JPH0666778A - High-precision analysis - Google Patents

High-precision analysis

Info

Publication number
JPH0666778A
JPH0666778A JP24467891A JP24467891A JPH0666778A JP H0666778 A JPH0666778 A JP H0666778A JP 24467891 A JP24467891 A JP 24467891A JP 24467891 A JP24467891 A JP 24467891A JP H0666778 A JPH0666778 A JP H0666778A
Authority
JP
Japan
Prior art keywords
analysis
peak
eluent
hplc
analyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP24467891A
Other languages
Japanese (ja)
Other versions
JP2768079B2 (en
Inventor
Shinji Satomura
慎二 里村
Kenji Nakamura
賢治 中村
Nobuko Imashiyou
展子 今荘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Wako Pure Chemical Corp
Original Assignee
Wako Pure Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wako Pure Chemical Industries Ltd filed Critical Wako Pure Chemical Industries Ltd
Priority to JP3244678A priority Critical patent/JP2768079B2/en
Publication of JPH0666778A publication Critical patent/JPH0666778A/en
Application granted granted Critical
Publication of JP2768079B2 publication Critical patent/JP2768079B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To improve the accuracy of high performance liquid chromatographic (HPLC) analysis by making the flow velocity of an eluate faster when peaks other than that of an object to be analyzed appear. CONSTITUTION:At the time of using the HPLC analyzing method, the flow velocity of an eluate is made faster as compared with the flow velocity of the eluate used when the peak of an object to be analyzed appears when peaks other than that of the object appear during the analysis of the same sample. Therefore, the influence of the leadings or tailings of unnecessary peaks other than that of the object on main peaks can be eliminated and high-precision analysis can be conducted. In addition, the measuring time can be shortened. When an HPLC device connected with a microcomputer, etc., is used for automatically changing the flow velocity of the eluate in accordance with a preset condition, the analysis can be automated. In addition, in case the object to be analyzed is a substance having enzyme activity and the enzyme activity is utilized for detecting the peak of the object, it is preferable to connect the HPLC device to a post-column reactor.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、高速液体クロマトグラ
フィ(以下、HPLCと略記する。)による高精度の分
析法と、該方法に使用可能なHPLC用分析装置に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a highly accurate analysis method by high performance liquid chromatography (hereinafter abbreviated as HPLC) and an HPLC analyzer which can be used in the method.

【0002】[0002]

【発明の背景】HPLCは、溶液中の微量成分を短時間
に精度良く分析・定量し得る方法として近年様々な分野
で利用されている分析方法の一つである。HPLCによ
る分析に於いては、分析の精度を高めるために、分析対
象物のピークとその他の成分のピークとが充分分離し得
るような最適の測定条件を設定する必要がある。
BACKGROUND OF THE INVENTION HPLC is one of the analytical methods used in various fields in recent years as a method capable of accurately analyzing and quantifying a trace component in a solution in a short time. In the analysis by HPLC, in order to improve the accuracy of the analysis, it is necessary to set the optimum measurement conditions such that the peak of the analyte and the peaks of other components can be sufficiently separated.

【0003】通常、この最適測定条件を設定するために
検討される要因としては、例えば充填剤の種類、溶離液
の組成、溶離液のpH、グラジエント条件等が挙げられ
る。しかしながら、試料によっては、これらの要因を種
々変化させても分析対象物のピークとその他の成分のピ
ークとを充分に分離し得る測定条件を設定することが難
しい場合が応々にしてある。
Usually, factors to be considered for setting the optimum measurement conditions include, for example, the type of filler, the composition of the eluent, the pH of the eluent, and the gradient conditions. However, depending on the sample, it is sometimes difficult to set the measurement conditions that can sufficiently separate the peak of the analyte and the peak of other components even if these factors are variously changed.

【0004】例えば、溶液中の分析対象物の濃度に比較
して、その他の成分の濃度がかなり高くしかもこのピー
クが分析対象物のピークの直前や直後に出現する場合に
は、その他の成分のリーディング或はテーリングにより
分析対象物のピークが影響を受け、測定精度の低下を来
したり、検出可能領域の下限が高くなって検出限界の幅
が狭くなる等の現象を生じる。そのため、このような現
象を回避し得る新たな方法の出現が求められている現状
にある。
For example, when the concentration of the other component is considerably higher than the concentration of the analyte in the solution and this peak appears immediately before or after the peak of the analyte, the concentration of the other component is increased. The peaks of the analyte are affected by the reading or tailing, resulting in a decrease in measurement accuracy, and a phenomenon in which the lower limit of the detectable region is increased and the width of the detection limit is narrowed. Therefore, there is a current demand for the emergence of a new method that can avoid such a phenomenon.

【0005】[0005]

【発明の目的】本発明は、上記した如き状況に鑑み成さ
れたもので、HPLCによる分析に於いて、同一試料分
析中に出現する分析対象物のピークとそれ以外のピーク
とを明確に分離する方法と、それによってもたらされる
高精度な分析法、並びに該方法に使用可能なHPLC用
分析装置を提供することをその目的とする。
SUMMARY OF THE INVENTION The present invention has been made in view of the above situation, and in the analysis by HPLC, the peak of the analyte which appears during the analysis of the same sample and the other peaks are clearly separated. It is an object of the present invention to provide a method for performing the same, a highly accurate analytical method brought about by the method, and an analyzer for HPLC usable in the method.

【0006】[0006]

【発明の構成】本発明は、HPLCによる分析法に於い
て、同一試料分析中に出現する分析対象物以外のピーク
の出現時に於ける溶離液の流速を、分析対象物のピーク
出現時に於ける溶離液のそれよりも速くすることによ
り、分析の精度を高めることを特徴とする該分析法、並
びに同一試料分析中に出現する分析対象物以外のピーク
の出現時に於ける溶離液の流速と、分析対象物のピーク
出現時に於ける溶離液のそれとを、予め設定した条件に
応じて自動的に変化させ得る手段を備えたことを特徴と
する、HPLC用分析装置である。
According to the present invention, in the analytical method by HPLC, the flow rate of the eluent at the time of appearance of a peak other than the analyte which appears during the analysis of the same sample, The analysis method characterized by increasing the accuracy of the analysis by making it faster than that of the eluent, and the flow rate of the eluent at the time of appearance of a peak other than the analyte that appears during the same sample analysis, It is an analyzer for HPLC, characterized in that it is provided with a means for automatically changing the eluent of an analyte when a peak appears and in accordance with a preset condition.

