JPH0666316B2 - Semiconductor device and manufacturing method thereof - Google Patents

Semiconductor device and manufacturing method thereof

Info

Publication number
JPH0666316B2
JPH0666316B2 JP10756385A JP10756385A JPH0666316B2 JP H0666316 B2 JPH0666316 B2 JP H0666316B2 JP 10756385 A JP10756385 A JP 10756385A JP 10756385 A JP10756385 A JP 10756385A JP H0666316 B2 JPH0666316 B2 JP H0666316B2
Authority
JP
Japan
Prior art keywords
well
type
region
semiconductor substrate
oxide film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP10756385A
Other languages
Japanese (ja)
Other versions
JPS61264760A (en
Inventor
秀之 木原
能充 奥田
Original Assignee
松下電子工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 松下電子工業株式会社 filed Critical 松下電子工業株式会社
Priority to JP10756385A priority Critical patent/JPH0666316B2/en
Publication of JPS61264760A publication Critical patent/JPS61264760A/en
Publication of JPH0666316B2 publication Critical patent/JPH0666316B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Bipolar Transistors (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は半導体装置及びその製造方法、特にバイポーラ
トランジスタとその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor device and its manufacturing method, and more particularly to a bipolar transistor and its manufacturing method.

従来の技術 周知のバイポーラ集積回路製造技術を用いて形成された
バイポーラ型トランジスタを第3図を参照しながら説明
する。本トランジスタはP型半導体基板1a,N型埋込層2
a,N型エピタキシャル層3a,P型ベース領域4a,N型エミッ
タ領域5a,N型コレクタ領域6aより構成されている。
2. Description of the Related Art A bipolar transistor formed by using a well-known bipolar integrated circuit manufacturing technique will be described with reference to FIG. This transistor has a P-type semiconductor substrate 1a and an N-type buried layer 2
a, N-type epitaxial layer 3a, P-type base region 4a, N-type emitter region 5a, and N-type collector region 6a.

このようなバイポーラ型トランジスタにおいては、コレ
クタ直列抵抗を低減させる目的でN型埋込層2aを形成さ
せる必要があった。(例えば柳井久義,永田穣「集積回
路工学(1)」(昭57,5,15)コロナ社,P150)。
In such a bipolar transistor, it is necessary to form the N-type buried layer 2a for the purpose of reducing collector series resistance. (For example, Hisayoshi Yanai, Minoru Nagata "Integrated Circuit Engineering (1)" (Sho 57, 5, 15) Corona Publishing Co., P150).

発明が解決しようとする問題点 従来においては上記のようにコレクタ直列抵抗を低減さ
せるために、N型埋込層2aを形成する必要があるが、エ
ピタキシャル成長後の幾度にわたる熱処理により、N型
埋込層がエピタキシャル層内部へ拡散して行き、ベース
領域直下のエピタキシャル層の厚さが薄くなるため耐圧
が低下するという問題点を生じることがある。
Problems to be Solved by the Invention Conventionally, in order to reduce the collector series resistance as described above, it is necessary to form the N-type buried layer 2a. However, N-type buried layer 2a is formed by heat treatment a number of times after epitaxial growth. The layer may diffuse into the inside of the epitaxial layer and the thickness of the epitaxial layer immediately below the base region may become thin, which may cause a problem that the breakdown voltage decreases.

本発明は以上のような問題点を有するN型埋込層2aを使
用せずして、コレクタ直列抵抗を低減させ、かつ素子占
有面積をきわめて小さくすることを目的とするものであ
る。
An object of the present invention is to reduce the collector series resistance and to extremely reduce the element occupying area without using the N-type buried layer 2a having the above problems.

問題点を解決するための手段 この問題点を解決すべく本発明は、バイポーラ型トラン
ジスタにおけるエミッタ領域及びベース領域を、半導体
基板表面に形成された井戸の一側面に形成し、コレクタ
コンタクト領域を前記井戸以外の上記一側面の近傍領域
に形成するものである。
Means for Solving the Problems In order to solve this problem, the present invention forms an emitter region and a base region in a bipolar transistor on one side surface of a well formed on a surface of a semiconductor substrate and forms a collector contact region as described above. It is formed in a region near the one side surface other than the well.

