法に関するものである
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of controlling an optical modulator in an optical transmitter in an optical communication system.

【0002】0002

【従来の技術】近年、大容量の情報を伝送するための光
通信システムとして、伝送速度がギガビットレンジの光
通信装置が開発されている。このような大容量の光通信
システムに用いる光通信部としては、変調時にもスペク
トル拡がりが小さく、光ファイバの分散の影響を受けず
に長距離伝送が可能となる。リチウムナイオベート(L
iNbO3 )を用いたマッハツェンダ型の光変調器が
有望である。しかしながら、リチウムナイオベータを用
いたマッハツェンダ型の光変調器では、変調電圧に対す
る光変調特性の動作点ドリフト(DCドリフト)が存在
するため、実用化に際しては、この動作点の安定化を行
う制御回路が必要となる。この様なマッハツェンダ型の
制御回路としては、変調する電気信号に低周波信号を重
畳させる方法が提案されている(例えば:桑田らによる
“マッハツェンダ型光変調器用自動バイアス制御回路の
検討”1990年電子情報通信学会春季全国大会B−9
76)この制御方法では、1KHzの低周波信号を伝送
速度2.5Gb/sの電気信号に重畳して、光信号を変
調して変調された光信号を電気信号に変換して1KHz
の低周波信号を取り出して位相検出する事により最適動
作点の制御を行っている。
2. Description of the Related Art In recent years, optical communication devices with transmission speeds in the gigabit range have been developed as optical communication systems for transmitting large amounts of information. The optical communication unit used in such a large-capacity optical communication system has a small spectral spread even during modulation, and long-distance transmission is possible without being affected by the dispersion of the optical fiber. Lithium niobate (L
A Mach-Zehnder optical modulator using iNbO3 is promising. However, in the Mach-Zehnder optical modulator using lithium niobeta, there is an operating point drift (DC drift) in the optical modulation characteristics with respect to the modulation voltage, so in practical use, a control circuit that stabilizes this operating point is required. Is required. As such a Mach-Zehnder type control circuit, a method has been proposed in which a low-frequency signal is superimposed on the electrical signal to be modulated (for example: "Study of automatic bias control circuit for Mach-Zehnder type optical modulator" by Kuwata et al., 1990 Electronic Spring National Conference of the Institute of Information and Communication Engineers B-9
76) In this control method, a 1KHz low frequency signal is superimposed on an electrical signal with a transmission rate of 2.5Gb/s, the optical signal is modulated, the modulated optical signal is converted into an electrical signal, and the signal is transmitted at 1KHz.
The optimum operating point is controlled by extracting the low frequency signal and detecting its phase.

【0003】0003

【発明が解決しようとする課題】上述のように、低周波
信号を変調信号に重畳することによりマッハツェンダ形
の光変調器の動作点制御が可能となる。しかしながら、
上述の方式では低周波信号を重畳されるため変調された
光信号に不要な制御信号が加わり光送信波形の劣化、お
よび波形劣化による受信感度の低下が生じる欠点がある
As described above, by superimposing a low frequency signal on a modulation signal, it is possible to control the operating point of a Mach-Zehnder optical modulator. however,
In the above-mentioned method, since a low frequency signal is superimposed, an unnecessary control signal is added to the modulated optical signal, resulting in deterioration of the optical transmission waveform and a reduction in receiving sensitivity due to the waveform deterioration.

【0004】本発明の目的は、制御信号を用いることな
く、光送信波形の劣化の生じることのない、マッハツェ
ンダ形の光変調器の動作点制御法を提供することにある
An object of the present invention is to provide a method for controlling the operating point of a Mach-Zehnder optical modulator without using a control signal and without causing deterioration of the optical transmission waveform.

