JP2768079B2 - High precision analysis method - Google Patents

High precision analysis method

Info

Publication number
JP2768079B2
JP2768079B2 JP3244678A JP24467891A JP2768079B2 JP 2768079 B2 JP2768079 B2 JP 2768079B2 JP 3244678 A JP3244678 A JP 3244678A JP 24467891 A JP24467891 A JP 24467891A JP 2768079 B2 JP2768079 B2 JP 2768079B2
Authority
JP
Japan
Prior art keywords
peak
analyte
analysis
eluent
appearance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP3244678A
Other languages
Japanese (ja)
Other versions
JPH0666778A (en
Inventor
慎二 里村
賢治 中村
展子 今荘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Wako Pure Chemical Corp
Original Assignee
Wako Pure Chemical Industries Ltd
Fujifilm Wako Pure Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wako Pure Chemical Industries Ltd, Fujifilm Wako Pure Chemical Corp filed Critical Wako Pure Chemical Industries Ltd
Priority to JP3244678A priority Critical patent/JP2768079B2/en
Publication of JPH0666778A publication Critical patent/JPH0666778A/en
Application granted granted Critical
Publication of JP2768079B2 publication Critical patent/JP2768079B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Biological Materials (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、高速液体クロマトグラ
フィ(以下、HPLCと略記する。)による高精度の分
析法と、該方法に使用可能なHPLC用分析装置に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high-precision analytical method using high performance liquid chromatography (hereinafter abbreviated as HPLC) and an analytical apparatus for HPLC which can be used in the method.

【0002】[0002]

【発明の背景】HPLCは、溶液中の微量成分を短時間
に精度良く分析・定量し得る方法として近年様々な分野
で利用されている分析方法の一つである。HPLCによ
る分析に於いては、分析の精度を高めるために、分析対
象物のピークとその他の成分のピークとが充分分離し得
るような最適の測定条件を設定する必要がある。
BACKGROUND OF THE INVENTION HPLC is one of the analytical methods used in various fields in recent years as a method for accurately analyzing and quantifying trace components in a solution in a short time. In the analysis by HPLC, it is necessary to set optimal measurement conditions so that the peak of the analyte and the peak of other components can be sufficiently separated in order to enhance the accuracy of the analysis.

【0003】通常、この最適測定条件を設定するために
検討される要因としては、例えば充填剤の種類、溶離液
の組成、溶離液のpH、グラジエント条件等が挙げられ
る。しかしながら、試料によっては、これらの要因を種
々変化させても分析対象物のピークとその他の成分のピ
ークとを充分に分離し得る測定条件を設定することが難
しい場合が応々にしてある。
[0003] Usually, factors considered for setting the optimum measurement conditions include, for example, the type of the filler, the composition of the eluent, the pH of the eluent, and the gradient conditions. However, depending on the sample, it is sometimes difficult to set measurement conditions that can sufficiently separate the peak of the analyte and the peak of other components even if these factors are variously changed.

【0004】例えば、溶液中の分析対象物の濃度に比較
して、その他の成分の濃度がかなり高くしかもこのピー
クが分析対象物のピークの直前や直後に出現する場合に
は、その他の成分のリーディング或はテーリングにより
分析対象物のピークが影響を受け、測定精度の低下を来
したり、検出可能領域の下限が高くなって検出限界の幅
が狭くなる等の現象を生じる。そのため、このような現
象を回避し得る新たな方法の出現が求められている現状
にある。
For example, when the concentration of other components is considerably higher than the concentration of the analyte in the solution and this peak appears immediately before or immediately after the peak of the analyte, the concentration of the other components is reduced. The peaks of the analyte are affected by the reading or tailing, resulting in a decrease in measurement accuracy, or a phenomenon in which the lower limit of the detectable region is increased and the width of the detection limit is narrowed. For this reason, there is a demand for a new method capable of avoiding such a phenomenon.

【0005】[0005]

【発明の目的】本発明は、上記した如き状況に鑑み成さ
れたもので、HPLCによる分析に於いて、同一試料分
析中に出現する分析対象物のピークとそれ以外のピーク
とを明確に分離する方法と、それによってもたらされる
高精度な分析法、並びに該方法に使用可能なHPLC用
分析装置を提供することをその目的とする。
SUMMARY OF THE INVENTION The present invention has been made in view of the above situation, and clearly separates a peak of an analyte and another peak appearing during the same sample analysis in HPLC analysis. It is an object of the present invention to provide a method for performing the method, a high-precision analysis method provided by the method, and an HPLC analyzer that can be used in the method.

【0006】[0006]

【発明の構成】本発明は、HPLCによる分析法に於い
て、同一試料分析中に出現する分析対象物以外のピーク
の出現時に於ける溶離液の流速を、分析対象物のピーク
出現時に於ける溶離液のそれよりも速くすることによ
り、分析の精度を高めることを特徴とする該分析法、並
びに同一試料分析中に出現する分析対象物以外のピーク
の出現時に於ける溶離液の流速と、分析対象物のピーク
出現時に於ける溶離液のそれとを、予め設定した条件に
応じて自動的に変化させ得る手段を備えたことを特徴と
する、HPLC用分析装置である。
According to the present invention, in an analytical method by HPLC, the flow rate of an eluent at the time of appearance of a peak other than the analyte which appears during the analysis of the same sample is determined. An analysis method characterized by increasing the accuracy of the analysis by making it faster than that of the eluent, and a flow rate of the eluent at the time of appearance of a peak other than the analyte which appears during the same sample analysis; An HPLC analyzer characterized by comprising means for automatically changing an eluent at the time of peak appearance of an analyte in accordance with preset conditions.