作 用 この構成によって活性ベース領域直下とコレクタコンタ
クト領域との距離が短くなり、しかもベース領域の広い
底面がコレクタコンタクト領域方向に向いているためベ
ース領域から注入されるキャリアがコレクタ電極に到達
する距離が短くなり、結果的にコレクタ直列抵抗が非常
に小さくなる。さらにエミッタ領域及びベース領域が半
導体基板表面に対し垂直方向に形成されるため素子表面
面積が極めて小さくなる。
Operation This structure shortens the distance between the active base region and the collector contact region, and because the wide bottom surface of the base region faces the collector contact region, carriers injected from the base region reach the collector electrode. Becomes shorter, resulting in a very small collector series resistance. Further, since the emitter region and the base region are formed in the direction perpendicular to the semiconductor substrate surface, the device surface area becomes extremely small.

実施例 以下に、本発明をシリコン半導体装置に用いた一実施例
について図面を参照しながら説明する。
Example An example in which the present invention is applied to a silicon semiconductor device will be described below with reference to the drawings.

まず第2図(a)において、P型シリコン半導体基板上
に化学的気相成長法により、N型のエピタキシャル層1
を厚さ3μm程度形成させる。そして、選択的酸化法あ
るいは不純物拡散法により素子分離領域を形成後(図示
せず)、トランジスタ形成領域に熱酸化膜2をマスクと
し、1辺の長さが3μm程度の正方形の開口部を持つ深
さ約1.5μmの井戸9を反応性イオンエッチング法によ
り形成する。次に井戸9形成時のマスクとして用いた熱
酸化膜2を井戸9の開口部の一辺の方向に約2μm程度
除去しておく(第2図(a)の10で示す部分)。
First, in FIG. 2A, an N type epitaxial layer 1 is formed on a P type silicon semiconductor substrate by chemical vapor deposition.
To have a thickness of about 3 μm. Then, after forming an element isolation region (not shown) by a selective oxidation method or an impurity diffusion method, the thermal oxide film 2 is used as a mask in the transistor formation area to form a square opening with a side length of about 3 μm. A well 9 having a depth of about 1.5 μm is formed by the reactive ion etching method. Next, the thermal oxide film 2 used as a mask when forming the well 9 is removed by about 2 μm in the direction of one side of the opening of the well 9 (portion indicated by 10 in FIG. 2A).

次に第2図(b)において示すように、前記熱酸化膜2
をマスクとして熱拡散法によりボロン不純物を拡散さ
せ、P型ベース領域3を形成する。この時、拡散と同時
に開口部表面全域に熱酸化膜11を形成しておく。
Next, as shown in FIG. 2B, the thermal oxide film 2 is formed.
Using the as a mask, the boron impurities are diffused by the thermal diffusion method to form the P-type base region 3. At this time, the thermal oxide film 11 is formed on the entire surface of the opening simultaneously with the diffusion.