【0005】[0005]

【課題を解決するための手段】本発明の光変調器制御方
法は光信号の強度変調を行う光変調器と、該光変調器に
光信号を入力する光源と、前記光変調器からの光出力が
入力される偏光分離回路とを含み、該偏光分離回路は、
前記光変調器の基板表面の法線に対して垂直な電界成分
を有するTE偏光と前記TE偏光に対して偏波面が直交
するTM偏光とに偏光分離を行い、前記分離されたTE
偏光をモニタ光として平均値のパワーを検出する事によ
り該光変調器のバイアス制御を行う事を特徴とする。
[Means for Solving the Problems] The optical modulator control method of the present invention includes an optical modulator that performs intensity modulation of an optical signal, a light source that inputs an optical signal to the optical modulator, and an optical modulator that outputs light from the optical modulator. a polarization separation circuit into which the output is input, the polarization separation circuit comprising:
Polarization separation is performed into TE polarized light having an electric field component perpendicular to the normal to the substrate surface of the optical modulator and TM polarized light whose polarization plane is orthogonal to the TE polarized light, and the separated TE
The optical modulator is characterized in that bias control of the optical modulator is performed by detecting the average power using polarized light as monitor light.

【0006】本発明の光変調器制御方法は光変調器と、
該光変調器に対して、基板表面の法線方向に垂直な電界
成分を有するTE偏光で入力する第1の光ビームと、前
記TE偏光に対して偏波面が直交するTM偏光で入力す
る第2のビームと、前記光変調器からの出力光を前記第
1の光ビームからなるTE偏光と前記第2のビームから
なるTM偏光とに分離する偏光分離回路とを含み、前記
偏光分離された第1のビームからなるTE偏光の平均値
のパワーを検出する事により該光変調器のバイアス制御
を行う事を特徴とする。
The optical modulator control method of the present invention includes an optical modulator;
A first optical beam is input to the optical modulator as TE polarized light having an electric field component perpendicular to the normal direction of the substrate surface, and a first optical beam is input as TM polarized light whose polarization plane is orthogonal to the TE polarized light. 2 beams, and a polarization separation circuit that separates the output light from the optical modulator into TE polarization consisting of the first optical beam and TM polarization consisting of the second beam, The present invention is characterized in that bias control of the optical modulator is performed by detecting the average power of the TE polarized light consisting of the first beam.

【0007】[0007]

【作用】本発明では、マッハツェンダ形光変調器を通過
したTE偏光成分の平均値検出により動作点の制御を行
う。
In the present invention, the operating point is controlled by detecting the average value of the TE polarized light component that has passed through the Mach-Zehnder optical modulator.

【0008】以下に第3図を用いて本発明の作用を説明
する。
The operation of the present invention will be explained below with reference to FIG.

【0009】第3図(a)はマッハツェンダ形光変調器
に於けるTM偏光成分、TE偏光成分のスイッチング特
性を示す図である。ここでTE偏光は、光変調器の基板
表面の法線に対して電界を有する偏波であり、TM偏光
はTE偏光に対して偏波が直交する偏波である。
FIG. 3(a) is a diagram showing the switching characteristics of the TM polarization component and the TE polarization component in a Mach-Zehnder optical modulator. Here, TE polarized light is polarized light that has an electric field with respect to the normal to the surface of the substrate of the optical modulator, and TM polarized light is polarized light that is orthogonal to TE polarized light.

【0010】通常、マッハツェンダ形光変調器のTE偏
光成分の“0”と“1”のスイッチング電圧差Vπ  
(TE)は主に強度変調に用いるTM偏光成分のVπ 
 (TM)の約3倍となっており、図3(b)に示した
OVからVπ  (TM)の印加電圧を信号とした時、
マッハツェンダ光変調器は正常に動作し、その光出力は
図3(c)に示す様になる。
Usually, the switching voltage difference Vπ between “0” and “1” of the TE polarization component of a Mach-Zehnder optical modulator is
(TE) is Vπ of the TM polarization component mainly used for intensity modulation.
(TM), and when the applied voltage from OV to Vπ (TM) shown in Fig. 3(b) is used as a signal,
The Mach-Zehnder optical modulator operates normally, and its optical output becomes as shown in FIG. 3(c).

