JPH0666652B2 - Voltage controlled oscillator - Google Patents
Voltage controlled oscillatorInfo
- Publication number
- JPH0666652B2 JPH0666652B2 JP60113351A JP11335185A JPH0666652B2 JP H0666652 B2 JPH0666652 B2 JP H0666652B2 JP 60113351 A JP60113351 A JP 60113351A JP 11335185 A JP11335185 A JP 11335185A JP H0666652 B2 JPH0666652 B2 JP H0666652B2
- Authority
- JP
- Japan
- Prior art keywords
- voltage
- differential amplifier
- oscillation
- current
- terminal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Classifications
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03K—PULSE TECHNIQUE
- H03K3/00—Circuits for generating electric pulses; Monostable, bistable or multistable circuits
- H03K3/02—Generators characterised by the type of circuit or by the means used for producing pulses
- H03K3/26—Generators characterised by the type of circuit or by the means used for producing pulses by the use, as active elements, of bipolar transistors with internal or external positive feedback
- H03K3/28—Generators characterised by the type of circuit or by the means used for producing pulses by the use, as active elements, of bipolar transistors with internal or external positive feedback using means other than a transformer for feedback
- H03K3/281—Generators characterised by the type of circuit or by the means used for producing pulses by the use, as active elements, of bipolar transistors with internal or external positive feedback using means other than a transformer for feedback using at least two transistors so coupled that the input of one is derived from the output of another, e.g. multivibrator
- H03K3/282—Generators characterised by the type of circuit or by the means used for producing pulses by the use, as active elements, of bipolar transistors with internal or external positive feedback using means other than a transformer for feedback using at least two transistors so coupled that the input of one is derived from the output of another, e.g. multivibrator astable
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Inductance-Capacitance Distribution Constants And Capacitance-Resistance Oscillators (AREA)
Description
【発明の詳細な説明】 〔発明の利用分野〕 本発明は電圧制御発振器(VCO)に関し、特に入力電圧
−発振周波数特性の高周波領域における歪を改善するの
に好適な電圧制御発振器に関するものである。The present invention relates to a voltage controlled oscillator (VCO), and more particularly to a voltage controlled oscillator suitable for improving distortion of input voltage-oscillation frequency characteristics in a high frequency region. .
従来、電圧制御発振器(VCO)の基本回路としては、中
沢修治,他2名訳「アナログ集積回路」近代科学社,昭
和50年9月15日発行,P333〜334に記載されている第6図
のエミッタ結合マルチバイブレータ形のものがある。そ
の基本回路に基づく応用回路としては、一般に第7図に
示すような回路ブロックとなる。ただし、応用回路で
は、第6図において容量Cに印加する発振電圧がV
BE(V)固定であるのに対し、任意に設定できるように
している。Conventionally, as a basic circuit of a voltage controlled oscillator (VCO), Shuji Nakazawa, 2 other translations "Analog Integrated Circuit", Modern Science Co., Ltd., published on September 15, 1975, P333-334 There is an emitter-coupled multivibrator type. An application circuit based on the basic circuit is generally a circuit block as shown in FIG. However, in the applied circuit, the oscillation voltage applied to the capacitor C in FIG.
BE (V) is fixed, but it can be set arbitrarily.
VCO64は発振部,差動増幅部,出力バッファ部により構
成し、発振部内の特性が等しくかつ同一の入力端子を有
している電圧制御電流源61,62に入力した電圧Vin(V)
を発振電流I(A)に変換させ、 I∝Vin ……(1) その変換した電流Iをトランジスタ57および58のON/OF
F状態に基づいて外付けタイミング容量63に充放電する
ことにより発振状態となる。なお、発振動作中は、第8
図に示すように、VSTA端子50が“Low"状態、差動増幅
器59の入力端51,52の電圧が“0"〜“−VF”(V)、
差動増幅器59の出力端53,54の電圧振幅がΔV(V)、
差動増幅器60の入力端53,54の電圧差が±ΔV(V)で
ある。The VCO 64 is composed of an oscillating unit, a differential amplifying unit, and an output buffer unit, and the voltage Vin (V) input to the voltage controlled current sources 61 and 62 having the same input terminals with the same characteristics in the oscillating unit.
Is converted into the oscillation current I (A), and I∝Vin ... (1) The converted current I is turned on / off by the transistors 57 and 58.
When the external timing capacitor 63 is charged and discharged based on the F state, the oscillation state is established. During the oscillating operation, the 8th
As shown in FIG., V STA terminal 50 is "Low" state, the voltage at the input terminal 51, 52 of the differential amplifier 59 "0" ~ "-V F " (V),
The voltage amplitude of the output terminals 53 and 54 of the differential amplifier 59 is ΔV (V),
The voltage difference between the input terminals 53 and 54 of the differential amplifier 60 is ± ΔV (V).