次に第2図(c)に示すように、前記のごとく井戸9の
形成時のマスク酸化膜を拡散開口した方向とは反対側の
井戸側面及び井戸底面の熱酸化膜の一部と井戸形成部以
外の上記井戸側面近傍の熱酸化膜の一部を写真触刻法に
より開口する。なおここで前記井戸形成部以外の熱酸化
膜の開口部分はコレクタコンタクト領域を形成するため
のものであるのでその位置はP型ベース領域3からの距
離を考慮して決定する。その後多結晶シリコン層6を化
学的気相成長法により全面に形成し、続いて熱拡散法に
よりリン(P)不純物を多結晶シリコン層と熱酸化膜開
口部分から拡散させ、N型エミッタ領域4及びN型コレ
クタコンタクト領域5を形成する。さらに第2図(d)
に示すようにリン(P)が拡散した多結晶シリコン層6
を写真触刻法によって、N型エミッタ領域4及びN型コ
レクタコンタクト領域5の引き出し電極6として形成す
る。
Next, as shown in FIG. 2 (c), a part of the thermal oxide film on the well side surface and the bottom surface of the well opposite to the direction in which the mask oxide film is diffused and opened at the time of forming the well 9 as described above and well formation A part of the thermal oxide film near the side surface of the well other than the above portion is opened by photolithography. Since the opening of the thermal oxide film other than the well forming portion is for forming the collector contact region, its position is determined in consideration of the distance from the P-type base region 3. After that, a polycrystalline silicon layer 6 is formed on the entire surface by a chemical vapor deposition method, and then a phosphorus (P) impurity is diffused from the polycrystalline silicon layer and a thermal oxide film opening portion by a thermal diffusion method to form an N-type emitter region 4. And an N-type collector contact region 5 are formed. Further, FIG. 2 (d)
As shown in Fig. 6, the polycrystalline silicon layer 6 in which phosphorus (P) is diffused
Are formed as lead electrodes 6 of the N-type emitter region 4 and the N-type collector contact region 5 by photolithography.

次にプラズマ気相成長法により窒化シリコン膜7を全面
に堆積し、N型エミッタ領域4及びN型コレクタコンタ
クト領域5の引き出し電極6の上部の窒化シリコン膜7
の一部分と、井戸形成部以外のシリコン半導体基板に拡
張されたベース領域3の上部の窒化シリコン膜7および
熱酸化膜2とを開口し、アルミ電極8を形成することに
より第1図に示されうようなバイポーラ型トランジスタ
が形成される。
Next, a silicon nitride film 7 is deposited on the entire surface by plasma vapor deposition, and the silicon nitride film 7 on the extraction electrodes 6 of the N-type emitter region 4 and the N-type collector contact region 5 is deposited.
1 and the silicon nitride film 7 and the thermal oxide film 2 above the base region 3 extended to the silicon semiconductor substrate other than the well forming portion, and the aluminum electrode 8 is formed to form the aluminum electrode 8 as shown in FIG. Such a bipolar transistor is formed.

発明の効果 以上のように本発明によれば、コレクタコンタクト領域
とベース層を近接して形成できるためコレクタ抵抗が小
さくなり、従来のバイポーラ型トランジスタに必要であ
った高濃度埋込層が不要となる。しかも井戸壁面部分を
素子の活性領域として使用するために、素子占有面積が
極めて小さくなり高集積化が可能となる。またエピタキ
シャル層の膜厚及びバラツキがトランジスタ特性に対し
て、本質的に何も関係しないため、製造工程が非常に容
易となる。
As described above, according to the present invention, since the collector contact region and the base layer can be formed close to each other, the collector resistance is reduced, and the high-concentration buried layer required in the conventional bipolar transistor is not necessary. Become. Moreover, since the well wall surface portion is used as the active region of the element, the area occupied by the element is extremely small, and high integration is possible. Further, since the film thickness and the variation of the epitaxial layer have nothing to do with the transistor characteristic, the manufacturing process becomes very easy.

【図面の簡単な説明】[Brief description of drawings]