【0007】即ち、本発明者らは、上記本発明の目的を
達成すべく鋭意研究の途上、分析対象物以外のピーク
(以下、不要ピークと略記する。)出現時に於ける溶離
液の流速を、分析対象物のピーク(以下、主ピークと略
記する。)出現時に於ける溶離液のそれよりも速くした
場合には、不要ピークのリーディングやテーリングによ
る主ピークへの影響が回避でき、高精度な分析が実施し
得ること、更にこのような条件で分析を実施することに
より測定時間の短縮を図れることを見出し本発明を完成
するに至った。
That is, the inventors of the present invention have made intensive studies in order to achieve the object of the present invention, and have set a flow rate of an eluent at the time of appearance of a peak other than an analyte (hereinafter abbreviated as an unnecessary peak). If the peak of the analyte (hereinafter abbreviated as “main peak”) is made faster than that of the eluent at the time of appearance, unnecessary peak reading and tailing can be prevented from affecting the main peak, and high accuracy can be avoided. The present inventors have found that a simple analysis can be performed, and that the measurement time can be shortened by performing the analysis under such conditions, thereby completing the present invention.

【0008】本発明に於いて用いられるHPLC用装置
としては、通常この分野に於いて用いられているもので
あれば、特に限定されることなく挙げることができる。
また、該装置に装着されるカラムの充填剤も通常この分
野で用いられる例えばゲル瀘過(ゲル瀘過クロマトグラ
フィ)用充填剤,イオン交換クロマトグラフィ用充填
剤,等電点クロマトグラフィ用充填剤,疎水クロマトグ
ラフィ用充填剤,逆相クロマトグラフィ用充填剤,ハイ
ドロキシアパタイト等の中から分析目的に応じて適宜選
択し使用すればよい。
The HPLC apparatus used in the present invention is not particularly limited as long as it is usually used in this field.
The packing of the column to be mounted on the apparatus is also usually used in this field, for example, packing for gel filtration (gel filtration chromatography), packing for ion exchange chromatography, packing for isoelectric focusing, hydrophobic chromatography. It may be appropriately selected from fillers for packing, reversed phase chromatography, hydroxyapatite and the like according to the purpose of analysis.

【0009】このようなHPLC用装置に、予め設定し
た条件に応じて自動的に溶離液の流速を変化させるため
のマイクロコンピューター等を接続すれば、本発明のH
PLC用装置とすることができる。
By connecting a microcomputer or the like for automatically changing the flow rate of the eluent according to preset conditions to such an apparatus for HPLC, the H of the present invention can be obtained.
It can be a PLC device.

【0010】本発明のHPLC用装置を使用すれば、分
析対象物の分析を自動化することが可能となる。尚、分
析対象物が酵素活性を保有する物質であり、分析対象物
のピークの検出を該酵素活性を利用して行う場合には、
本願発明のHPLC用装置に、ポストカラム反応装置を
接続しておくことが好ましい。また、溶離液を2種類用
いてグラジエントを行いながら本発明を実施する際に
は、溶離液を供給するポンプは、逆流防止弁がついた
もの、背圧の変化に拘わらず一定流速を保持できる性
能を有するもの、等であることが好ましいことは言うま
でもない。
The use of the HPLC apparatus of the present invention makes it possible to automate the analysis of the analyte. When the analyte is a substance having enzyme activity and the peak of the analyte is detected using the enzyme activity,
It is preferable to connect a post-column reaction device to the HPLC device of the present invention. When the present invention is carried out while performing a gradient using two types of eluents, a pump for supplying the eluent is equipped with a check valve, and can maintain a constant flow rate regardless of changes in back pressure. Needless to say, it is preferable to have performance.

【0011】本発明の方法に於いて使用される溶離液と
しては、通常この分野に於いて使用されるものであれば
特に限定することなく挙げられるが、例えばリン酸塩,
酢酸塩,クエン酸塩,グッド(Good)の緩衝剤,トリス
(ヒドロキシエチル)アミノメタン等の緩衝剤、例えば
塩化ナトリウム,塩化カリウム,硫酸アンモニウム等の
塩類、例えばメタノール,エタノール,イソプロピルア
ルコール,アセトニトリル,テトラヒドロフラン,トリ
フルオロ酢酸等の有機溶媒、界面活性剤等を適宜含有す
る水溶液が好ましく用いられる。
The eluent used in the method of the present invention is not particularly limited as long as it is usually used in this field.
Buffers such as acetate, citrate, Good's buffer, and tris (hydroxyethyl) aminomethane, for example, salts such as sodium chloride, potassium chloride, and ammonium sulfate, for example, methanol, ethanol, isopropyl alcohol, acetonitrile, and tetrahydrofuran An aqueous solution containing an organic solvent such as trifluoroacetic acid, a surfactant or the like as appropriate is preferably used.