【0011】一方、マッハツェンダ形光変調器の動作点
が変化した場合を図3(d)に示す。この場合、光出力
が最大となる点はOVでなく、1/4、Vπ(TM)だ
けずれた場合を仮定している。この時、図3(e)に示
す印加電圧を信号とした場合の光出力を図3(f)に示
す。
On the other hand, FIG. 3(d) shows a case where the operating point of the Mach-Zehnder optical modulator changes. In this case, it is assumed that the point where the optical output is maximum is not at OV but shifted by 1/4, Vπ(TM). At this time, the optical output when the applied voltage shown in FIG. 3(e) is used as a signal is shown in FIG. 3(f).

【0012】図3(f)の光出力は、図3(c)の正常
な動作点での光出力に比べ、TM偏光成分が消偏光比の
劣化した状態となっている。この偏光比の劣化した波形
を調べるためには、伝送速度と同等の帯域を有する光受
信器および高速のピーク検出が必要となるので、TM偏
光成分からマッハツェンダ形光変調器の動作点をモニタ
するのは困難である。また図3(c)と図3(f)のT
M偏光成分の時間平均パワーは同一となり、TM偏光成
分の平均パワーから動作点をモニタすることはできない
The optical output shown in FIG. 3(f) is in a state where the depolarization ratio of the TM polarized light component is deteriorated compared to the optical output at the normal operating point shown in FIG. 3(c). In order to investigate this waveform with a degraded polarization ratio, an optical receiver with a bandwidth equivalent to the transmission speed and high-speed peak detection are required, so the operating point of the Mach-Zehnder optical modulator is monitored from the TM polarization component. is difficult. Also, T in Figures 3(c) and 3(f)
The time average power of the M polarization component is the same, and the operating point cannot be monitored from the average power of the TM polarization component.

【0013】一方、マッハツェンダ形光変調器の光出力
のTE偏光成分に注目すると、図3(f)のTE偏光成
分の時間平均パワーは図3(c)の平均パワーに比べて
増加している。また、マッハツェンダ光変調器の動作点
が図3(d)に示す状態と反対に位置した場合には、T
E偏波の平均パワーは図3(c)のTE偏波の平均パワ
ーに比べ、さらに減少することになる。
On the other hand, when focusing on the TE polarization component of the optical output of the Mach-Zehnder optical modulator, the time average power of the TE polarization component in FIG. 3(f) is increased compared to the average power in FIG. 3(c). . Furthermore, when the operating point of the Mach-Zehnder optical modulator is located opposite to the state shown in FIG. 3(d), T
The average power of the E polarization is further reduced compared to the average power of the TE polarization in FIG. 3(c).

【0014】従って、TE偏波の時間平均パワーを検出
すればマッハツェンダ形光変調器の動作点が分かるので
、信号の印加電圧にバイアスを加えて(図3(e)最適
値バイアスの印加電圧)、常にTE偏波の時間平均パワ
ーが一定になる様にすれば、マッハツェンダ形光変調器
を良好な動作点で制御できる。
Therefore, by detecting the time average power of the TE polarized wave, the operating point of the Mach-Zehnder optical modulator can be found, so by adding a bias to the applied voltage of the signal (Fig. 3 (e) applied voltage of optimum bias). If the time average power of the TE polarized wave is always kept constant, the Mach-Zehnder optical modulator can be controlled at a good operating point.

【0015】[0015]

【実施例】以下、実施例を示して本発明を詳しく説明す
る。
EXAMPLES The present invention will be explained in detail below with reference to Examples.

【0016】図1に本発明の実施例でなる光変調器の制
御等を示す。
FIG. 1 shows control etc. of an optical modulator according to an embodiment of the present invention.