この時、外付けタイミング容量63の両端55,56に発生す
る電圧は第8図に示す波形となるので、VCO64による発
振周波数f(Hz)は、 となる。ただし、Cは外付けタイミング容量63の値
(F)、ΔVは差動増幅器59のシングルエンド出力電圧
振幅(V)、Iは入力電圧Vin(V)に比例する発振電
流(A)、tpdは発振部と差動増幅部との帰還ループに
おいて素子特性に起因する信号伝搬遅延時間(sec)で
あり、一般に外付けタイミング容量63を短絡状態にし差
動増幅器59の出力極性を逆接続にしてVCO64をトグル発
振させた場合の1周期(sec)に等しい。At this time, the voltage generated at both ends 55, 56 of the external timing capacitor 63 has the waveform shown in FIG. 8, so the oscillation frequency f (Hz) by the VCO 64 is Becomes Where C is the value of the external timing capacitor 63 (F), ΔV is the single-ended output voltage amplitude (V) of the differential amplifier 59, I is the oscillation current (A) proportional to the input voltage Vin (V), and tpd is tpd. This is the signal propagation delay time (sec) due to the element characteristics in the feedback loop between the oscillator and the differential amplifier. Generally, the external timing capacitor 63 is short-circuited and the output polarity of the differential amplifier 59 is reversed to VCO64. Is equal to one cycle (sec) when toggle oscillation is performed.
このことから、例えば差動増幅器59の出力電圧振幅ΔV
が0.8(V)、外付けタイミング容量63の値Cが50(p
F)、信号伝搬遅延時間tpdが8(nS)、発振電流Iが5
(mA)の状態においては、VCO64から出力する発振周波
数fが25(MHz)となる。From this, for example, the output voltage amplitude ΔV of the differential amplifier 59
Is 0.8 (V), and the value C of the external timing capacitor 63 is 50 (p
F), signal propagation delay time tpd is 8 (nS), and oscillation current I is 5
In the state of (mA), the oscillation frequency f output from the VCO 64 is 25 (MHz).
このようにVin(V)の値に応じてf(MHz)を変化する
VCO64は、例えば、磁気ディスク記憶装置のデータ弁別
窓発生回路において、PLL(Phase Locked Loop)回路
の発振器として使用されるが、最近のデータ転送の高速
化に伴って、更に高い周波数域の発振が要求されてい
る。また、PLL回路の発振器としては、入力電圧Vin
(V)をある基準バイアス電圧Vo(V)と等しくした場
合に、その時の発振周波数fo(Hz)を精度良く(例えば
±0.1%程度)調整する必要もある。なお、foを特に
“自走発振周波数”と呼び、この時の発振電流Ioを特に
“中心発振電流”と呼ぶ。In this way, f (MHz) is changed according to the value of Vin (V).
The VCO64 is used, for example, as an oscillator of a PLL (Phase Locked Loop) circuit in a data discrimination window generation circuit of a magnetic disk storage device, but with the recent increase in data transfer speed, oscillation in a higher frequency range is generated. Is required. In addition, the input voltage Vin
When (V) is made equal to a certain reference bias voltage Vo (V), it is necessary to adjust the oscillation frequency fo (Hz) at that time accurately (for example, about ± 0.1%). It should be noted that fo is particularly referred to as “free-running oscillation frequency”, and the oscillation current Io at this time is particularly referred to as “center oscillation current”.
上記の要求を満たすためVCO64においては、製造上から
バラツキが生ずる差動増幅器59の出力電圧振幅ΔV
(V)や、信号伝搬遅延時間tpd(sec)、また1%程度
の公差を有している外付けタイミング容量63に対し、外
付けの可変抵抗などを使用して、電圧制御電流源61,62
の変換特性を調整し、中心発振電流Io(A)の値を変え
て所定の自走発振周波数fo(Hz)の範囲内に合せてい
る。In order to satisfy the above requirements, in the VCO 64, the output voltage amplitude ΔV of the differential amplifier 59, which varies from the manufacturing point of view,
(V), the signal propagation delay time tpd (sec), and the external timing capacitance 63 having a tolerance of about 1%. 62
The conversion characteristic of is adjusted and the value of the central oscillation current Io (A) is changed to match within the range of the predetermined free-running oscillation frequency fo (Hz).
しかし、上記の対策ではVCO64の入力電圧−発振周波波
特性が第9図に示した理想的な曲線70に対し、高周波域
でズレが生じてしまう曲線71となる。これは高周波域に
なると(2)式の発振電流I(A)に依存しない定数項
tpdが無視できなくなり、すなわち〔4CΔV/I〕≫tpd
の条件が成立しなくなって、入力電圧−発振周波数の特
性が非線形となるためである。However, with the above measures, the input voltage-oscillation frequency wave characteristic of the VCO 64 becomes a curve 71 in which a deviation occurs in the high frequency range from the ideal curve 70 shown in FIG. This is a constant term that does not depend on the oscillation current I (A) in equation (2) in the high frequency range.
tpd cannot be ignored, that is, [4CΔV / I] >> tpd
This is because the condition of is no longer satisfied and the input voltage-oscillation frequency characteristic becomes non-linear.