【0012】本発明の方法により分析が可能な分析対象
物としては、通常HPLCにより分析可能とされている
ものであれば特に限定されないが、例えば血清,血液,
血漿,尿等の生体体液、リンパ球、血球、各種細胞類等
の生体由来の試料中に含まれる酵素、生理活性物質、癌
関連抗原、糖鎖を有する物質等が代表的なものとして挙
げられる。更に具体的には、例えばアミラーゼ,アルカ
リホスファターゼ,酸性ホスファターゼ,γ-グルタミ
ルトランスフェラーゼ(γ-GTP),リパーゼ,クレアチ
ンキナーゼ(CK),乳酸脱水素酵素(LDH),グルタミン酸
オキザロ酢酸トランスアミナーゼ(GOT),グルタミン酸
ピルビン酸トランスアミナーゼ(GPT),レニン,プロテ
インキナーゼ,チロシンキナーゼ等の酵素類、例えばス
テロイドホルモン,ヒト 絨毛性ゴナドトロピン(hCG),
プロラクチン,甲状腺刺激ホルモン(TSH),黄体形成ホ
ルモン(LH)等の生理活性物質、例えば前立腺特異抗原(P
SA),α -マクログロブリン,癌胎児性抗原(CEA),α-
フェトプロテイン等の癌関連抗原等が好ましく挙げられ
る。
The analytes that can be analyzed by the method of the present invention are not particularly limited as long as they can be generally analyzed by HPLC. For example, serum, blood,
Representative examples include enzymes, physiologically active substances, cancer-related antigens, substances having sugar chains, etc. contained in biological samples such as biological fluids such as plasma and urine, lymphocytes, blood cells, and various cells. . More specifically, for example, amylase, alkaline phosphatase, acid phosphatase, γ-glutamyltransferase (γ-GTP), lipase, creatine kinase (CK), lactate dehydrogenase (LDH), glutamic oxaloacetate transaminase (GOT), glutamic acid Enzymes such as pyruvate transaminase (GPT), renin, protein kinase, tyrosine kinase, such as steroid hormones, human chorionic gonadotropin (hCG),
Physiologically active substances such as prolactin, thyroid stimulating hormone (TSH) and luteinizing hormone (LH), such as prostate specific antigen (P
SA), α-macroglobulin, carcinoembryonic antigen (CEA), α-
Preferable examples include cancer-related antigens such as fetoprotein.

【0013】本発明を実施するには、例えば以下の如く
行えばよい。即ち、通常のHPLCによる分析対象物の
測定に於いて、主ピークが出現する前及び出現した後の
溶離液の流速を、主ピーク出現時の該流速よりも速くす
る以外は、通常のHPLCによる測定と同様にして実施
すれば足りる。この場合に、流速を変化させる方法とし
ては、手動でもよいし、本発明のHPLC用装置を用い
て自動的に行わせても何れにてもよい。
The present invention may be implemented, for example, as follows. That is, in the measurement of an analyte by ordinary HPLC, except that the flow rate of the eluent before and after the appearance of the main peak is made faster than the flow rate at the time of appearance of the main peak, the HPLC method is used. It is sufficient to carry out the measurement in the same way as the measurement. In this case, the method of changing the flow rate may be manual, or may be automatically performed using the HPLC apparatus of the present invention.

【0014】尚、溶離液の流速の上限は使用するカラム
の耐圧能により自ずから決定されるので、主ピーク出現
時の流速と不要ピーク出現時の流速は、この範囲内であ
って、且つ主ピーク出現時の流速と不要ピーク出現時の
流速とを変化させた際にこれらピークの分離を充分に行
い得る範囲から適宜選択すればよいが、通常、分析対象
物のピーク出現時の溶離液の流速1に対して、それ以外
のピーク出現時の溶離液のそれは、1.2〜10、好ましく
は1.5〜5の範囲から選択される。また、流速の変化
は、段階的(ステップ)であっても徐々に(グラジエン
トに)であっても何れにてもよい。
Since the upper limit of the flow rate of the eluent is naturally determined by the pressure resistance of the column to be used, the flow rate at the appearance of the main peak and the flow rate at the appearance of the unnecessary peak are within this range, and When the flow velocity at the appearance and the flow velocity at the appearance of unnecessary peaks are changed, these peaks may be appropriately selected from a range capable of sufficiently separating the peaks. In contrast to 1, the eluent at the appearance of the other peaks is selected from the range of 1.2 to 10, preferably 1.5 to 5. The change in the flow velocity may be stepwise (step) or gradually (gradient).

【0015】本発明の方法は、分析対象物が酵素活性を
保有する物質であり、該分析対象物の検出を該酵素活性
を利用してポストカラム法で行う際に特にその効果を発
揮する。
The method of the present invention is particularly effective when the analyte is a substance having enzyme activity and the analyte is detected by the post-column method utilizing the enzyme activity.

【0016】即ち、例えば分析対象物が特定の物質とこ
れに対して親和性を有する物質(例えば抗体、レクチ
ン、酵素に対するインヒビター、特定の核酸に相補的な
ポリヌクレオチド等)の酵素標識物(以下、酵素標識抗
体等と略記する。)との複合体であり、該複合体と遊離
の酵素標識抗体等との分離をHPLCにより行い、且つ
その検出をポストカラム法により行う場合に、特に効果
的である。
That is, for example, an enzyme-labeled product (hereinafter referred to as an antibody, a lectin, an inhibitor for an enzyme, a polynucleotide complementary to a specific nucleic acid, etc.) in which an analyte is a specific substance and a substance having an affinity for the specific substance (hereinafter referred to as a polynucleotide complementary to a specific nucleic acid) , An enzyme-labeled antibody, etc.), which is particularly effective when the complex is separated from a free enzyme-labeled antibody or the like by HPLC and the detection is carried out by a post-column method. It is.