【0017】本実施例では、半導体レーザ1からの第1
の出力光2をTM偏光成分とTE偏光成分を有する偏光
状態としてマッハツェンダ形の光変調器3に入力してい
る。ここで光変調器3を通過した第2の出力光4は変調
信号入力11より入力した変調信号により強度変調され
た光信号となっている。この第2の出力光4を偏光分離
回路5により、TM偏光成分である第3の出力光6とT
E偏光成分である第4の出力光7とに分離する。第3の
出力光6は送信信号光として用い、第4の出力光7はマ
ッハツェンダ形の光変調器3の動作点モニタとして使用
する。TE偏光成分である第4の出力光7の平均パワー
は、光変調器3の動作点がずれるに従い増減するので、
この光の平均値検出により光変調器3に印加する印加電
圧のバイアス制御が可能となる。
In this embodiment, the first
The output light 2 is input into a Mach-Zehnder type optical modulator 3 as a polarized light having a TM polarization component and a TE polarization component. Here, the second output light 4 that has passed through the optical modulator 3 is an optical signal intensity-modulated by the modulation signal inputted from the modulation signal input 11. This second output light 4 is separated by a polarization separation circuit 5 into third output light 6 which is a TM polarization component and a T
The fourth output light 7 is an E-polarized component. The third output light 6 is used as a transmission signal light, and the fourth output light 7 is used as an operating point monitor of the Mach-Zehnder type optical modulator 3. The average power of the fourth output light 7, which is the TE polarization component, increases or decreases as the operating point of the optical modulator 3 shifts.
By detecting the average value of this light, bias control of the voltage applied to the optical modulator 3 becomes possible.

【0018】本実施例では、第4の出力光7を光検出器
8で受光し、アンプ17、ローパスフィルタ18で平均
値パワーとした後、最適バイアス点となる様に調整され
たリファレンス電圧をリファレンス端子10に入力した
差動形のアンプ9により、誤差信号をとり出し、その信
号をバイアス回路12に入力している。
In this embodiment, the fourth output light 7 is received by the photodetector 8, and after being converted to an average power by the amplifier 17 and low-pass filter 18, the reference voltage adjusted to the optimum bias point is applied. A differential amplifier 9 input to a reference terminal 10 extracts an error signal and inputs the signal to a bias circuit 12 .

【0019】以上の構成により伝送速度10Gb/sで
光変調器3を駆動し、バイアス制御の様子を調べた。こ
こで使用した光変調器3はリチウムナイオベート基板を
用いたマッハツェンダ形のものであり、スイッチング電
圧Vπ  (TM)は4Vであった。
With the above configuration, the optical modulator 3 was driven at a transmission rate of 10 Gb/s, and the state of bias control was investigated. The optical modulator 3 used here was of Mach-Zehnder type using a lithium niobate substrate, and the switching voltage Vπ (TM) was 4V.

【0020】まず、本実施例の制御系を外して、光変調
器3のみで動作させた。その結果、10時間経過後には
、温度変化、焦電圧効果等により印加電圧のバイアス点
が最適点から1V程度ずれ光変調波形に劣化が起きた。
First, the control system of this embodiment was removed and the optical modulator 3 was operated alone. As a result, after 10 hours had elapsed, the bias point of the applied voltage deviated from the optimum point by about 1 V due to temperature changes, pyrovoltage effects, etc., and the optical modulation waveform deteriorated.

【0021】一方、本発明による制御系を用いた場合に
は、動作点バイアスが制御されるため、光変調器は長時
間に旦って最適な動作点で駆動され、波形劣化、消光比
劣化の無い良好な光変調波形を得た。
On the other hand, when the control system according to the present invention is used, since the operating point bias is controlled, the optical modulator is driven at the optimum operating point for a long time, resulting in waveform deterioration and extinction ratio deterioration. A good optical modulation waveform with no distortion was obtained.

【0022】本発明の他の実施例である光変調器の制御
系を図2に示す。
FIG. 2 shows a control system for an optical modulator according to another embodiment of the present invention.

【0023】本実施例では、光変調器3からの光出力を
増加させるため2個の半導体レーザ1,13を用い、第
1の半導体レーザ1は送信信号用、第2の半導体レーザ
13は光変調器3の動作点モニタ用として用いている。
In this embodiment, two semiconductor lasers 1 and 13 are used to increase the optical output from the optical modulator 3. The first semiconductor laser 1 is used for transmitting signals, and the second semiconductor laser 13 is used for transmitting signals. It is used to monitor the operating point of the modulator 3.