そこでVCO64を更に高い周波数域にて動作させるために
は、外付けタイミング容量63の値C(F)および差動増
幅器59のシングルエンド出力電圧振幅ΔV(V)を小さ
くし、発振電流I(A)を大きくするという回路的な工
夫だけでなく、信号伝搬遅延時間tpd(sec)を小さくす
るための素子特性の向上が必要不可欠である。Therefore, in order to operate the VCO 64 in a higher frequency range, the value C (F) of the external timing capacitor 63 and the single-ended output voltage amplitude ΔV (V) of the differential amplifier 59 are reduced, and the oscillation current I (A ) Is required to improve the device characteristics in order to reduce the signal propagation delay time tpd (sec) as well as to devise the circuit.
以上より上記と同様、例えば差動増幅器59の出力電圧振
幅ΔVを0.4(V)、外付けタイミング容量63の値Cを2
0(pF)、発振電流Iを5(mA)、信号伝搬遅延時間tpd
を2(nS)に低減した状態においては、VCO64から出力
する発振周波数fを120(MHz)することが可能となる
が、実際には、外付けタイミング容量器63のリード線や
ICパッケージのリード線などに寄生するインダクタンス
の影響を受けるために、ある周波数で特性歪が生じてし
まう曲線72のような入力電圧−発振周波数の特性であっ
た。From the above, similar to the above, for example, the output voltage amplitude ΔV of the differential amplifier 59 is 0.4 (V) and the value C of the external timing capacitor 63 is 2
0 (pF), oscillation current I 5 (mA), signal propagation delay time tpd
In the state in which is reduced to 2 (nS), the oscillation frequency f output from the VCO 64 can be set to 120 (MHz), but in reality, the lead wire of the external timing capacitor 63 and
The characteristic was the input voltage-oscillation frequency like the curve 72 in which characteristic distortion occurs at a certain frequency due to the influence of the parasitic inductance in the lead wire of the IC package.
本発明の目的は、このような従来の問題を解決し、エミ
ッタ結合マルチバイブレータ形電圧制御発振器(VCO)
において、ユーザの用途範囲を制限することなく、高周
波域での特性歪をなくした入力電圧−発振周波数の特性
を得ると共に、信号伝搬遅延時間tpdを小さくすること
のできる電圧制御発振器を提供することにある。An object of the present invention is to solve such a conventional problem and to realize an emitter-coupled multivibrator type voltage controlled oscillator (VCO).
In order to provide a voltage controlled oscillator that can obtain the characteristic of input voltage-oscillation frequency without characteristic distortion in a high frequency range and can reduce the signal propagation delay time tpd without limiting the application range of the user. It is in.
上記目的を達成するため、本発明の電圧制御発振器は、
入力電圧Vinを電流(I)に変換する少なくとも2つの
電圧制御電流源(18,19)と、電流(I)を基に発振す
るエミツタ結合マルチバイブレータと、発振の出力を増
幅してエミッタ結合マルチバイブレータに負帰還する差
動増幅器(2)と、差動増幅器(2)に結合され、負帰
還の電圧を調整するための端子(4,6)と、電流(I)
の充放電により発振を行う複数個の容量器(C1〜Cn)
からなる可変容量器(3)と、複数個の容量器(C1〜C
n)の接続を開放または短絡して固定的に組合せるため
の切替器(S1〜Sn)とを、同一の半導体チップ上に形
成したことを特徴としている。In order to achieve the above object, the voltage controlled oscillator of the present invention,
At least two voltage-controlled current sources (18, 19) that convert the input voltage Vin into current (I), an emitter-coupled multivibrator that oscillates based on the current (I), and an emitter-coupled multivibrator that amplifies the output of oscillation. A differential amplifier (2) for negative feedback to the vibrator, terminals (4, 6) coupled to the differential amplifier (2) for adjusting the voltage of the negative feedback, and a current (I).
Capacitors (C 1 to C n ) that oscillate by charging and discharging the
Variable capacitor (3) composed of a plurality of capacitors (C 1 to C
n ) is formed on the same semiconductor chip together with a switching device (S 1 to S n ) for opening or shorting the connection and fixedly combining.
以下、本発明の実施例を図面により説明する。 Embodiments of the present invention will be described below with reference to the drawings.
第1図は本発明は一実施例を示す電圧制御発振器(VC
O)のブロック図である。同図において、11,12は等しい
特性を持つダイオード、13,14は特性および抵抗値の等
しい抵抗器、15,16は等しい特性を持つNPNトランジス
タ、17は正および負の入/出力端を具備する差動増幅
器、18,19は共通の入力端子9を持つ電流引込み形の電
圧制御電流源、2は正および負の入/出力端と、前述の
VSTA端子50と同様に発振動作のスタート/ストップが
指示できる切替入力端子VSTA6と、入力電圧−発振周
波数の特性を調整する抵抗器5を接続する調整端子4と
を具備する差動増幅器、3は可変容量器であり、容量値
を変えることができるような構成で同一半導体チップ上
に形成する、10,26はそれぞれ直流バイアス電源VCC,V
EEを供給する電源端子、7,8は差動増幅器17からの互に
逆極性の差動信号を外部に送出する出力端子、20〜25は
接続端である。FIG. 1 shows a voltage controlled oscillator (VC
It is a block diagram of (O). In the figure, 11 and 12 are diodes with equal characteristics, 13 and 14 are resistors with equal characteristics and resistance values, 15 and 16 are NPN transistors with equal characteristics, and 17 has positive and negative input / output terminals. A differential amplifier, 18 and 19 are current-drawing type voltage controlled current sources having a common input terminal 9, 2 are positive and negative input / output terminals, and an oscillation operation is started in the same manner as the V STA terminal 50 described above. A differential amplifier 3 having a switching input terminal V STA 6 capable of indicating / stop and an adjustment terminal 4 connecting a resistor 5 for adjusting the characteristics of input voltage-oscillation frequency is a variable capacitor, and a capacitance value Are formed on the same semiconductor chip in such a manner that the DC bias power supplies V CC and V can be changed.