【0007】即ち、本発明者らは、上記本発明の目的を
達成すべく鋭意研究の途上、分析対象物以外のピーク
(以下、不要ピークと略記する。)出現時に於ける溶離
液の流速を、分析対象物のピーク(以下、主ピークと略
記する。)出現時に於ける溶離液のそれよりも速くした
場合には、不要ピークのリーディングやテーリングによ
る主ピークへの影響が回避でき、高精度な分析が実施し
得ること、更にこのような条件で分析を実施することに
より測定時間の短縮を図れることを見出し本発明を完成
するに至った。
[0007] That is, the inventors of the present invention, during the course of intensive research to achieve the above-mentioned object of the present invention, determine the flow rate of the eluent at the time when a peak other than the analyte (hereinafter abbreviated as an unnecessary peak) appears. , If the peak of the analyte (hereinafter abbreviated as the main peak) is made faster than that of the eluent at the time of appearance, it is possible to avoid the influence of leading and tailing of unnecessary peaks on the main peak, and high accuracy. The present invention has been completed based on the finding that various analyzes can be carried out and that the measurement time can be shortened by carrying out the analysis under such conditions.

【0008】本発明に於いて用いられるHPLC用装置
としては、通常この分野に於いて用いられているもので
あれば、特に限定されることなく挙げることができる。
また、該装置に装着されるカラムの充填剤も通常この分
野で用いられる例えばゲル瀘過(ゲル瀘過クロマトグラ
フィ)用充填剤,イオン交換クロマトグラフィ用充填
剤,等電点クロマトグラフィ用充填剤,疎水クロマトグ
ラフィ用充填剤,逆相クロマトグラフィ用充填剤,ハイ
ドロキシアパタイト等の中から分析目的に応じて適宜選
択し使用すればよい。
The HPLC apparatus used in the present invention is not particularly limited as long as it is generally used in this field.
Further, the packing material of the column mounted in the apparatus is also commonly used in this field, for example, packing material for gel filtration (gel filtration chromatography), packing material for ion exchange chromatography, packing material for isoelectric focusing chromatography, hydrophobic chromatography. Depending on the purpose of analysis, it may be appropriately selected and used from among packing materials for packing, reversed-phase chromatography packing, hydroxyapatite and the like.

【0009】このようなHPLC用装置に、予め設定し
た条件に応じて自動的に溶離液の流速を変化させるため
のマイクロコンピューター等を接続すれば、本発明のH
PLC用装置とすることができる。
By connecting a microcomputer or the like for automatically changing the flow rate of the eluent according to preset conditions to such an HPLC apparatus, the H of the present invention can be obtained.
It can be a device for PLC.

【0010】本発明のHPLC用装置を使用すれば、分
析対象物の分析を自動化することが可能となる。尚、分
析対象物が酵素活性を保有する物質であり、分析対象物
のピークの検出を該酵素活性を利用して行う場合には、
本願発明のHPLC用装置に、ポストカラム反応装置を
接続しておくことが好ましい。また、溶離液を2種類用
いてグラジエントを行いながら本発明を実施する際に
は、溶離液を供給するポンプは、逆流防止弁がついた
もの、背圧の変化に拘わらず一定流速を保持できる性
能を有するもの、等であることが好ましいことは言うま
でもない。
By using the apparatus for HPLC of the present invention, it becomes possible to automate the analysis of the analyte. When the analyte is a substance having an enzymatic activity and the peak of the analyte is detected using the enzymatic activity,
It is preferable to connect a post column reaction device to the HPLC device of the present invention. Further, when the present invention is carried out while performing a gradient using two kinds of eluents, the pump for supplying the eluent has a check valve, and can maintain a constant flow rate regardless of changes in back pressure. Needless to say, it is preferable that the material has performance.

【0011】本発明の方法に於いて使用される溶離液と
しては、通常この分野に於いて使用されるものであれば
特に限定することなく挙げられるが、例えばリン酸塩,
酢酸塩,クエン酸塩,グッド(Good)の緩衝剤,トリス
(ヒドロキシエチル)アミノメタン等の緩衝剤、例えば
塩化ナトリウム,塩化カリウム,硫酸アンモニウム等の
塩類、例えばメタノール,エタノール,イソプロピルア
ルコール,アセトニトリル,テトラヒドロフラン,トリ
フルオロ酢酸等の有機溶媒、界面活性剤等を適宜含有す
る水溶液が好ましく用いられる。
The eluent used in the method of the present invention is not particularly limited as long as it is one usually used in this field. For example, phosphate,
Acetates, citrates, Good's buffers, buffers such as tris (hydroxyethyl) aminomethane, salts such as sodium chloride, potassium chloride, ammonium sulfate, such as methanol, ethanol, isopropyl alcohol, acetonitrile, tetrahydrofuran An aqueous solution containing an organic solvent such as trifluoroacetic acid, a surfactant and the like is preferably used.

【0012】本発明の方法により分析が可能な分析対象
物としては、通常HPLCにより分析可能とされている
ものであれば特に限定されないが、例えば血清,血液,
血漿,尿等の生体体液、リンパ球、血球、各種細胞類等
の生体由来の試料中に含まれる酵素、生理活性物質、癌
関連抗原、糖鎖を有する物質等が代表的なものとして挙
げられる。更に具体的には、例えばアミラーゼ,アルカ
リホスファターゼ,酸性ホスファターゼ,γ-グルタミ
ルトランスフェラーゼ(γ-GTP),リパーゼ,クレアチ
ンキナーゼ(CK),乳酸脱水素酵素(LDH),グルタミン酸
オキザロ酢酸トランスアミナーゼ(GOT),グルタミン酸
ピルビン酸トランスアミナーゼ(GPT),レニン,プロテ
インキナーゼ,チロシンキナーゼ等の酵素類、例えばス
テロイドホルモン,ヒト 絨毛性ゴナドトロピン(hCG),
プロラクチン,甲状腺刺激ホルモン(TSH),黄体形成ホ
ルモン(LH)等の生理活性物質、例えば前立腺特異抗原(P
SA),α -マクログロブリン,癌胎児性抗原(CEA),α-
フェトプロテイン等の癌関連抗原等が好ましく挙げられ
る。
The substance to be analyzed by the method of the present invention is not particularly limited as long as it can be usually analyzed by HPLC. For example, serum, blood,
Typical examples include enzymes, physiologically active substances, cancer-related antigens, substances having sugar chains, etc., contained in biological body fluids such as plasma and urine, lymphocytes, blood cells, various cells derived from living organisms. . More specifically, for example, amylase, alkaline phosphatase, acid phosphatase, γ-glutamyl transferase (γ-GTP), lipase, creatine kinase (CK), lactate dehydrogenase (LDH), glutamate oxaloacetate transaminase (GOT), glutamate. Enzymes such as pyruvate transaminase (GPT), renin, protein kinase, tyrosine kinase, such as steroid hormones, human chorionic gonadotropin (hCG),
Bioactive substances such as prolactin, thyroid stimulating hormone (TSH), and luteinizing hormone (LH), for example, prostate specific antigen (P
SA), α-macroglobulin, carcinoembryonic antigen (CEA), α-
Preferable examples include cancer-related antigens such as fetoprotein.