【0024】図2では、第1の半導体レーザ1からの出
力光2はTM偏光となる様にし、第1の偏波分離回路5
を介してマッハツェンダ形の光変調器3に入力している
。このTM偏光の出力光2は光変調器3で強度変調され
た後、第2の偏波分離回路14を介して光送信用の出力
光6となる。
In FIG. 2, the output light 2 from the first semiconductor laser 1 is made to be TM polarized light, and the first polarization separation circuit 5
The signal is inputted to a Mach-Zehnder type optical modulator 3 via. This TM polarized output light 2 is intensity-modulated by an optical modulator 3, and then becomes output light 6 for optical transmission via a second polarization separation circuit 14.

【0025】一方、第2の半導体レーザ13からの出力
光15はTE偏光となる様に調整して第2の偏光分離回
路12を介して光変調器3に入力する。光変調器3でこ
のTE偏光成分は強度変調され、第1の偏光分離回路5
を介して出力光7として光検出器8に入力している。
On the other hand, the output light 15 from the second semiconductor laser 13 is adjusted to be TE polarized light and inputted to the optical modulator 3 via the second polarization separation circuit 12. This TE polarized light component is intensity-modulated by the optical modulator 3, and then sent to the first polarization separation circuit 5.
The light is inputted to a photodetector 8 as output light 7 via.

【0026】本実施例の制御系では、第2の半導体レー
ザ13からの裏面出力光をモニタして、動作点安定用の
リファレンス電圧として差動形のアンプ9に入力させて
いる。  この構成を用いる事により、第2の半導体レ
ーザ13の出力パワーが変動した場合でも、安定して光
変調器3への動作点制御が行なえる。
In the control system of this embodiment, the backside output light from the second semiconductor laser 13 is monitored and inputted to the differential amplifier 9 as a reference voltage for stabilizing the operating point. By using this configuration, even if the output power of the second semiconductor laser 13 fluctuates, the operating point of the optical modulator 3 can be stably controlled.

【0027】実際に本実施例に於いて、光変調器3の駆
動制御を行なった。リチウムナイオベートを用いたマッ
ハツェンダ形の光変調器3は伝送速度2.5Gb/sで
駆動し、長時間に於いて動作点が変動する事なく、良好
な特性を確認した。
In this embodiment, the drive control of the optical modulator 3 was actually performed. The Mach-Zehnder optical modulator 3 using lithium niobate was driven at a transmission rate of 2.5 Gb/s, and good characteristics were confirmed without any fluctuation in the operating point over a long period of time.

【0028】また、本実施例ではモニタ光の出力光7は
送信信号となる出力光6に比べて逆方向に伝搬するため
、送信信号である出力光6に混入しない。そのため、送
信信号の出力光6の波形は良好な消光比が実現できる。 本実施例では20:1の消光比が確認され、また、図1
の1個の半導体レーザ1を用いた制御系に比べ、送信信
号の出力光6のパワーを2dB程度増加させることもで
きた。
Furthermore, in this embodiment, the output light 7 of the monitor light propagates in the opposite direction compared to the output light 6, which is the transmission signal, and therefore does not mix with the output light 6, which is the transmission signal. Therefore, the waveform of the output light 6 of the transmission signal can achieve a good extinction ratio. In this example, an extinction ratio of 20:1 was confirmed, and FIG.
Compared to the control system using one semiconductor laser 1, the power of the output light 6 of the transmission signal could be increased by about 2 dB.