Power supply terminals for supplying EE , 7 and 8 are output terminals for sending out differential signals having mutually opposite polarities from the differential amplifier 17, and 20 to 25 are connection terminals.
VCO1の回路構成は、第1図に示すようにダイオード11,1
2のアノードと抵抗器13,14の一方端を電源端子VCC10に
接続し、その反対側すなわちダイオード11のカソードと
抵抗器13の他方端を接続端20を介してNPNトランジスタ1
5のコレクタおよび差動増幅器2の正の入力端に接続
し、ダイオード12のカソードと抵抗器14の他方端を接続
端21を介してNPNトランジスタ16のコレクタおよび差動
増幅器2の負の入力端に接続する。As shown in Fig. 1, the circuit configuration of VCO1 includes diodes 11,1
The anode of 2 and resistors 13, 14 are connected to the power supply terminal V CC 10, and the opposite side, that is, the cathode of the diode 11 and the other end of the resistor 13 are connected via the connection end 20 of the NPN transistor 1.
5 is connected to the positive input terminal of the differential amplifier 2, and the cathode of the diode 12 and the other end of the resistor 14 are connected via the connection terminal 21 to the collector of the NPN transistor 16 and the negative input terminal of the differential amplifier 2. Connect to.
同様に、差動増幅器2の正の出力端を接続端22を介して
差動増幅器17の正の入力端およびNPNトランジスタ16の
ベースに接続し、一方、負の出力端を接続端23を介して
差動増幅器17の負の入力端およびNPNトランジスタ15の
ベースに接続する。NPNトランジスタ15のエミッタを接
続端24を介して電圧制御電流源18の出力端および可変容
量器3の一方端に接続し、一方、NPNトランジスタ16の
エミッタを接続端25を介して電圧制御電流源19の出力端
および可変容量器3の他方端に接続する。差動増幅器17
の正,負の出力端をそれぞれ出力端子7,8に、電圧制御
電流源18,19の出力もう一端を直流バイアス電源V
EEに、電圧制御電流源18,19の共通制御入力端を入力端
子9に、差動増幅器2の振幅調整端,切換入力端をそれ
ぞれ調整端子4,切替入力端子6に各々接続する。調整端
子4には後述する電圧調整用の抵抗器5を接続する。な
お、抵抗器5を除く上記各素子は同一半導体チップ上に
形成する。Similarly, the positive output of the differential amplifier 2 is connected via the connection 22 to the positive input of the differential amplifier 17 and the base of the NPN transistor 16, while the negative output is connected via the connection 23. Connected to the negative input terminal of the differential amplifier 17 and the base of the NPN transistor 15. The emitter of the NPN transistor 15 is connected to the output end of the voltage controlled current source 18 and one end of the variable capacitor 3 via the connection end 24, while the emitter of the NPN transistor 16 is connected via the connection end 25 to the voltage control current source. It is connected to the output end of 19 and the other end of the variable capacitor 3. Differential amplifier 17
Of the positive and negative output terminals to the output terminals 7 and 8, respectively, and the other output terminals of the voltage controlled current sources 18 and 19 to the DC bias power supply V
To EE , the common control input terminals of the voltage controlled current sources 18 and 19 are connected to the input terminal 9, and the amplitude adjusting terminal and the switching input terminal of the differential amplifier 2 are connected to the adjusting terminal 4 and the switching input terminal 6, respectively. A resistor 5 for voltage adjustment described later is connected to the adjustment terminal 4. The above-mentioned elements except the resistor 5 are formed on the same semiconductor chip.