【0013】本発明を実施するには、例えば以下の如く
行えばよい。即ち、通常のHPLCによる分析対象物の
測定に於いて、主ピークが出現する前及び出現した後の
溶離液の流速を、主ピーク出現時の該流速よりも速くす
る以外は、通常のHPLCによる測定と同様にして実施
すれば足りる。この場合に、流速を変化させる方法とし
ては、手動でもよいし、本発明のHPLC用装置を用い
て自動的に行わせても何れにてもよい。
To carry out the present invention, for example, the following may be carried out. That is, in the measurement of the analyte by the usual HPLC, the flow rate of the eluent before and after the appearance of the main peak is set higher than that at the appearance of the main peak, by the usual HPLC. It suffices to carry out in the same manner as the measurement. In this case, the method of changing the flow rate may be manual, or may be automatically performed using the HPLC apparatus of the present invention.

【0014】尚、溶離液の流速の上限は使用するカラム
の耐圧能により自ずから決定されるので、主ピーク出現
時の流速と不要ピーク出現時の流速は、この範囲内であ
って、且つ主ピーク出現時の流速と不要ピーク出現時の
流速とを変化させた際にこれらピークの分離を充分に行
い得る範囲から適宜選択すればよいが、通常、分析対象
物のピーク出現時の溶離液の流速1に対して、それ以外
のピーク出現時の溶離液のそれは、1.2〜10、好ましく
は1.5〜5の範囲から選択される。また、流速の変化
は、段階的(ステップ)であっても徐々に(グラジエン
トに)であっても何れにてもよい。
Since the upper limit of the flow rate of the eluent is naturally determined by the pressure resistance of the column used, the flow rate when the main peak appears and the flow rate when the unnecessary peak appears are within this range, and The flow rate at the time of appearance and the flow rate at the time of appearance of an unnecessary peak may be appropriately selected from a range in which these peaks can be sufficiently separated, but usually, the flow rate of the eluent at the time of appearance of the peak of the analyte is obtained. In contrast to 1, the eluent at the time of appearance of the other peaks is selected from the range of 1.2 to 10, preferably 1.5 to 5. Further, the change in flow velocity may be stepwise (step) or gradual (gradient).

【0015】本発明の方法は、分析対象物が酵素活性を
保有する物質であり、該分析対象物の検出を該酵素活性
を利用してポストカラム法で行う際に特にその効果を発
揮する。
The method of the present invention is particularly effective when the analyte is a substance having an enzymatic activity and the analyte is detected by the post-column method utilizing the enzymatic activity.

【0016】即ち、例えば分析対象物が特定の物質とこ
れに対して親和性を有する物質(例えば抗体、レクチ
ン、酵素に対するインヒビター、特定の核酸に相補的な
ポリヌクレオチド等)の酵素標識物(以下、酵素標識抗
体等と略記する。)との複合体であり、該複合体と遊離
の酵素標識抗体等との分離をHPLCにより行い、且つ
その検出をポストカラム法により行う場合に、特に効果
的である。
That is, for example, an enzyme-labeled substance (hereinafter, referred to as an analyte) of a specific substance and a substance having an affinity for the specific substance (eg, antibody, lectin, inhibitor for enzyme, polynucleotide complementary to specific nucleic acid, etc.) , Abbreviated as enzyme-labeled antibody, etc.), and is particularly effective when the separation of the complex and free enzyme-labeled antibody and the like is performed by HPLC and the detection is performed by a post-column method. Is.

【0017】即ち、この場合にHPLCにより分析する
試料中には、分析対象物である特定物質と酵素標識抗体
等との複合体と、遊離の酵素標識抗体等とが共存してお
り、しかも通常遊離の酵素標識抗体等の濃度の方が該複
合体の濃度よりも高い場合が多いので、遊離の酵素標識
抗体等により主ピーク(該複合体のピーク)が影響を受
けることが多い。本発明の方法により該試料について分
析を行うと、不要ピーク(遊離の酵素標識抗体等のピー
ク)は、通常のHPLCによる分析時よりもピーク面積
及びピーク高共に小さくなって、主ピークへの影響が殆
どなくなるのである。この理由は定かではないが、分析
対象物以外のピーク出現時の溶離液の流速を速くさせる
ことにより、例えば遊離の酵素標識抗体等のカラム内
での拡散の程度が減少する、ポストカラムでの反応時
間が短縮されるため酵素反応生成物が減少するのでピー
ク自体が見かけ上小さくなる、酵素反応用基質液の流
速は一定であるので、ポストカラムに於ける基質濃度が
減少し酵素反応が起こり難くなる、トータル流速が増
加することにより、検出器中に於ける溶離液の滞留時間
が減少するので、見かけの検出器感度が低下する、等の
要因が重なってこの様な効果が得られるのであろう。
That is, in this case, in the sample to be analyzed by HPLC, the complex of the specific substance to be analyzed and the enzyme-labeled antibody and the free enzyme-labeled antibody coexist, and usually, Since the concentration of the free enzyme-labeled antibody or the like is often higher than the concentration of the complex, the main peak (peak of the complex) is often affected by the free enzyme-labeled antibody or the like. When the sample is analyzed by the method of the present invention, unnecessary peaks (peaks of free enzyme-labeled antibody, etc.) are smaller in both peak area and peak height than during normal HPLC analysis, and influence on the main peak. Is almost gone. The reason for this is not clear, but by increasing the flow rate of the eluent at the time of appearance of peaks other than the analyte, for example, the degree of diffusion of free enzyme-labeled antibody in the column is reduced, and post-column Since the reaction time is shortened, the amount of enzyme reaction products is reduced, so the peak itself is apparently reduced.Since the flow rate of the substrate solution for enzyme reaction is constant, the substrate concentration in the post column decreases and enzyme reaction occurs. It becomes difficult, and the total flow velocity increases, so that the retention time of the eluent in the detector decreases, and the apparent sensitivity of the detector decreases. Ah

【0018】尚、上記のケースの如く、分析対象物の保
有する酵素活性を利用して、分析対象物の検出を行う場
合には、不要ピーク出現時の基質液の流速を低下させる
(若しくは0とする)ことによっても主ピークの検出感
度を上昇させることは可能である。しかしながら、この
方法では測定時間を短縮することはできない。
When the analyte is detected by utilizing the enzyme activity possessed by the analyte as in the above case, the flow rate of the substrate solution at the time when the unwanted peak appears is decreased (or 0). It is also possible to increase the detection sensitivity of the main peak by However, this method cannot reduce the measurement time.