【0017】即ち、この場合にHPLCにより分析する
試料中には、分析対象物である特定物質と酵素標識抗体
等との複合体と、遊離の酵素標識抗体等とが共存してお
り、しかも通常遊離の酵素標識抗体等の濃度の方が該複
合体の濃度よりも高い場合が多いので、遊離の酵素標識
抗体等により主ピーク(該複合体のピーク)が影響を受
けることが多い。本発明の方法により該試料について分
析を行うと、不要ピーク(遊離の酵素標識抗体等のピー
ク)は、通常のHPLCによる分析時よりもピーク面積
及びピーク高共に小さくなって、主ピークへの影響が殆
どなくなるのである。この理由は定かではないが、分析
対象物以外のピーク出現時の溶離液の流速を速くさせる
ことにより、例えば遊離の酵素標識抗体等のカラム内
での拡散の程度が減少する、ポストカラムでの反応時
間が短縮されるため酵素反応生成物が減少するのでピー
ク自体が見かけ上小さくなる、酵素反応用基質液の流
速は一定であるので、ポストカラムに於ける基質濃度が
減少し酵素反応が起こり難くなる、トータル流速が増
加することにより、検出器中に於ける溶離液の滞留時間
が減少するので、見かけの検出器感度が低下する、等の
要因が重なってこの様な効果が得られるのであろう。
That is, in this case, in the sample to be analyzed by HPLC, a complex of the specific substance to be analyzed and the enzyme-labeled antibody and the like and a free enzyme-labeled antibody and the like coexist, and Since the concentration of the free enzyme-labeled antibody or the like is often higher than the concentration of the complex, the main peak (peak of the complex) is often affected by the free enzyme-labeled antibody or the like. When the sample is analyzed according to the method of the present invention, unnecessary peaks (peaks of free enzyme-labeled antibodies and the like) are reduced in both peak area and peak height as compared with ordinary HPLC analysis, and the influence on the main peak is reduced. Is almost gone. The reason for this is not clear, but by increasing the flow rate of the eluent at the time of appearance of a peak other than the analyte, for example, the degree of diffusion of free enzyme-labeled antibody in the column is reduced. Since the reaction time is shortened and the amount of the enzyme reaction product is reduced, the peak itself is apparently smaller.Because the flow rate of the substrate solution for the enzyme reaction is constant, the concentration of the substrate in the post column is reduced and the enzyme reaction occurs. As the total flow rate increases, the elongation time of the eluent in the detector decreases, and the apparent detector sensitivity decreases. There will be.

【0018】尚、上記のケースの如く、分析対象物の保
有する酵素活性を利用して、分析対象物の検出を行う場
合には、不要ピーク出現時の基質液の流速を低下させる
(若しくは0とする)ことによっても主ピークの検出感
度を上昇させることは可能である。しかしながら、この
方法では測定時間を短縮することはできない。
In the case where the analyte is detected by utilizing the enzyme activity possessed by the analyte as in the above case, the flow rate of the substrate solution at the time of appearance of an unnecessary peak is reduced (or 0). ), It is possible to increase the detection sensitivity of the main peak. However, this method cannot shorten the measurement time.

【0019】従来の方法に於いては、HPLCによる分
析の精度を高めるには、例えば充填剤の種類、溶離液の
組成、溶離液のpH、グラジエント条件等を経験により
種々変化させて主ピークと不要ピークとが充分分離し得
るような最適の測定条件を設定する必要があったが、本
発明の如く単に溶離液の流速を主ピーク出現時と不要ピ
ーク出現時とで変化させることによりHPLCによる分
析をこれほど高精度且つ短時間に行い得るとは意外なこ
とであった。
In the conventional method, in order to improve the accuracy of the analysis by HPLC, for example, the type of the filler, the composition of the eluent, the pH of the eluent, the gradient conditions, etc. are variously changed by experience to obtain the main peak. Although it was necessary to set the optimum measurement conditions so that unnecessary peaks could be sufficiently separated, as in the present invention, by simply changing the flow rate of the eluent between the time when the main peak appeared and the time when the unnecessary peak appeared, HPLC It was surprising that the analysis could be performed with such high precision and in a short time.

【0020】以下に実施例及び比較例を示し本発明を更
に具体的に説明するが、本発明はこれらにより何ら限定
されるものではない。
Hereinafter, the present invention will be described more specifically with reference to Examples and Comparative Examples, but the present invention is not limited thereto.