VCO1は、前述した第7図のVCO64と同様の発振メカニズ
ムで発振動作を行い、入力端子9からの入力電圧Vin
(V)の値に対応する発振周波数f(HZ)を出力端子
7,8に送出する。その発振周波数f(HZ)は、前記
(2)式と同様、 となる。ただし、CXは可変容量器3の値(F)、VX
は差動増幅器2のシングルエンド出力電圧振幅(V)、
tpdは信号伝搬遅延時間(sec)、Iは入力電圧Vin
(V)に比例する発振電流(A)である。なお、前述し
たVCO64と異なる点は、差動増幅器2にVXを調整す
るための抵抗器5を接続し、可変容量器3を同一半導
体チップ上に形成したことである。The VCO1 oscillates by the same oscillation mechanism as the VCO64 of FIG. 7 described above, and the input voltage Vin from the input terminal 9
Output terminal of oscillation frequency f (H Z ) corresponding to the value of (V)
Send to 7,8. The oscillation frequency f (H Z ) is the same as in the above equation (2). Becomes However, C X is the value (F) of the variable capacitor 3, V X
Is the single-ended output voltage amplitude (V) of the differential amplifier 2,
tpd is the signal propagation delay time (sec), I is the input voltage Vin
The oscillation current (A) is proportional to (V). The difference from the VCO 64 described above is that a resistor 5 for adjusting V X is connected to the differential amplifier 2 and the variable capacitor 3 is formed on the same semiconductor chip.
第2図は、本発明の一実施例を示す可変容量器3の構成
図である。同図において、C0,C1,C2,C3‥‥Cnはそれぞ
れ後述する値で同一半導体チップ上に形成する容量器で
あり、S1,S2,S3‥‥Snはそれぞれ開放または短絡状態に
設定できる切替器である。FIG. 2 is a configuration diagram of the variable capacitor 3 showing an embodiment of the present invention. In the figure, C 0 , C 1 , C 2 , C 3 ... Cn are capacitors formed on the same semiconductor chip with the values described later, and S 1 , S 2 , S 3 ... Sn are open. Alternatively, it is a switch that can be set to a short-circuited state.
容量器C0〜Cnは、切替器S1〜Snを全て開放状態にしたと
きに、可変容量器3としての値CX(F)を最小CXmi
n(F)にし、反対に全てを短絡状態にしたときに最大
CXmax(F)の値にする。それを式で表わすと、 CXmin=C0×(1+α) ……(4) CXmax=(C0+C1+C2+…+Cn)×(1+α) ……
(5) となる。ただし、αは製造的なバラツキによる容量値の
誤差で一般に±20%程度である。The capacitors C 0 to Cn set the value C X (F) as the variable capacitor 3 to the minimum C X mi when all the switches S 1 to Sn are opened.
n (F), and conversely, when all are short-circuited, the maximum C X max (F) is set. When expressed by an equation, C X min = C 0 × (1 + α) …… (4) C X max = (C 0 + C 1 + C 2 +… + Cn) × (1 + α) ……
(5) However, α is an error of the capacitance value due to manufacturing variations and is generally about ± 20%.
また、容量器C0〜Cnは、可変容量器3としての値C
X(F)を目標値CTG(F)に設定するために、その値
を、 C0=CTG/2(F) ……(6) C1=CTG/2(F) ……(7) C2=CTG/22(F) ……(8) C3=CTG/23(F) ……(9) : : Cn=CTG/2n(F) ……(10) のように構成する。Further, the capacitors C 0 to Cn are the values C as the variable capacitor 3.
In order to set X (F) to the target value C TG (F), the value is set to C 0 = C TG / 2 (F) ...... (6) C 1 = C TG / 2 (F) ...... ( 7) C 2 = C TG / 2 2 (F) ...... (8) C 3 = C TG / 2 3 (F) ...... (9):: Cn = C TG / 2 n (F) ...... (10 ).
上記の各値に構成したときのCXmin(F)およびCXm
ax(F)は、上記(4),(5)式から、 となる。すなわち、可変容量器3の値CX(F)を(1
1)式による値CXmin(F)から(12)式による値CX
max(F)までの中から、各切替器S1〜Snを開放または
短絡状態にすることで、CTG(1+α)/2n(F)の
単位により任意な容量値に設定することが可能となる。
つまり、第4図に示すように、製造バラツキα=0の場
合における調整範囲が0.5CTG〜〔1.5−(1/2n)〕
CTG(F),設定ピッチがCTG/2n(F)となり、製
造バラツキα=+20%の場合における調整範囲が0.6CTG
〜〔1.8−(1.2/2n)〕CTG(F)、設定ピッチが1.
2CTG/2n(F)となり、製造バラツキα=−20%の場
合における調整範囲が0.4CTG〜〔1.2−(0.8/nn)〕
CTG(F)、設定ピッチが0.8CTG/2n(F)となる。
したがって、本構成とすることで、製造バラツキ±20%
における可変容量器3の値CX(F)を最小値0.6C
TG(F)から最大値〔1.2−(0.8/2n)〕CTG(F)
までの中から、最大誤差(1.2/2n+1)CTG(F)
の単位で任意に設定することができる。C X min (F) and C X m when configured to the above values
ax (F) is calculated from the above equations (4) and (5), Becomes That is, the value C X (F) of the variable capacitor 3 is (1
The value C X by from 1) according to the value C X min (F) (12 ) Equation
It is possible to set an arbitrary capacity value in units of C TG (1 + α) / 2 n (F) by opening or switching each switch S 1 to Sn from the maximum (F). Becomes
That is, as shown in FIG. 4, when the manufacturing variation α = 0, the adjustment range is 0.5 C TG to [1.5− (1/2 n )].