【0019】従来の方法に於いては、HPLCによる分
析の精度を高めるには、例えば充填剤の種類、溶離液の
組成、溶離液のpH、グラジエント条件等を経験により
種々変化させて主ピークと不要ピークとが充分分離し得
るような最適の測定条件を設定する必要があったが、本
発明の如く単に溶離液の流速を主ピーク出現時と不要ピ
ーク出現時とで変化させることによりHPLCによる分
析をこれほど高精度且つ短時間に行い得るとは意外なこ
とであった。
In the conventional method, in order to improve the accuracy of the analysis by HPLC, for example, the kind of the packing material, the composition of the eluent, the pH of the eluent, the gradient condition, etc. can be variously changed by experience to determine the main peak. It was necessary to set the optimum measurement conditions so that the unnecessary peaks can be sufficiently separated, but by HPLC by simply changing the flow rate of the eluent between the appearance of the main peak and the appearance of the unnecessary peak as in the present invention. It was surprising that the analysis could be performed with such high accuracy and in a short time.

【0020】以下に実施例及び比較例を示し本発明を更
に具体的に説明するが、本発明はこれらにより何ら限定
されるものではない。
The present invention will be described in more detail below with reference to Examples and Comparative Examples, but the present invention is not limited thereto.

【実施例】【Example】

【0021】実施例1. (溶離液1)リン酸ナトリウム 4.2gと、リン酸2ナト
リウム 80.0gとを、精製水に溶解し、全量を5lとした
ものを溶離液1とした。 (溶離液2)硫酸アンモニウムを溶離液1に1.70Mとな
るように溶解し、pHを7.5に調整したものを溶離液2と
した。 (反応用緩衝液)牛血清アルブミン(シグマ社製)0.2g
を溶離液1に溶解し、全量を100mlとしたものを反応用
緩衝液とした。 (抗体溶液)抗ヒトα-フェトプロテイン(マウス)モ
ノクローナル抗体(和光純薬工業(株)社製)を常法によ
り処理してFab'としたものに、常法によりペルオキシ
ダーゼ(POD)(TOYOBO社製)を標識して得た、POD標識
抗ヒトα-フェトプロテイン-Fab'を100nMとなるように
反応用緩衝液に溶解したものを抗体溶液とした。 (基質液)3-(p-ヒドロキシフェニル)-プロピオン酸16.
6g及び35%過酸化水素水630mg(過酸化水素として220m
g)とを溶離液1に溶解し、全量を1lとしたものを基
質液とした。 (試料)ヒトα-フェトプロテイン(シグマ社製)を150
ng/mlとなるように反応用緩衝液に溶解したものを試料
とした。 (HPLCの使用条件)システムの概略を図3に示す。 ・カラム:φ4.6×30mm。 ・充填剤:MCAgel エチル(和光純薬工業(株)社
製) ・溶離液及び流速:グラジエントパターンを実線で、流
速の変化を点線で、図2(1)に夫々示す。 ・基質液流速:0.1ml/min。 ・検出:励起波長;320nm、蛍光波長;404nmで蛍光を測
定した。 (測定操作)抗体溶液50μlと試料50μlとを室温下に混
合、反応させた後、反応液の10μlを上記条件のHPL
Cにより分析した。 (結果)得られた溶出パターンを図1(1)に示す。尚、
図中、1は遊離のPOD標識抗ヒトα-フェトプロテイン-
Fab'のピークを、2はヒトα-フェトプロテインとPOD
標識抗ヒトα-フェトプロテイン-Fab'との複合体のピ
ークを夫々示す。
Example 1. (Eluent 1) 4.2 g of sodium phosphate and 80.0 g of disodium phosphate were dissolved in purified water to make the total amount 5 l, which was designated as eluent 1. (Eluent 2) Ammonium sulfate was dissolved in eluent 1 so that the concentration was 1.70 M, and pH was adjusted to 7.5 to give eluent 2. (Reaction buffer) Bovine serum albumin (Sigma) 0.2g
Was dissolved in eluent 1 to make the total amount 100 ml, which was used as a reaction buffer. (Antibody solution) Anti-human α-fetoprotein (mouse) monoclonal antibody (manufactured by Wako Pure Chemical Industries, Ltd.) was processed into Fab 'by a conventional method, and peroxidase (POD) (manufactured by TOYOBO) ) Was obtained by dissolving POD-labeled anti-human α-fetoprotein-Fab ′ in a reaction buffer at 100 nM to give an antibody solution. (Substrate solution) 3- (p-hydroxyphenyl) -propionic acid 16.
6g and 630mg of 35% hydrogen peroxide (220m as hydrogen peroxide)
g) and were dissolved in eluent 1 to make the total amount 1 l, which was used as a substrate solution. (Sample) Human α-fetoprotein (Sigma) 150
What was dissolved in the reaction buffer so that the concentration was ng / ml was used as a sample. (Use condition of HPLC) The outline of the system is shown in FIG. -Column: φ 4.6 x 30 mm. -Filler: MCAgel ethyl (manufactured by Wako Pure Chemical Industries, Ltd.)-Eluent and flow rate: The gradient pattern is shown by a solid line, and the change in flow rate is shown by a dotted line in Fig. 2 (1). -Substrate solution flow rate: 0.1 ml / min. -Detection: Fluorescence was measured at an excitation wavelength of 320 nm and a fluorescence wavelength of 404 nm. (Measurement procedure) 50 μl of the antibody solution and 50 μl of the sample were mixed and reacted at room temperature, and 10 μl of the reaction solution was mixed with HPL under the above conditions.
Analyzed by C. (Results) The obtained elution pattern is shown in Fig. 1 (1). still,
In the figure, 1 is a free POD-labeled anti-human α-fetoprotein-
Fab 'peak is 2 for human α-fetoprotein and POD
The peaks of the complex with the labeled anti-human α-fetoprotein-Fab ′ are shown, respectively.

【0022】比較例1.溶離液の流速を1ml/minとし、
且つグラジエントパターンを図2(2)に於いて実線で示
す如くした以外は、実施例1と同じ試料及び試薬を用
い、同様の操作を行って、実施例1と同じ条件でHPL
Cによる分析を行った。得られた溶出パターンを図1
(2)に示す。尚、図中、1は遊離のPOD標識抗ヒトα-フ
ェトプロテイン-Fab'のピークを、2はヒトα-フェト
プロテインとPOD標識抗ヒトα-フェトプロテイン-Fab'
との複合体のピークを夫々示す。図1の結果から明らか
な如く、本発明の方法によれば、従来法で行うよりも高
精度且つ短時間で分析対象物の分析を実施し得ることが
判る。
Comparative Example 1. The flow rate of the eluent is 1 ml / min,
Further, except that the gradient pattern is shown by the solid line in FIG. 2 (2), the same sample and reagent as in Example 1 are used, the same operation is performed, and HPL is performed under the same conditions as in Example 1.
Analysis by C was performed. Figure 1 shows the elution pattern obtained.
Shown in (2). In the figure, 1 is the peak of free POD-labeled anti-human α-fetoprotein-Fab 'and 2 is the peak of human α-fetoprotein and POD-labeled anti-human α-fetoprotein-Fab'.
The respective peaks of the complex with are shown. As is clear from the results shown in FIG. 1, the method of the present invention can perform the analysis of the analyte with higher accuracy and in a shorter time than the conventional method.