【0029】以上の実施例では第2の半導体レーザ2か
らの光出力7の光路を、第1の半導体レーザ1からの光
出力6と逆方向にとる場合を示したが、図2の第2の半
導体レーザ2と光検出器8の位置を入れ換えて、第1の
半導体レーザ1と第2の半導体レーザ2からの出力光の
光路を同じ方向にしても良い。また、図2の構成に於い
て2つの偏光分離回路5,14を使用したが、いずれか
一方を偏光特性を有しない光カップラを用いてもよい。 また、光変調器は半導体基板で構成したものでも良く、
さらにマッハツェンダ形に限らず方向性結合器形のもの
であってもよい。
In the above embodiment, the optical path of the optical output 7 from the second semiconductor laser 2 is taken in the opposite direction to that of the optical output 6 from the first semiconductor laser 1. The positions of the semiconductor laser 2 and the photodetector 8 may be exchanged so that the optical paths of the output lights from the first semiconductor laser 1 and the second semiconductor laser 2 are in the same direction. Further, although the two polarization separation circuits 5 and 14 are used in the configuration of FIG. 2, an optical coupler having no polarization characteristics may be used for either one. Further, the optical modulator may be constructed of a semiconductor substrate,
Furthermore, it is not limited to the Mach-Zehnder type, but may be a directional coupler type.

【0030】[0030]

【発明の効果】以上、説明した様に、本発明によれば、
マッハツェンダ形の光変調器に余分な変調信号をかける
必要が無いため、波形劣化の無い良好な光送信信号を得
ることができ、しかも確実に光変調器駆動時の動作点制
御が行なえる。
[Effects of the Invention] As explained above, according to the present invention,
Since there is no need to apply an extra modulation signal to the Mach-Zehnder type optical modulator, it is possible to obtain a good optical transmission signal without waveform deterioration, and moreover, it is possible to reliably control the operating point when driving the optical modulator.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明の実施例である光変調器の制御系の構成
図である。
FIG. 1 is a configuration diagram of a control system of an optical modulator that is an embodiment of the present invention.

【図2】本発明の他の実施例である光変調器の制御系の
構成図である。
FIG. 2 is a configuration diagram of a control system of an optical modulator according to another embodiment of the present invention.

【図3】本発明の作用を説明するための図である。FIG. 3 is a diagram for explaining the operation of the present invention.

【符号の説明】[Explanation of symbols]

1  半導体レーザ 2  出力光 3  光変調器 4  出力光 5  偏光分離回路 6  出力光 7  出力光 8  光検出器 9  アンプ 10  変調信号入力 11  変調信号入力 12  バイアス回路 13  半導体レーザ 14  偏光分離回路 15  出力光 16  光検出器 17  アンプ 18  ローパスフィルタ 1 Semiconductor laser 2 Output light 3. Optical modulator 4 Output light 5 Polarization separation circuit 6 Output light 7 Output light 8 Photodetector 9 Amplifier 10 Modulation signal input 11 Modulation signal input 12 Bias circuit 13 Semiconductor laser 14 Polarization separation circuit 15 Output light 16 Photodetector 17 Amplifier 18 Low pass filter

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】  光信号の強度変調を行う光変調器と、
該光変調器に光信号を入力する光源と、前記光変調器か
らの光出力が入力される偏光分離回路とを含み、該偏光
分離回路は、前記光変調器の基板表面の法線に対して垂
直な電界成分を有するTE偏光と前記TE偏光に対して
偏波面が直交するTM偏光とに偏光分離を行い、前記分
離されたTE偏光をモニタ光として平均値のパワーを検
出する事により該光変調器のバイアス制御を行う事を特
徴とする光変調器制御方法。
[Claim 1] An optical modulator that performs intensity modulation of an optical signal;
The polarization separation circuit includes a light source that inputs an optical signal to the optical modulator, and a polarization separation circuit that receives an optical output from the optical modulator, and the polarization separation circuit is configured to polarization separation into TE polarized light having a perpendicular electric field component and TM polarized light whose polarization plane is orthogonal to the TE polarized light, and detecting the average power of the separated TE polarized light as monitor light. An optical modulator control method characterized by performing bias control of an optical modulator.
【請求項2】  光変調器と、該光変調器に対して、基
板表面の法線方向に垂直な電界成分を有するTE偏光で
入力する第1の光ビームと、前記TE偏光に対して偏波
面が直交するTM偏光で入力する第2のビームと、前記
光変調器からの出力光を前記第1の光ビームからなるT
E偏光と前記第2のビームからなるTM偏光とに分離す
る偏光分離回路とを含み、前記偏光分離された第1のビ
ームからなるTE偏光の平均値のパワーを検出する事に
より該光変調器のバイアス制御を行う事を特徴とする光
変調器制御方法。
2. An optical modulator, a first optical beam input to the optical modulator as TE polarized light having an electric field component perpendicular to the normal direction of the substrate surface, and a first optical beam polarized with respect to the TE polarized light; A second beam input as TM polarized light whose wavefronts are orthogonal to each other, and an output light from the optical modulator made up of the first optical beam.
The optical modulator includes a polarization separation circuit that separates the E-polarized light and the TM-polarized light made of the second beam, and detects the average power of the TE-polarized light made of the polarized-separated first beam. An optical modulator control method characterized by performing bias control.
JP2423091A 1991-02-19 1991-02-19 Method for controlling optical modulator Pending JPH04263215A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2423091A JPH04263215A (en) 1991-02-19 1991-02-19 Method for controlling optical modulator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2423091A JPH04263215A (en) 1991-02-19 1991-02-19 Method for controlling optical modulator