C TG (F), set pitch is C TG / 2 n (F), and the adjustment range is 0.6 C TG when manufacturing variation α = + 20%.
~ [1.8- (1.2 / 2n )] C TG (F), setting pitch is 1.
2C TG / 2 n (F), and the adjustment range is 0.4C TG ~ in the case of manufacturing variations alpha = -20% [1.2- (0.8 / n n)]
C TG (F), setting the pitch becomes 0.8C TG / 2 n (F) .
Therefore, with this configuration, manufacturing variation is ± 20%.
The value C X (F) of the variable capacitor 3 at
Maximum value from TG (F) [1.2- (0.8 / 2n )] C TG (F)
Maximum error (1.2 / 2 n + 1 ) C TG (F)
Can be arbitrarily set in units of.
以上より、例えば設ける段数nを“6"にした場合には、
CX(F)を0.6CTG〜1.19CTG(F)の範囲から、最大
誤差0.0094CTG(F)(=0.94%)の値で任意に設定で
きる。また、仮に製造バラツキが±30%,設ける段数n
を上記と同様“6"にした場合には、CX(F)を0.65C
TG〜1.039CTG(F)の範囲から最大誤差0.0102C
TG(F)の値で任意に選択できる。From the above, for example, when the number of stages n to be provided is “6”,
From the range of C X (F) a 0.6C TG ~1.19C TG (F), can be set to any value of the maximum error 0.0094C TG (F) (= 0.94 %). Moreover, if the manufacturing variation is ± 30%, the number of stages to be provided n
When is set to "6" as above, C X (F) is 0.65C
Maximum error 0.0102C from TG to 1.039C TG (F) range
It can be arbitrarily selected by the value of TG (F).
第3図(a)〜(c)は、切替器S1〜Snの開放または短
絡状態の実現例を示すものである。Figure 3 (a) ~ (c) shows an implementation of an open or short circuit condition of the switching device S 1 to Sn.
同図(a)においては、端子T1−T3間,端子T2−T3間に
大電流を流すことによって、それぞれダイオードDS1,D
S2のジャンクションを破壊し、端子T1−T2間を開放から
短絡状態にする方法である。同図(b)においては、端
子T1−T2間に大電流を流すことによって、ヒューズHS1
を溶断し、端子T1−T2間を上記とは反対に短絡から開放
状態にする方法である。同図(c)においては、端子T1
−T2間を接続する金属線にレーザ光を照射して溶断し、
上記(b)と同様に端子T1−T2間を短絡から開放状態に
変える方法である。In FIG. 5A, by supplying a large current between the terminals T 1 and T 3 and between the terminals T 2 and T 3 , the diodes D S1 and D S1 are respectively discharged .
This is a method in which the junction of S2 is destroyed and the terminals T 1 and T 2 are opened to short-circuited. In the same figure (b), a large current is passed between the terminals T 1 and T 2 so that the fuse H S1
In contrast to the above, the circuit between terminals T 1 and T 2 is opened by short-circuiting. In the figure (c), terminal T 1
-The metal wire connecting between -T 2 is irradiated with laser light to melt it,
Similar to (b) above, it is a method of changing the terminals T 1 and T 2 from a short circuit to an open state.
第5図は、差動増幅器2の一実施例を示す回路図であ
る。なお、同図において接続端20〜23,抵抗器RX5,調
整端子4,切替入力端子6,直流バイアス電源VEEはそれぞ
れ上記第1図と同一のものである。FIG. 5 is a circuit diagram showing an embodiment of the differential amplifier 2. In the figure, the connection terminals 20 to 23, the resistor R X 5, the adjusting terminal 4, the switching input terminal 6, and the DC bias power source V EE are the same as those in FIG.
差動増幅器2は、切替入力端子6からの信号VSTAが“H
igh"レベルのときにはトランジスタTr5をON状態にして
増幅機能を停止し、反対に“Low"レベルのときにはTr5
をOFF状態にして増幅動作を実行する。また、調整用抵
抗器RX5の値に応じてトランジスタTr5のエミッタ電
圧を変えることができるので、接続端22および接続端23
の出力電圧振幅VX(V)を調整することが可能であ
る。In the differential amplifier 2, the signal V STA from the switching input terminal 6 is "H".
When it is at "igh" level, transistor Tr 5 is turned on to stop the amplification function, and when it is at "Low" level, Tr 5 is turned on.
Turn OFF to execute amplification operation. Further, since the emitter voltage of the transistor Tr 5 can be changed according to the value of the adjustment resistor R X 5, the connection end 22 and the connection end 23 can be changed.
It is possible to adjust the output voltage amplitude V X (V) of
その調整による差動増幅器2のシングルエンド出力電圧
振幅VX(V)は、 VX=〔R3/(R1+RX)〕×(−VEE−VBE)(V)
……(13) で表わすことができる。なお、本実施例においては調整
端子4に可変抵抗器5を外付けにしたが、温度補償機能
などを有する回路網を接続することも可能である。The single-ended output voltage amplitude V X (V) of the differential amplifier 2 by the adjustment is V X = [R 3 / (R 1 + R X )] × (−V EE −V BE ) (V)
It can be represented by (13). Although the variable resistor 5 is externally attached to the adjustment terminal 4 in the present embodiment, it is also possible to connect a circuit network having a temperature compensation function or the like.