【0023】実施例2.レニン活性の測定 尚、以下に於いて使用している略号の正式名称は以下の
通り。 His:ヒスチジン残基、Pro:プロリン残基、Phe:フェ
ニルアラニン残基、Leu:ロイシン残基、Val:バリン残
基、Ile:イソロイシン残基、Ala:アラニン残基。 (溶離液1)10%のアセトニトリルを含む 50mM 酢酸-
酢酸アンモニウム緩衝液(pH6.0)を溶離液1とした。 (溶離液2)60%のアセトニトリルを含む 50mM 酢酸-
酢酸アンモニウム緩衝液(pH6.0)を溶離液2とした。 (基質液)500μMのピリジルグリシル-His-Pro-Phe-His
-Leu-Val-Ile-His-βAla-OH、3mMのo-フェナンスロリ
ン、1mMの弗化フェニルメチルスルホニルを含む 0.1M
3-(N-モルホリノ)プロパンスルホン酸(MOPS)緩衝液(p
H7.0)を基質液とした。 (試料)新鮮ヒト血清を試料とした。 (HPLCの使用条件)システムの概略を図6に示す。 ・カラム:φ4.6×10mm(40℃保温)。 ・充填剤:Wakosil 5C18(和光純薬工業(株)社製) ・溶離液及び流速:グラジエントパターンを実線で、流
速の変化を点線で、図4(1)に夫々示す。 ・検出:励起波長;306nm、蛍光波長;358nmで蛍光を測
定した。 (測定操作)基質液100μlと試料10μlとを室温下に混
合した後、37℃で1時間反応させた。得られた反応液の
60μlを上記条件のHPLCにより分析した。 (結果)得られた溶出パターンを図5(1)に示す。尚、
図中、1はo-フェナンスロリンのピークを、2はレニン
の酵素作用生成物(ピリジルグリシル-His-Pro-Phe-His
-Leu-OH)のピークを、3はレニンの基質(ピリジルグ
リシル-His-Pro-Phe-His-Leu-Val-Ile-His-βAla-OH)
のピークを夫々示す。
Example 2. Measurement of renin activity The official names of the abbreviations used below are as follows. His: Histidine residue, Pro: Proline residue, Phe: Phenylalanine residue, Leu: Leucine residue, Val: Valine residue, Ile: Isoleucine residue, Ala: Alanine residue. (Eluent 1) 50 mM acetic acid containing 10% acetonitrile-
The eluent 1 was ammonium acetate buffer (pH 6.0). (Eluent 2) 50 mM acetic acid containing 60% acetonitrile-
The eluent 2 was ammonium acetate buffer (pH 6.0). (Substrate solution) 500 μM pyridylglycyl-His-Pro-Phe-His
-Leu-Val-Ile-His-βAla-OH, 0.1 mM containing 3 mM o-phenanthroline, 1 mM phenylmethylsulfonyl fluoride
3- (N-morpholino) propanesulfonic acid (MOPS) buffer (p
H7.0) was used as the substrate solution. (Sample) Fresh human serum was used as a sample. (Use condition of HPLC) The outline of the system is shown in FIG.・ Column: φ4.6 × 10mm (40 ℃ heat retention). -Filler: Wakosil 5C18 (manufactured by Wako Pure Chemical Industries, Ltd.)-Eluent and flow rate: The gradient pattern is shown by a solid line, and the change of flow rate is shown by a dotted line in Fig. 4 (1). -Detection: Fluorescence was measured at an excitation wavelength of 306 nm and a fluorescence wavelength of 358 nm. (Measurement procedure) 100 μl of the substrate solution and 10 μl of the sample were mixed at room temperature and then reacted at 37 ° C. for 1 hour. Of the obtained reaction solution
60 μl was analyzed by HPLC under the above conditions. (Result) The obtained elution pattern is shown in FIG. 5 (1). still,
In the figure, 1 is the peak of o-phenanthroline, and 2 is the enzymatic action product of renin (pyridylglycyl-His-Pro-Phe-His).
-Leu-OH) peak, 3 is a renin substrate (pyridylglycyl-His-Pro-Phe-His-Leu-Val-Ile-His-βAla-OH)
The respective peaks are shown.

【0024】比較例2.溶離液の流速を1.5ml/minと
し、且つグラジエントパターンを図4(2)に於いて実線
で示す如くした以外は、実施例2と同じ試料及び試薬を
用い、同様の操作を行って、実施例2と同じ条件でHP
LCによる分析を行った。得られた溶出パターンを図5
(2)に示す。尚、図中、1はo-フェナンスロリンのピー
クを、2はレニンの酵素作用生成物(ピリジルグリシル
-His-Pro-Phe-His-Leu-OH)のピークを、3はレニンの
基質(ピリジルグリシル-His-Pro-Phe-His-Leu-Val-Ile
-His-βAla-OH)のピークを夫々示す。図5の結果から
明らかな如く、本発明の方法によれば、従来法で行うよ
りも高精度且つ短時間で分析対象物の分析を実施し得る
ことが判る。
Comparative Example 2. Using the same sample and reagents as in Example 2, except that the flow rate of the eluent was 1.5 ml / min and the gradient pattern was as shown by the solid line in FIG. HP under the same conditions as in Example 2
Analysis by LC was performed. The elution pattern obtained is shown in FIG.
Shown in (2). In the figure, 1 is the peak of o-phenanthroline, and 2 is the enzymatic action product of renin (pyridylglycyl).
-His-Pro-Phe-His-Leu-OH), 3 is a renin substrate (pyridylglycyl-His-Pro-Phe-His-Leu-Val-Ile)
-His-βAla-OH) peaks are shown. As is clear from the results shown in FIG. 5, the method of the present invention can perform the analysis of the analyte with higher accuracy and in a shorter time than the conventional method.

【0025】[0025]

【発明の効果】以上述べた如く、本発明は、従来のHP
LCを使用する分析方法に於いては例えば充填剤の種
類、溶離液の組成、溶離液のpH、グラジエント条件等
を経験により種々変化させて主ピークと不要ピークとが
充分分離し得るような最適の測定条件を設定しなければ
実施し得なかった分析を、単に溶離液の流速を主ピーク
出現時と不要ピーク出現時とで変化させることにより高
精度且つ短時間に実施し得るようにした点に顕著な効果
を奏する発明であり、斯業に貢献するところ大なる発明
である。
As described above, according to the present invention, the conventional HP
In an analytical method using LC, for example, the type of packing material, the composition of the eluent, the pH of the eluent, the gradient conditions, etc. can be variously changed by experience to optimize the main peak and the unnecessary peak. The point that the analysis that could not be carried out without setting the measurement conditions described above can be carried out with high accuracy and in a short time by simply changing the flow rate of the eluent between the appearance of the main peak and the appearance of the unnecessary peak. It is an invention that has a remarkable effect on the invention, and is a great invention that contributes to the industry.