【実施例】【Example】

【0021】実施例1. (溶離液1) リン酸ナトリウム 4.2gと、リン酸2ナトリウム 80.0g
とを、精製水に溶解し、全量を5lとしたものを溶離液
1とした。 (溶離液2) 硫酸アンモニウムを溶離液1に1.70Mとなるように溶解
し、pHを7.5に調整したものを溶離液2とした。 (反応用緩衝液) 牛血清アルブミン(シグマ社製)0.2gを溶離液1に溶解
し、全量を100mlとしたものを反応用緩衝液とした。 (抗体溶液) 抗ヒトα-フェトプロテイン(マウス)モノクローナル
抗体(和光純薬工業(株)社製)を常法により処理してF
ab'としたものに、常法によりペルオキシダーゼ(POD)
(TOYOBO社製)を標識して得た、POD標識抗ヒトα-フェ
トプロテイン-Fab'を100nMとなるように反応用緩衝液
に溶解したものを抗体溶液とした。 (基質液) 3-(p-ヒドロキシフェニル)-プロピオン酸16.6g及び35%
過酸化水素水630mg(過酸化水素として220mg)とを溶離
液1に溶解し、全量を1lとしたものを基質液とした。 (試料) ヒトα-フェトプロテイン(シグマ社製)を150ng/mlと
なるように反応用緩衝液に溶解したものを試料とした。 (HPLCの使用条件) システムの概略を図3に示す。 ・カラム:φ4.6×30mm。 ・充填剤:MCIgel エチル(三菱化成(株)社製) ・溶離液及び流速:グラジエントパターンを実線で、流
速の変化を点線で、図2(1)に夫々示す。 ・基質液流速:0.1ml/min。 ・検出:励起波長;320nm、蛍光波長;404nmで蛍光を測
定した。 (測定操作) 抗体溶液50μlと試料50μlとを室温下に混合、反応させ
た後、反応液の10μlを上記条件のHPLCにより分析
した。 (結果) 得られた溶出パターンを図1(1)に示す。尚、図中、1
は遊離のPOD標識抗ヒトα-フェトプロテイン-Fab'のピ
ークを、2はヒトα-フェトプロテインとPOD標識抗ヒト
α-フェトプロテイン-Fab'との複合体のピークを夫々
示す。
Embodiment 1 (Eluent 1) 4.2 g of sodium phosphate and 80.0 g of disodium phosphate
Was dissolved in purified water to make a total volume of 5 l, and this was used as eluent 1. (Eluent 2) Eluent 2 was prepared by dissolving ammonium sulfate in eluent 1 so as to have a concentration of 1.70 M and adjusting the pH to 7.5. (Reaction Buffer) 0.2 g of bovine serum albumin (manufactured by Sigma) was dissolved in eluent 1 to make a total volume of 100 ml, which was used as a reaction buffer. (Antibody solution) An anti-human α-fetoprotein (mouse) monoclonal antibody (manufactured by Wako Pure Chemical Industries, Ltd.) is treated in a conventional manner to give F
ab 'and peroxidase (POD)
(Manufactured by TOYOBO), and a POD-labeled anti-human α-fetoprotein-Fab ′ obtained by dissolving it in a reaction buffer at a concentration of 100 nM was used as an antibody solution. (Substrate solution) 3- (p-hydroxyphenyl) -propionic acid 16.6 g and 35%
630 mg of hydrogen peroxide solution (220 mg as hydrogen peroxide) was dissolved in eluent 1 and the total amount was made 1 l to be used as a substrate solution. (Sample) A sample was prepared by dissolving human α-fetoprotein (manufactured by Sigma) in a reaction buffer at a concentration of 150 ng / ml. (Conditions for Using HPLC) An outline of the system is shown in FIG.・ Column: φ4.6 × 30mm. Filler: MCIgel ethyl (manufactured by Mitsubishi Kasei Co., Ltd.) Eluent and flow rate: The gradient pattern is shown by a solid line, and the change in flow rate is shown by a dotted line in FIG. 2 (1). -Substrate liquid flow rate: 0.1 ml / min. Detection: Fluorescence was measured at an excitation wavelength of 320 nm and a fluorescence wavelength of 404 nm. (Measurement procedure) After 50 µl of the antibody solution and 50 µl of the sample were mixed and reacted at room temperature, 10 µl of the reaction solution was analyzed by HPLC under the above conditions. (Results) The obtained elution pattern is shown in FIG. 1 (1). In the figure, 1
Indicates the peak of free POD-labeled anti-human α-fetoprotein-Fab ′, and 2 indicates the peak of the complex of human α-fetoprotein and POD-labeled anti-human α-fetoprotein-Fab ′.

【0022】比較例1.溶離液の流速を1ml/minとし、
且つグラジエントパターンを図2(2)に於いて実線で示
す如くした以外は、実施例1と同じ試料及び試薬を用
い、同様の操作を行って、実施例1と同じ条件でHPL
Cによる分析を行った。得られた溶出パターンを図1
(2)に示す。尚、図中、1は遊離のPOD標識抗ヒトα-フ
ェトプロテイン-Fab'のピークを、2はヒトα-フェト
プロテインとPOD標識抗ヒトα-フェトプロテイン-Fab'
との複合体のピークを夫々示す。図1の結果から明らか
な如く、本発明の方法によれば、従来法で行うよりも高
精度且つ短時間で分析対象物の分析を実施し得ることが
判る。
Comparative Example 1 The flow rate of the eluent was 1 ml / min,
Except that the gradient pattern was shown by a solid line in FIG. 2 (2), the same operation was performed using the same samples and reagents as in Example 1, and HPL was performed under the same conditions as in Example 1.
Analysis by C was performed. Fig. 1 shows the elution pattern obtained.
It is shown in (2). In the figures, 1 indicates the peak of free POD-labeled anti-human α-fetoprotein-Fab ′, and 2 indicates human α-fetoprotein and POD-labeled anti-human α-fetoprotein-Fab ′.
The peaks of the complex with are shown respectively. As is evident from the results of FIG. 1, it can be understood that the method of the present invention can analyze an object to be analyzed with higher accuracy and in a shorter time than in the conventional method.