このように、可変容量器3を同一半導体チップ上に個別
部品と同等以上の精度で形成することにより、配線など
に伴う寄生インダクタンスを極めて小さくすることがで
き、入力電圧−発振周波数特性の高周波域での特性歪を
除去することが可能となる。また、可変容量器3を
(6)〜(10)式に示す値の容量器C0〜Cnで構成し、そ
れ等を接続するための切替器S1〜Snを設けたことで、可
変容量器3としての値CX(F)を容易かつ精度良く目
標値CTG(F)に設定することができると共に、従来は
タイミング容量63で実施していたのを、差動増幅器2に
接続した調整用の抵抗器5で入力電圧−発振周波数特性
を補償するので、タイミング容量を固定化した場合に低
下してしまうユーザによる応用の自由度を防止すること
ができる。As described above, by forming the variable capacitor 3 on the same semiconductor chip with an accuracy equal to or higher than that of individual components, the parasitic inductance associated with wiring can be extremely reduced, and the high frequency range of the input voltage-oscillation frequency characteristic. It is possible to eliminate the characteristic distortion in. Further, the variable capacitor 3 is composed of the capacitors C 0 to Cn having the values shown in the equations (6) to (10), and the switching devices S 1 to Sn for connecting them are provided, so that the variable capacitor The value C X (F) of the device 3 can be easily and accurately set to the target value C TG (F), and the timing capacitor 63 is connected to the differential amplifier 2 in the past. Since the adjustment resistor 5 compensates for the input voltage-oscillation frequency characteristic, it is possible to prevent the degree of freedom of application by the user, which is reduced when the timing capacitance is fixed.
以上説明したように、本発明によれば、可変容量器を同
一半導体チップ上に形成したことにより寄生インダクタ
ンスを顕著に低減し、高周波域での特性歪を除去すると
ともに、信号伝搬遅延時間tpdも小さくなるので数十MHz
以上の高周波領域においても良好な入力電圧−発振周波
数特性が得られる。また、可変容量器を値が異なる複数
の容量器で構成したことでユーザの用途範囲が制限され
るのを防止している。As described above, according to the present invention, by forming the variable capacitor on the same semiconductor chip, the parasitic inductance is remarkably reduced, the characteristic distortion in the high frequency range is removed, and the signal propagation delay time tpd is also reduced. Tens of MHz because it becomes smaller
Good input voltage-oscillation frequency characteristics can be obtained even in the above high frequency range. Further, since the variable capacitor is composed of a plurality of capacitors having different values, the application range of the user is prevented from being limited.
第1図は本発明の一実施例を示す電圧制御発振器(VC
O)のブロック図、第2図は可変容量器3の構成図、第
3図(a)〜(c)は切替器S1〜Snの実現方法を説明す
るための図、第4図は可変容量器3の値CX(F)の設
定方法を説明するための図、第5図は差動増幅器2の回
路図、第6図は従来の電圧制御発振器(VCO)の基本回
路を示す回路図、第7図は従来の電圧制御発振器(VC
O)の応用回路の等価ブロック図、第8図は第7図の動
作タイミングチャート、第9図は第7図の入力電圧−発
振周波数の特性図である。 1,64:電圧制御発振器(VCO)、2,17,59,60:差動増幅
器、3:可変容量器、4:調整端子、5,13,14,R1〜R4:抵抗
器、6:切替入力端子、7,8:出力端子、9:入力端子、10,2
6:電源端子、11,12,Ds1,Ds2:ダイオード、15,16,57,58,
Tr1〜Tr5:NPNトランジスタ、18,19,61,62:電圧制御電流
源、20〜25,51〜54:接続端、50:VSTA端子、55,56:外部
端子、63:外付けタイミング容量、70:理想特性曲線、7
1,72:特性曲線、T1〜T3:端子、C0〜Cn:容量器、Hs1:ヒ
ューズ、S1〜Sn:切替器。FIG. 1 shows a voltage controlled oscillator (VC
O) block diagram, FIG. 2 is a configuration diagram of the variable capacitor 3, FIGS. 3 (a) to 3 (c) are diagrams for explaining a method of realizing the switches S 1 to Sn, and FIG. 4 is a variable diagram. FIG. 5 is a diagram for explaining a method of setting the value C X (F) of the capacitor 3, FIG. 5 is a circuit diagram of the differential amplifier 2, and FIG. 6 is a circuit showing a basic circuit of a conventional voltage controlled oscillator (VCO). Figures and 7 show conventional voltage controlled oscillators (VC
8) is an equivalent block diagram of the application circuit, FIG. 8 is an operation timing chart of FIG. 7, and FIG. 9 is an input voltage-oscillation frequency characteristic diagram of FIG. 1,64: Voltage controlled oscillator (VCO), 2,17,59,60: Differential amplifier, 3: Variable capacitor, 4: Adjustment terminal, 5,13,14, R 1 to R 4 : Resistor, 6 : Switching input terminal, 7, 8: Output terminal, 9: Input terminal, 10, 2
6: Power supply terminal, 11,12, Ds 1 ,, Ds 2 : Diode, 15,16,57,58,
Tr1 to Tr5: NPN transistor, 18, 19, 61, 62: Voltage controlled current source, 20 to 25, 51 to 54: Connection end, 50: V STA terminal, 55, 56: External terminal, 63: External timing capacity , 70: Ideal characteristic curve, 7
1,72: Characteristic curve, T 1 to T 3 : Terminal, C 0 to Cn: Capacitor, Hs 1 : Fuse, S 1 to Sn: Switching device.