【図面の簡単な説明】[Brief description of drawings]

【図1】図1(1)は、実施例1に於いて得られた高速液
体クロマトグラフィ(HPLC)の結果を、図1(2)
は、比較例1に於いて得られたHPLCの結果を夫々示
す。
FIG. 1 (1) shows the results of high performance liquid chromatography (HPLC) obtained in Example 1, as shown in FIG.
Shows the results of HPLC obtained in Comparative Example 1, respectively.

【図2】図2(1)は、実施例1に於けるグラジエントパ
ターンと流速の変化を、図2(2)は、比較例1に於ける
グラジエントパターンを夫々示す。
FIG. 2 (1) shows a gradient pattern and a change in flow velocity in Example 1, and FIG. 2 (2) shows a gradient pattern in Comparative Example 1.

【図3】図3は、実施例1及び比較例1に於いて使用さ
れたHPLC用装置のシステムの概略を示したものでで
ある。
FIG. 3 is a schematic diagram of a system of an HPLC apparatus used in Example 1 and Comparative Example 1.

【図4】図4(1)は、実施例2に於いて得られたHPL
Cの結果を、図4(2)は、比較例2に於いて得られたH
PLCの結果を夫々示す。
FIG. 4 (1) shows the HPL obtained in Example 2.
The result of C is shown in FIG. 4 (2) as H obtained in Comparative Example 2.
The results of PLC are shown respectively.

【図5】図5(1)は、実施例2に於けるグラジエントパ
ターンと流速の変化を、図5(2)は、比較例2に於ける
グラジエントパターンを夫々示す。
5 (1) shows a gradient pattern and a change in flow velocity in Example 2, and FIG. 5 (2) shows a gradient pattern in Comparative Example 2.

【図6】図6は、実施例2及び比較例2に於いて使用さ
れたHPLC用装置のシステムの概略を示したものであ
る。
FIG. 6 shows an outline of a system of an HPLC apparatus used in Example 2 and Comparative Example 2.

【符号の説明】[Explanation of symbols]

図1の各図に於ける各番号は夫々以下のピークを示す。 1:遊離のPOD標識抗ヒトα-フェトプロテイン-Fab'。 2:ヒトα-フェトプロテインとPOD標識抗ヒトα-フェ
トプロテイン-Fab'との複合体。 図2の各図に於いて、実線はグラジエントパターンを、
点線は流速の変化を夫々表わす。図4の各図に於ける各
番号は夫々以下のピークを示す。 1:o-フェナンスロリン。 2:レニンの酵素作用生成物(ピリジルグリシル-His-P
ro-Phe-His-Leu-OH)。 3:レニンの基質(ピリジル
グリシル-His-Pro-Phe-His-Leu-Val-Ile-His-βAla-O
H)。 図4の各図に於いて、実線はグラジエントパターンを、
点線は流速の変化を夫々表わす。
Each number in each figure of FIG. 1 shows the following peaks, respectively. 1: Free POD-labeled anti-human α-fetoprotein-Fab ′. 2: A complex of human α-fetoprotein and POD-labeled anti-human α-fetoprotein-Fab ′. In each figure of FIG. 2, the solid line represents the gradient pattern,
Dotted lines represent changes in flow velocity. Each number in each figure of FIG. 4 shows the following peaks, respectively. 1: o-phenanthroline. 2: Enzymatic product of renin (pyridylglycyl-His-P
ro-Phe-His-Leu-OH). 3: substrate of renin (pyridylglycyl-His-Pro-Phe-His-Leu-Val-Ile-His-βAla-O
H). In each figure of FIG. 4, the solid line represents the gradient pattern,
Dotted lines represent changes in flow velocity.

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成4年8月7日[Submission date] August 7, 1992

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0021[Correction target item name] 0021

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0021】実施例1. (溶離液1)リン酸ナトリウム 4.2gと、リン酸2ナト
リウム 80.0gとを、精製水に溶解し、全量を5lとした
ものを溶離液1とした。 (溶離液2)硫酸アンモニウムを溶離液1に1.70Mとな
るように溶解し、pHを7.5に調整したものを溶離液2と
した。 (反応用緩衝液)牛血清アルブミン(シグマ社製)0.2g
を溶離液1に溶解し、全量を100mlとしたものを反応用
緩衝液とした。 (抗体溶液)抗ヒトα-フェトプロテイン(マウス)モ
ノクローナル抗体(和光純薬工業(株)社製)を常法によ
り処理してFab'としたものに、常法によりペルオキシ
ダーゼ(POD)(TOYOBO社製)を標識して得た、POD標識
抗ヒトα-フェトプロテイン-Fab'を100nMとなるように
反応用緩衝液に溶解したものを抗体溶液とした。 (基質液)3-(p-ヒドロキシフェニル)-プロピオン酸16.
6g及び35%過酸化水素水630mg(過酸化水素として220m
g)とを溶離液1に溶解し、全量を1lとしたものを基
質液とした。 (試料)ヒトα-フェトプロテイン(シグマ社製)を150
ng/mlとなるように反応用緩衝液に溶解したものを試料
とした。 (HPLCの使用条件) システムの概略を図3に示す。 ・カラム:φ4.6×30mm。 ・充填剤:MCIgel エチル(三菱化成(株)社製) ・溶離液及び流速:グラジエントパターンを実線で、流
速の変化を点線で、図2(1)に夫々示す。 ・基質液流速:0.1ml/min。 ・検出:励起波長;320nm、蛍光波長;404nmで蛍光を測
定した。 (測定操作)抗体溶液50μlと試料50μlとを室温下に混
合、反応させた後、反応液の10μlを上記条件のHPL
Cにより分析した。 (結果)得られた溶出パターンを図1(1)に示す。尚、
図中、1は遊離のPOD標識抗ヒトα-フェトプロテイン-
Fab'のピークを、2はヒトα-フェトプロテインとPOD
標識抗ヒトα-フェトプロテイン-Fab'との複合体のピ
ークを夫々示す。 ─────────────────────────────────────────────────────
Example 1. (Eluent 1) 4.2 g of sodium phosphate and 80.0 g of disodium phosphate were dissolved in purified water to make the total amount 5 l, which was designated as eluent 1. (Eluent 2) Ammonium sulfate was dissolved in eluent 1 so that the concentration was 1.70 M, and pH was adjusted to 7.5 to give eluent 2. (Reaction buffer) Bovine serum albumin (Sigma) 0.2g
Was dissolved in eluent 1 to make the total amount 100 ml, which was used as a reaction buffer. (Antibody solution) Anti-human α-fetoprotein (mouse) monoclonal antibody (manufactured by Wako Pure Chemical Industries, Ltd.) was processed into Fab 'by a conventional method, and peroxidase (POD) (manufactured by TOYOBO) ) Was obtained by dissolving POD-labeled anti-human α-fetoprotein-Fab ′ in a reaction buffer at 100 nM to give an antibody solution. (Substrate solution) 3- (p-hydroxyphenyl) -propionic acid 16.
6g and 630mg of 35% hydrogen peroxide (220m as hydrogen peroxide)
g) and were dissolved in eluent 1 to make the total amount 1 l, which was used as a substrate solution. (Sample) Human α-fetoprotein (Sigma) 150
What was dissolved in the reaction buffer so that the concentration was ng / ml was used as a sample. (Usage Conditions of HPLC) An outline of the system is shown in FIG. -Column: φ 4.6 x 30 mm. -Filler: MCIgel ethyl (manufactured by Mitsubishi Kasei Co., Ltd.)-Eluent and flow rate: The gradient pattern is shown by a solid line, and the change of flow rate is shown by a dotted line in Fig. 2 (1). -Substrate solution flow rate: 0.1 ml / min. -Detection: Fluorescence was measured at an excitation wavelength of 320 nm and a fluorescence wavelength of 404 nm. (Measurement procedure) 50 μl of the antibody solution and 50 μl of the sample were mixed and reacted at room temperature, and 10 μl of the reaction solution was mixed with HPL under the above conditions.
Analyzed by C. (Results) The obtained elution pattern is shown in Fig. 1 (1). still,
In the figure, 1 is a free POD-labeled anti-human α-fetoprotein-
Fab 'peak is 2 for human α-fetoprotein and POD
The peaks of the complex with the labeled anti-human α-fetoprotein-Fab ′ are shown, respectively. ─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成5年8月6日[Submission date] August 6, 1993