【0023】実施例2.レニン活性の測定 尚、以下に於いて使用している略号の正式名称は以下の
通り。 His:ヒスチジン残基、Pro:プロリン残基、Ph
e:フェニルアラニン残基、Leu:ロイシン残基、V
al:バリン残基、Ile:イソロイシン残基、Al
a:アラニン残基。 (溶離液1) 10%のアセトニトリルを含む50mM酢酸−酢酸アン
モニウム緩衝液(pH6.0)を溶離液1とした。 (溶離液2) 60%のアセトニトリルを含む50mM酢酸−酢酸アン
モニウム緩衝液(pH6.0)を溶離液2とした。 (基質液) 500μMのピリジルグリシル−His−Pro−Ph
e−His−Leu−Val−Ile−His−βAl
a−OH、3mMのo−フェナンスロリン、1mMの弗
化フェニルメチルスルホニルを含む0.1M 3−(N
−モルホリノ)プロパンスルホン酸(MOPS)緩衝液
(pH7.0)を基質液とした。(試料)新鮮ヒト血清
を試料とした。 (HPLCの使用条件) システムの概略を図6に示す。 ・カラム:φ4.6×10mm(40℃保温)。 ・充填剤:Wakosil 5C18(和光純薬工業
(株)社製) ・溶離液及び流速:グラジエントパターンを実線で、流
速の変化を点線で、図5(1)に夫々示す。 .検出:励起波長;306nm、蛍光波長;358nm
で蛍光を測定した。 (測定操作) 基質液100μlと試10μlとを室温下に混合した
後、37℃で1時間反応させた。得られた反応液の60
μlを上記条件のHPLCにより分析した。 (結果) 得られた溶液パターンを図4(1)に示す。尚、図中、
1はo−フェナンスロリンのピークを、2はレニンの酵
素作用生成物(ピリジルグリシル−His−Pro−P
he−His−Leu−OH)のピークを、3はレニン
の基質(ピリジルグリシル−His−Pro−Phe−
His−Leu−Val−Ile−His−βAla−
OH)のピークを夫々示す。
Embodiment 2 FIG. Measurement of renin activity The abbreviations used below have the following formal names. His: histidine residue, Pro: proline residue, Ph
e: phenylalanine residue, Leu: leucine residue, V
al: valine residue, Ile: isoleucine residue, Al
a: Alanine residue. (Eluent 1) 50 mM acetic acid-ammonium acetate buffer (pH 6.0) containing 10% acetonitrile was used as eluent 1. (Eluent 2) 50 mM acetic acid-ammonium acetate buffer (pH 6.0) containing 60% acetonitrile was used as eluent 2. (Substrate solution) 500 μM pyridylglycyl-His-Pro-Ph
e-His-Leu-Val-Ile-His-βAl
a-OH, 0.1 mM 3- (N) containing 3 mM o-phenanthroline, 1 mM phenylmethylsulfonyl fluoride
-Morpholino) propanesulfonic acid (MOPS) buffer (pH 7.0) was used as a substrate solution. (Sample) Fresh human serum was used as a sample. (Use Conditions of HPLC) FIG. 6 shows an outline of the system. Column: φ4.6 × 10 mm (40 ° C.). -Filler: Wakosil 5C18 (manufactured by Wako Pure Chemical Industries, Ltd.)-Eluent and flow rate: The gradient pattern is shown by a solid line, the change in flow rate is shown by a dotted line, and FIG . . Detection: excitation wavelength; 306 nm, fluorescence wavelength: 358 nm
The fluorescence was measured with. (Measurement procedure) After mixing 100 µl of the substrate solution and 10 µl of the sample at room temperature, the mixture was reacted at 37 ° C for 1 hour. 60 of the obtained reaction solution
μl was analyzed by HPLC under the above conditions. (Result) The obtained solution pattern is shown in FIG . In the figure,
1 is the peak of o-phenanthroline, 2 is the enzymatic product of renin (pyridylglycyl-His-Pro-P
he-His-Leu-OH), and 3 is the renin substrate (pyridylglycyl-His-Pro-Phe-).
His-Leu-Val-Ile-His-βAla-
OH) are shown.

【0024】比較例2. 溶離液の流速を1.5ml/minとし、且つグラジエ
ントパターンを図5(2)於いて実線で示す如くした以
外は、実施例2と同じ試料及び試薬を用い、同様の操作
を行って、実施例2と同じ条件でHPLCによる分析を
行った。得られた溶出パターンを図4(2)に示す。
尚、図中、1はo−フェナンスロリンのピークを、2は
レニンの酵素作用生成物(ピリジルグリシル−His−
Pro−Phe−His−Leu−OH)のピークを、
3はレニンの基質(ピリジルグリシル−His−Pro
−Phe−His−Leu−Val−Ile−His−
βAla−OH)のピークを夫々示す。図4の結果から
明らかな如く、本発明の方法によれば、従来法で行うよ
りも高精度且つ短時間で分析対象物の分析を実施し得る
ことが判る。
Comparative Example 2 Except that the flow rate of the eluent was 1.5 ml / min and the gradient pattern was as shown by the solid line in FIG. 5 (2) , the same operation was performed using the same samples and reagents as in Example 2. Analysis by HPLC was performed under the same conditions as in Example 2. The obtained elution pattern is shown in FIG .
In the figure, 1 is the peak of o-phenanthroline, 2 is the enzymatic action product of renin (pyridylglycyl-His-
Pro-Phe-His-Leu-OH)
3 is a substrate of renin (pyridylglycyl-His-Pro
-Phe-His-Leu-Val-Ile-His-
(Ala-OH) peaks are shown. As is clear from the results of FIG. 4 , it can be understood that the method of the present invention can analyze an object to be analyzed with higher accuracy and in a shorter time than in the conventional method.

【0025】[0025]

【発明の効果】以上述べた如く、本発明は、従来のHP
LCを使用する分析方法に於いては例えば充填剤の種
類、溶離液の組成、溶離液のpH、グラジエント条件等
を経験により種々変化させて主ピークと不要ピークとが
充分分離し得るような最適の測定条件を設定しなければ
実施し得なかった分析を、単に溶離液の流速を主ピーク
出現時と不要ピーク出現時とで変化させることにより高
精度且つ短時間に実施し得るようにした点に顕著な効果
を奏する発明であり、斯業に貢献するところ大なる発明
である。
As described above, the present invention relates to the conventional HP
In an analytical method using LC, for example, the type of the filler, the composition of the eluent, the pH of the eluent, the gradient conditions, etc. are variously changed by experience, so that the main peak and the unnecessary peak can be sufficiently separated. Analysis that could not be performed unless the measurement conditions were set can be performed with high precision and in a short time simply by changing the flow rate of the eluent between the appearance of the main peak and the appearance of the unnecessary peak. It is an invention which has a remarkable effect, and is a great invention which contributes to the industry.