Claims (1)
の電圧制御電流源と、 該電流を基に発振するエミツタ結合マルチバイブレータ
と、 該発振の出力を増幅して上記エミッタ結合マルチバイブ
レータに負帰還する差動増幅器と、 該差動増幅器に結合され、上記負帰還の電圧を調整する
ための端子と、 上記電流の充放電により上記発振を行う複数個の容量器
からなる可変容量器と、 該複数個の容量器の接続を開放または短絡して固定的に
組合せるための切替器とを、 同一の半導体チップ上に形成した電圧制御発振器。1. At least two voltage-controlled current sources that convert an input voltage into a current, an emitter-coupled multivibrator that oscillates based on the current, an output of the oscillation is amplified, and a negative feedback is given to the emitter-coupled multivibrator. A differential amplifier, a terminal for adjusting the voltage of the negative feedback, which is coupled to the differential amplifier, a variable capacitor including a plurality of capacitors that perform the oscillation by charging and discharging the current, A voltage-controlled oscillator in which a switching device for fixedly connecting a plurality of capacitors by opening or short-circuiting them is formed on the same semiconductor chip.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60113351A JPH0666652B2 (en) | 1985-05-27 | 1985-05-27 | Voltage controlled oscillator |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60113351A JPH0666652B2 (en) | 1985-05-27 | 1985-05-27 | Voltage controlled oscillator |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS61270909A JPS61270909A (en) | 1986-12-01 |
JPH0666652B2 true JPH0666652B2 (en) | 1994-08-24 |
Family
ID=14610059
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP60113351A Expired - Lifetime JPH0666652B2 (en) | 1985-05-27 | 1985-05-27 | Voltage controlled oscillator |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0666652B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0785616B1 (en) * | 1996-01-22 | 2002-04-24 | Telefonaktiebolaget Lm Ericsson | A balanced integrated semiconductor device operating with a parallel resonator circuit |
JP2008011132A (en) * | 2006-06-29 | 2008-01-17 | Nec Electronics Corp | 90-degree phase shifter |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS56115019A (en) * | 1980-02-15 | 1981-09-10 | Fujitsu Ltd | Switched capacitor filter |
JPS5744319A (en) * | 1980-08-29 | 1982-03-12 | Fujitsu Ltd | Variable attenuator |
JPS60113A (en) * | 1983-06-16 | 1985-01-05 | Sony Corp | Voltage control oscillator |
-
1985
- 1985-05-27 JP JP60113351A patent/JPH0666652B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPS61270909A (en) | 1986-12-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6680655B2 (en) | Automatic gain control for a voltage controlled oscillator | |
JP3921362B2 (en) | Temperature compensated crystal oscillator | |
JPH0666652B2 (en) | Voltage controlled oscillator | |
JP2737444B2 (en) | High-speed logic circuit | |
US5896070A (en) | Voltage or current controlled emitter-coupled multivibrator with pull-down amplifiers | |
CA1289632C (en) | Clock-signal regenerator comprising a crystal oscillator incorporated in a phase-locked loop | |
EP0381270A2 (en) | A gated high stability LC stabilized oscillator | |
US6952140B2 (en) | Ocillator and electronic device using same | |
JP2576193B2 (en) | Oscillation circuit | |
US5262688A (en) | Operational amplifier circuit | |
JPH05227145A (en) | Clock oscillation circuit and clock extraction circuit | |
JPH11510023A (en) | Oscillation circuit | |
JP2000299498A (en) | Light transmitter and light communication system | |
JPH0722896Y2 (en) | Oscillator circuit | |
JPH0332088Y2 (en) | ||
JPH0124983Y2 (en) | ||
EP0339480A2 (en) | Variable frequency multivibrator | |
JP2684701B2 (en) | Semiconductor laser drive circuit | |
JPS6019842B2 (en) | Amplitude limited oscillation circuit | |
JPS60153084A (en) | Horizontal amplitude control circuit | |
JPS6021602A (en) | Variable frequency crystal oscillating circuit | |
EP0606060B1 (en) | Bipolar inverting level shifters having a unity gain | |
JP2768013B2 (en) | Divider | |
JP2549672Y2 (en) | AFT voltage superposition circuit | |
JPS6138264Y2 (en) |