【手続補正2】[Procedure Amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】図面の簡単な説明[Name of item to be corrected] Brief description of the drawing

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【図面の簡単な説明】[Brief description of drawings]

【図1】図1(1)は、実施例1に於いて得られた高速
液体クロマトグラフィ(HPLC)の結果を、図1
(2)は、比較例1に於いて得られたHPLCの結果を
夫々示す。
FIG. 1 (1) shows the results of high performance liquid chromatography (HPLC) obtained in Example 1.
(2) shows the results of the HPLC obtained in Comparative Example 1, respectively.

【図2】図2(1)は、実施例1に於けるグラジエント
パターンと流速の変化を、図2(2)は、比較例1に於
けるグラジエントパターンを夫々示す。
2 (1) shows a gradient pattern and a change in flow velocity in Example 1, and FIG. 2 (2) shows a gradient pattern in Comparative Example 1.

【図3】図3は、実施例1及び比較例1に於いて使用さ
れたHPLC用装置のシステムの概略を示したものであ
る。
FIG. 3 shows an outline of a system of an HPLC apparatus used in Example 1 and Comparative Example 1.

【図4】図4(1)は、実施例2に於いて得られたHP
LCの結果を、図4(2)は、比較例2に於いて得られ
たHPLCの結果を夫々示す。
FIG. 4 (1) shows the HP obtained in Example 2.
The LC results and FIG. 4 (2) show the HPLC results obtained in Comparative Example 2, respectively.

【図5】図5(1)は、実施例2に於けるグラジエント
パターンと流速の変化を、図5(2)は、比較例2に於
けるグラジエントパターンを夫々示す。
5 (1) shows a gradient pattern and a change in flow velocity in Example 2, and FIG. 5 (2) shows a gradient pattern in Comparative Example 2.

【図6】図6は、実施例2及び比較例2に於いて使用さ
れたHPLC用装置のシステムの概略を示したものであ
る。
FIG. 6 shows an outline of a system of an HPLC apparatus used in Example 2 and Comparative Example 2.

【符号の説明】 図1の各図に於ける各番号は夫々以下のピークを示す。 1:遊離のPOD標識抗ヒトα−フェトプロテイン−F
ab’。 2:ヒトα−フェトプロテインとPOD標識抗ヒトα−
フェトプロテイン−Fab’との複合体。 図2の各図に於いて、実線はグラジエントパターンを、
点線は流速の変化を夫々表わす。図4の各図に於ける各
番号は夫々以下のピークを示す。 1:o−フェナンスロリン。 2:レニンの酵素作用生成物(ピリジルグリシル−Hi
s−Pro−Phe−His−Leu−OH)。 3:レニンの基質(ピリジルグリシル−His−Pro
−Phe−His−Leu−Val−Ile−His−
βAla−OH)。 図4の各図に於いて、実線はグラジエントパターンを、
点線は流速の変化を夫々表わす。
[Explanation of Codes] Each number in each figure of FIG. 1 indicates the following peaks. 1: Free POD-labeled anti-human α-fetoprotein-F
ab '. 2: Human α-fetoprotein and POD-labeled anti-human α-
Complex with fetoprotein-Fab '. In each figure of FIG. 2, the solid line represents the gradient pattern,
Dotted lines represent changes in flow velocity. Each number in each figure of FIG. 4 shows the following peaks, respectively. 1: o-phenanthroline. 2: Enzyme action product of renin (pyridylglycyl-Hi
s-Pro-Phe-His-Leu-OH). 3: substrate for renin (pyridylglycyl-His-Pro
-Phe-His-Leu-Val-Ile-His-
βAla-OH). In each figure of FIG. 4, the solid line represents the gradient pattern,
Dotted lines represent changes in flow velocity.