【図面の簡単な説明】[Brief description of the drawings]

【図1】図1(1)は、実施例1に於いて得られた高速
液体クロマトグラフィ(HPLC)の結果を、図1
(2)は、比較例1に於いて得られたHPLCの結果を
夫々示す。
FIG. 1 (1) shows the results of high performance liquid chromatography (HPLC) obtained in Example 1 in FIG.
(2) shows the results of HPLC obtained in Comparative Example 1, respectively.

【図2】図2(1)は、実施例1に於けるグラジエント
パターンと流速の変化を、図2(2)は、比較例1に於
けるグラジエントパターンを夫々示す。
FIG. 2A shows a gradient pattern in Example 1 and a change in flow velocity, and FIG. 2B shows a gradient pattern in Comparative Example 1, respectively.

【図3】図3は、実施例1及び比較例1に於いて使用さ
れたHPLC用装置のシステムの概略を示したものであ
る。
FIG. 3 shows an outline of a system of an HPLC apparatus used in Example 1 and Comparative Example 1.

【図4】図4(1)は、実施例2に於いて得られたHP
LCの結果を、図4(2)は、比較例2に於いて得られ
たHPLCの結果を夫々示す。
FIG. 4 (1) shows HP obtained in Example 2.
FIG. 4 (2) shows the results of LC, and FIG. 4 (2) shows the results of HPLC obtained in Comparative Example 2, respectively.

【図5】図5(1)は、実施例2に於けるグラジエント
パターンと流速の変化を、図5(2)は、比較例2に於
けるグラジエントパターンを夫々示す。
FIG. 5A shows a gradient pattern and a change in flow velocity in Example 2, and FIG. 5B shows a gradient pattern in Comparative Example 2, respectively.

【図6】図6は、実施例2及び比較例2に於いて使用さ
れたHPLC用装置のシステムの概略を示したものであ
る。
FIG. 6 shows an outline of a system of an HPLC apparatus used in Example 2 and Comparative Example 2.

【符号の説明】[Explanation of symbols]

図1の各図に於ける各番号は夫々以下のピークを示す。 1:遊離のPOD標識抗ヒトα−フェトプロテイン−F
ab’。 2:ヒトα−フェトプロテインとPOD標識抗ヒトα−
フェトプロテイン−Fab’と複体。 図2の各図に於いて、実線はグラジエントパターンを、
点線は流速の変化を夫々表わす。 図4の各図に於ける各番号は夫々以下のピークを示す。 1:o−フェナンスロリン。 2:レニンの酵素作用生成物(ピリジルグリシル−Hi
s−Pro−Phe−His−Leu−oH)。 3:レニンの基質(ピリジルグリシル−His−Pro
−Phe−His−Leu−Val−Ile−His−
βAla−OH)。図5 の各図に於いて、実線はグラジエントパターンを、
点線は流速の変化を夫々表わす。
Each number in each figure of FIG. 1 indicates the following peak, respectively. 1: Free POD-labeled anti-human α-fetoprotein-F
ab '. 2: Human α-fetoprotein and POD-labeled anti-human α-
Complex with fetoprotein-Fab '. In each figure of FIG. 2, a solid line represents a gradient pattern,
Dotted lines represent changes in flow velocity. Each number in each figure of FIG. 4 indicates the following peak, respectively. 1: o-phenanthroline. 2: Enzymatic product of renin (pyridylglycyl-Hi
s-Pro-Phe-His-Leu-oH). 3: Substrate of renin (pyridylglycyl-His-Pro
-Phe-His-Leu-Val-Ile-His-
βAla-OH). In each figure of FIG. 5 , a solid line represents a gradient pattern,
Dotted lines represent changes in flow velocity.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭57−194351(JP,A) 特開 昭59−38651(JP,A) 特公 昭43−27079(JP,B1) 実公 昭44−1040(JP,Y1) (58)調査した分野(Int.Cl.6,DB名) G01N 30/32──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-57-194351 (JP, A) JP-A-59-38651 (JP, A) JP-B-43-27079 (JP, B1) Jiko-sho 44- 1040 (JP, Y1) (58) Field surveyed (Int. Cl. 6 , DB name) G01N 30/32