Publications (1)

Publication Number Publication Date
JPH04263215A true JPH04263215A (en) 1992-09-18

Family

ID=12132460

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2423091A Pending JPH04263215A (en) 1991-02-19 1991-02-19 Method for controlling optical modulator

Country Status (1)

Country Link
JP (1) JPH04263215A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1736749A1 (en) * 2005-06-22 2006-12-27 Fujitsu Limited Light intensity measurement system
JP2016004238A (en) * 2014-06-19 2016-01-12 株式会社フジクラ Substrate type optical waveguide element

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4939019A (en) * 1972-08-23 1974-04-11

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4939019A (en) * 1972-08-23 1974-04-11

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1736749A1 (en) * 2005-06-22 2006-12-27 Fujitsu Limited Light intensity measurement system
JP2007003728A (en) * 2005-06-22 2007-01-11 Fujitsu Ltd Device for detecting difference in intensity of light
US7291829B2 (en) 2005-06-22 2007-11-06 Fujitsu Limited Light intensity detector
JP2016004238A (en) * 2014-06-19 2016-01-12 株式会社フジクラ Substrate type optical waveguide element

Similar Documents

Publication Publication Date Title
KR101106933B1 (en) Interferometric operation of electroabsorption modulators
US8095018B2 (en) Quaternary phase modulator
US6823142B1 (en) Polarization mode dispersion compensating apparatus
JP3649556B2 (en) Method and apparatus for chromatic dispersion control and dispersion amount detection method
US6661974B1 (en) Optical transmitter and optical transmission system
US7068948B2 (en) Generation of optical signals with return-to-zero format
JP6379091B2 (en) Method and system for monolithic integration of circuits for RF signal monitoring and control
JP4031076B2 (en) Synchronous polarization and phase modulation using periodic waveforms with complex harmonics for high-performance optical transmission systems
CA2252775A1 (en) Method and system for equalizing pmd using incremental delay switching
US10498457B2 (en) Optical carrier-suppressed signal generator
JPH1010478A (en) High-speed polarization scrambler
JP2848942B2 (en) Optical transmitter
JP3777045B2 (en) Polarization scrambler
JP4464408B2 (en) Optical receiver
JP3937237B2 (en) Optical frequency shift keying modulator
KR100483023B1 (en) Polarization mode dispersion compensating device in optical transmission system and method thereof
JPH06284093A (en) Polarization control method
JPH04263215A (en) Method for controlling optical modulator
JP2630536B2 (en) Optical transmitter
JP2760856B2 (en) Phase shift keying method using Mach-Zehnder type optical modulator
KR100563492B1 (en) Polarization mode dispersion compensation apparatus for real-time automatically-adaptive
JP2000330079A (en) Polarization mode dispersion compensating device
JP2664749B2 (en) Light modulator
CN113851919B (en) Sweep frequency electric signal generation system
JPH05100194A (en) Three-dimensional waveguide type optical modulator

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 19980106