【手続補正3】[Procedure 3]

【補正対象書類名】図面[Document name to be corrected] Drawing

【補正対象項目名】全図[Correction target item name] All drawings

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【図1】 [Figure 1]

【図2】 [Fig. 2]

【図3】 [Figure 3]

【図5】 [Figure 5]

【図4】 [Figure 4]

【図6】 [Figure 6]

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】高速液体クロマトグラフィによる分析法に
於いて、同一試料分析中に出現する分析対象物以外のピ
ークの出現時に於ける溶離液の流速を、分析対象物のピ
ーク出現時に於ける溶離液のそれよりも速くすることに
より、分析の精度を高めることを特徴とする該分析法。
1. A high-performance liquid chromatography analysis method, wherein the flow rate of the eluent at the time of appearance of a peak other than the analyte that appears during the analysis of the same sample is the eluent at the time of the peak of the analyte. The analytical method is characterized by increasing the accuracy of the analysis by making it faster than that.
【請求項2】高速液体クロマトグラフィによる分析をポ
ストカラム法で行う、請求項1に記載の分析法。
2. The analysis method according to claim 1, wherein the analysis by high performance liquid chromatography is performed by a post-column method.
【請求項3】分析対象物が酵素活性を保有する物質であ
る、請求項1又は2に記載の分析法。
3. The analysis method according to claim 1, wherein the analyte is a substance having an enzymatic activity.
【請求項4】分析対象物が酵素活性を保有する物質であ
り、該分析対象物の検出を該酵素活性を利用して行う、
請求項3に記載の分析法。
4. The analyte is a substance having an enzymatic activity, and the analyte is detected by utilizing the enzymatic activity.
The analysis method according to claim 3.
【請求項5】同一試料分析中に出現する分析対象物以外
のピークの出現時に於ける溶離液の流速と、分析対象物
のピーク出現時に於ける溶離液のそれとを、予め設定し
た条件に応じて自動的に変化させ得る手段を備えたこと
を特徴とする、高速液体クロマトグラフィ用分析装置。
5. The flow rate of the eluent at the time of appearance of a peak other than the analyte which appears during the analysis of the same sample, and that of the eluent at the time of appearance of the peak of the analyte are determined according to preset conditions. An analyzer for high-performance liquid chromatography, characterized in that it comprises means for automatically changing the temperature.
【請求項6】ポストカラム反応装置が接続されている、
請求項5に記載の高速液体クロマトグラフィ用分析装
置。
6. A post-column reactor is connected,
The high performance liquid chromatography analyzer according to claim 5.
JP3244678A 1991-08-29 1991-08-29 High precision analysis method Expired - Fee Related JP2768079B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3244678A JP2768079B2 (en) 1991-08-29 1991-08-29 High precision analysis method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3244678A JP2768079B2 (en) 1991-08-29 1991-08-29 High precision analysis method

Publications (2)

Publication Number Publication Date
JPH0666778A true JPH0666778A (en) 1994-03-11
JP2768079B2 JP2768079B2 (en) 1998-06-25

Family

ID=17122323

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3244678A Expired - Fee Related JP2768079B2 (en) 1991-08-29 1991-08-29 High precision analysis method

Country Status (1)

Country Link
JP (1) JP2768079B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11295286A (en) * 1998-04-10 1999-10-29 Sekisui Chem Co Ltd Hemoglobins measuring method
JP2007504479A (en) * 2003-05-20 2007-03-01 エクシジェント テクノロジーズ, エルエルシー Flow rate control
JP2013253888A (en) * 2012-06-07 2013-12-19 Hitachi High-Technologies Corp Quantitative analysis method using mass analysis and quantitative analysis device
JP2014092523A (en) * 2012-11-06 2014-05-19 Shimadzu Corp Liquid chromatography - maldi mass spectrometry

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS441040Y1 (en) * 1966-04-28 1969-01-16
JPS57194351A (en) * 1981-05-26 1982-11-29 Shimadzu Corp Bile acid analysing method
JPS5938651A (en) * 1982-08-27 1984-03-02 Sekisui Chem Co Ltd Quantitative analysis of catecholamine

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS441040Y1 (en) * 1966-04-28 1969-01-16
JPS57194351A (en) * 1981-05-26 1982-11-29 Shimadzu Corp Bile acid analysing method
JPS5938651A (en) * 1982-08-27 1984-03-02 Sekisui Chem Co Ltd Quantitative analysis of catecholamine

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11295286A (en) * 1998-04-10 1999-10-29 Sekisui Chem Co Ltd Hemoglobins measuring method
JP2007504479A (en) * 2003-05-20 2007-03-01 エクシジェント テクノロジーズ, エルエルシー Flow rate control
JP4716998B2 (en) * 2003-05-20 2011-07-06 エービー サイエックス エルエルシー Flow rate control
JP2013253888A (en) * 2012-06-07 2013-12-19 Hitachi High-Technologies Corp Quantitative analysis method using mass analysis and quantitative analysis device
JP2014092523A (en) * 2012-11-06 2014-05-19 Shimadzu Corp Liquid chromatography - maldi mass spectrometry

Also Published As

Publication number Publication date
JP2768079B2 (en) 1998-06-25

Similar Documents

Publication Publication Date Title
Allison et al. Dual electrode liquid chromatography detector for thiols and disulfides
Van Eijk et al. Fully automated liquid-chromatographic determination of amino acids.
US7807401B2 (en) Reagent for digestion of hemoglobin
Saito et al. High-performance liquid chromatography of histamine and 1-methylhistamine with on-column fluroescence derivatization
Cunico et al. Comparison of ninhydrin and o-phthalaldehyde post-column detection techniques for high-performance liquid chromatography of free amino acids
Michalke et al. Iodine speciation in human serum by reversed-phase liquid chromatography-ICP-mass spectrometry
KR100231628B1 (en) Process for separating and measuring glycoprotein
JPH0666778A (en) High-precision analysis
JP3070418B2 (en) Differential measurement of glycoproteins
Zhao et al. Development and validation of a liquid chromatography tandem mass spectrometry assay for the quantitation of a protein therapeutic in cynomolgus monkey serum
JP2920092B2 (en) Method for quantitative measurement of glycated protein
CN110068645B (en) Method for detecting cyclic adenosine monophosphate in urine by liquid chromatography-mass spectrometry
US20070161120A1 (en) Ceruloplasmin Assay
EP0441470B1 (en) Process for separating and measuring trace components
Reinecke et al. Fast on-line flow injection analysis system for IgG monitoring in bioprocesses
JPH06508217A (en) Binding protein capture assay
Fried et al. Protein quantitation at the picomole level: An o-phthaldialdehyde-preTSK column-derivatization assay
Teahon et al. A sensitive and specific high performance liquid chromatographic assay for imidazole dipeptides and 3‐methylhistidine in human muscle biopsies, serum and urine
Nanjo et al. An enzymatic method for the rapid measurement of the hemoglobin A1c by a flow-injection system comprised of an electrochemical detector with a specific enzyme-reactor and a spectrophotometer
Zhang et al. Clinical chemistry applications of capillary electromigration methods
Danielsson et al. Specific monitoring of chromatographic procedures
CN112485340A (en) Method for detecting 1, 5-sorbitan in plasma by ultra-high performance liquid chromatography tandem mass spectrometry
CN112697898B (en) Method for rapidly determining content of ustilagin A in urine or cell culture medium by liquid chromatography-mass spectrometry
CN114924011B (en) Method for detecting CMPF content in plasma by high performance liquid chromatography tandem mass spectrometry
Boppana et al. High-performance liquid chromatographic determination of peptide drugs in biological fluids by means of pre-and post-column fluorescence derivatization techniques

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19980310

LAPS Cancellation because of no payment of annual fees