Claims (7)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】高速液体クロマトグラフィによる分析法に
於いて、同一試料分析中に出現する分析対象物以外のピ
ークの出現時に於ける溶離液の流速を、分析対象物のピ
ーク出現時に於ける溶離液のそれよりも速くすることに
より、分析の精度を高めることを特徴とする該分析法。
In an analysis method using high performance liquid chromatography, the flow rate of an eluent at the time of appearance of a peak other than the analyte appearing during the same sample analysis is determined by the eluent at the time of appearance of the peak of the analyte. The method according to claim 1, wherein the accuracy of the analysis is improved by making the analysis faster.
【請求項2】試料が、該試料中の分析対象物の濃度に比2. The method according to claim 1, wherein said sample has a concentration relative to an analyte concentration in said sample.
較してその他の成分の濃度が高く、しかも高速液体クロHigh concentration of other components
マトグラフィによる分析に於いて、このピークが分析対In the case of analysis by chromatography, this peak
象物のピークの前後に出現し、その他の成分により分析Appears before and after the elephant peak, analyzed by other components
対象物のピークが影響を受けるようなものである、請求Claims where the peak of the object is affected
項1に記載の分析法。Item 7. The analysis method according to Item 1.
【請求項3】 高速液体クロマトグラフィによる分析をポ
ストカラム法で行う、請求項1に記載の分析法。
3. The method according to claim 1, wherein the analysis by high performance liquid chromatography is performed by a post-column method.
【請求項4】 分析対象物が酵素活性を保有する物質であ
る、請求項1〜3の何れかに記載の分析法。
4. is a substance analyte possess enzymatic activity, assay according to any one of claims 1 to 3.
【請求項5】 分析対象物が酵素活性を保有する物質であ
り、該分析対象物の検出を該酵素活性を利用して行う、
請求項4に記載の分析法。
5. The method according to claim 1 , wherein the analyte is a substance having an enzyme activity, and the detection of the analyte is performed using the enzyme activity.
The analysis method according to claim 4 .
【請求項6】 同一試料分析中に出現する分析対象物以外
のピークの出現時に於ける溶離液の流速と、分析対象物
のピーク出現時に於ける溶離液のそれとを、予め設定し
た条件に応じて自動的に変化させ得る手段を備えたこと
を特徴とする、高速液体クロマトグラフィ用分析装置。
6. The method according to claim 1, wherein the flow rate of the eluent at the time of appearance of a peak other than the analyte appearing during the same sample analysis and that of the eluate at the time of appearance of the analyte peak are determined according to preset conditions. An analyzer for high-performance liquid chromatography, characterized by comprising means for automatically changing the temperature and pressure.
【請求項7】 ポストカラム反応装置が接続されている、
請求項6に記載の高速液体クロマトグラフィ用分析装
置。
7. A post-column reactor is connected,
The high-performance liquid chromatography analyzer according to claim 6 .
JP3244678A 1991-08-29 1991-08-29 High precision analysis method Expired - Fee Related JP2768079B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3244678A JP2768079B2 (en) 1991-08-29 1991-08-29 High precision analysis method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3244678A JP2768079B2 (en) 1991-08-29 1991-08-29 High precision analysis method

Publications (2)

Publication Number Publication Date
JPH0666778A JPH0666778A (en) 1994-03-11
JP2768079B2 true JP2768079B2 (en) 1998-06-25

Family

ID=17122323

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3244678A Expired - Fee Related JP2768079B2 (en) 1991-08-29 1991-08-29 High precision analysis method

Country Status (1)

Country Link
JP (1) JP2768079B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3848459B2 (en) * 1998-04-10 2006-11-22 積水化学工業株式会社 Method for measuring hemoglobins
US6962658B2 (en) * 2003-05-20 2005-11-08 Eksigent Technologies, Llc Variable flow rate injector
JP5948630B2 (en) * 2012-06-07 2016-07-06 株式会社日立ハイテクノロジーズ Quantitative analysis method and apparatus using mass spectrometry
JP5958288B2 (en) * 2012-11-06 2016-07-27 株式会社島津製作所 Liquid chromatography-MALDI mass spectrometry

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS441040Y1 (en) * 1966-04-28 1969-01-16
JPS57194351A (en) * 1981-05-26 1982-11-29 Shimadzu Corp Bile acid analysing method
JPS5938651A (en) * 1982-08-27 1984-03-02 Sekisui Chem Co Ltd Quantitative analysis of catecholamine

Also Published As

Publication number Publication date
JPH0666778A (en) 1994-03-11

Similar Documents

Publication Publication Date Title
EP1849001B1 (en) Lateral flow test kit and method for detecting an analyte
Allison et al. Dual electrode liquid chromatography detector for thiols and disulfides
US7807401B2 (en) Reagent for digestion of hemoglobin
US8709792B2 (en) Lateral flow test kit and method for detecting an analyte
JPH0734015B2 (en) New method for measuring trace components
Saito et al. High-performance liquid chromatography of histamine and 1-methylhistamine with on-column fluroescence derivatization
JPS594664B2 (en) Ion exchange chromatography
Michalke et al. Iodine speciation in human serum by reversed-phase liquid chromatography-ICP-mass spectrometry
EP0653640B1 (en) Process for separating and measuring glycoprotein
JP2768079B2 (en) High precision analysis method
Palmisano et al. Determination of methotrexate in untreated body fluids by micellar liquid chromatography
Gaede et al. A rapid and specific enzymatic method for the estimation of L-arginine
Lam et al. Stereoselective D-and L-amino acid analysis by high-performance liquid chromatography
JP3070418B2 (en) Differential measurement of glycoproteins
Kito et al. Fluorometric determination of hypoxanthine and xanthine in biological fluids by high-performance liquid chromatography using enzyme reactors
CN116106466B (en) Kit for simultaneously determining multiple causative markers of endocrine hypertension
EP0441470B1 (en) Process for separating and measuring trace components
US20070161120A1 (en) Ceruloplasmin Assay
JP3102611B2 (en) Complex separation method
JP2994739B2 (en) Rapid measurement of trace components
Zhang et al. Clinical chemistry applications of capillary electromigration methods
Dhondt et al. Need for a standardized procedure in the preparation of phenylalanine calibrators
JP2000180439A (en) Method for pretreating whole blood for measuring saccharified hemoglobin
JP3479655B2 (en) Method for measuring bilirubin by high performance liquid chromatography
Saad et al. Problems in Commercial Kits of 25-Hydroxy Vitamin D and the Development of Simple, Robust and Faster HPLC Method

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19980310

LAPS Cancellation because of no payment of annual fees