第1図は、本発明の一実施例のシリコン半導体装置の部
分断面図、第2図(a)(b)(c)(d)は、本発明
の半導体装置の製造方法による素子の製造過程を示す断
面図、第3図は、従来のバイポーラ型トランジスタの断
面図である。 1,3a……N型エピタキシャル層、2,7a……熱酸化膜、3,
4a……P型ベース領域、4,5a……N型エミッタ領域、5,
6a……N型コレクタコンタクト領域、6……多結晶シリ
コン引き出し電極、7……窒化シリコン層、8,9a……ア
ルミ電極、9……素子形成用井戸、10……ベースコンタ
クト拡散用開口部、11……P型ベース領域上熱酸化膜、
1a……P型半導体基板、2a……N型埋込層、8a……P型
分離領域。
FIG. 1 is a partial sectional view of a silicon semiconductor device according to an embodiment of the present invention, and FIGS. And FIG. 3 is a sectional view of a conventional bipolar transistor. 1,3a …… N-type epitaxial layer, 2,7a …… thermal oxide film, 3,
4a ... P-type base region, 4,5a ... N-type emitter region, 5,
6a ... N-type collector contact region, 6 ... Polycrystal silicon extraction electrode, 7 ... Silicon nitride layer, 8,9a ... Aluminum electrode, 9 ... Element forming well, 10 ... Base contact diffusion opening , 11 ... Thermal oxide film on P-type base region,
1a ... P-type semiconductor substrate, 2a ... N-type buried layer, 8a ... P-type isolation region.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】半導体基板表面に井戸が形成され、前記井
戸の少なくとも一側面にベース領域及びエミッタ領域が
形成され、かつコレクタコンタクト領域が前記エミッタ
領域が形成された前記井戸の一側面近傍の半導体基板表
面に形成されている半導体装置。
1. A semiconductor in the vicinity of one side surface of the well in which a well is formed on a surface of a semiconductor substrate, a base region and an emitter region are formed on at least one side surface of the well, and a collector contact region is formed on the one side surface of the well. A semiconductor device formed on the surface of a substrate.
【請求項2】半導体基板表面上の所定の部分に絶縁膜を
マスクとして井戸を形成する工程と、前記絶縁膜をマス
クとして一導電型不純物を拡散し、半導体基板全面に絶
縁膜を形成する工程と、前記井戸の一側面部及び前記井
戸以外の前記一側面近傍の前記絶縁膜を開口する工程
と、前記開口から反対導電型不純物を拡散する工程とを
備えた半導体装置の製造方法。
2. A step of forming a well in a predetermined portion on the surface of a semiconductor substrate using an insulating film as a mask, and a step of diffusing one conductivity type impurity using the insulating film as a mask to form an insulating film on the entire surface of the semiconductor substrate. And a step of forming an opening in the insulating film near the one side surface of the well and the one side surface other than the well, and a step of diffusing an impurity of opposite conductivity type from the opening.
JP10756385A 1985-05-20 1985-05-20 Semiconductor device and manufacturing method thereof Expired - Lifetime JPH0666316B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10756385A JPH0666316B2 (en) 1985-05-20 1985-05-20 Semiconductor device and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10756385A JPH0666316B2 (en) 1985-05-20 1985-05-20 Semiconductor device and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPS61264760A JPS61264760A (en) 1986-11-22
JPH0666316B2 true JPH0666316B2 (en) 1994-08-24

Family

ID=14462338

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10756385A Expired - Lifetime JPH0666316B2 (en) 1985-05-20 1985-05-20 Semiconductor device and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JPH0666316B2 (en)

Also Published As

Publication number Publication date
JPS61264760A (en) 1986-11-22

Similar Documents

Publication Publication Date Title
US4481706A (en) Process for manufacturing integrated bi-polar transistors of very small dimensions
US4375999A (en) Method of manufacturing a semiconductor device
US4504332A (en) Method of making a bipolar transistor
JP2503460B2 (en) Bipolar transistor and manufacturing method thereof
US4412378A (en) Method for manufacturing semiconductor device utilizing selective masking, etching and oxidation
JPH07105392B2 (en) Semiconductor device structure having protrusions
US4408387A (en) Method for producing a bipolar transistor utilizing an oxidized semiconductor masking layer in conjunction with an anti-oxidation mask
EP0078501A2 (en) Transistor-like semiconductor device and method of producing the same
EP0051534A2 (en) A method of fabricating a self-aligned integrated circuit structure using differential oxide growth
JPH038343A (en) Bipolar transistor and manufacture thereof
JP2605030B2 (en) Quadrature bipolar transistor
JPH0241170B2 (en)
JPH025432A (en) Semiconductor device and its manufacture
US5719432A (en) Semiconductor device including bipolar transistor with improved current concentration characteristics
EP0034341B1 (en) Method for manufacturing a semiconductor device
EP0102075B1 (en) Semiconductor device with a multilayer structure
GB2057760A (en) Integrated circuit device and method of making the same
JPH0666316B2 (en) Semiconductor device and manufacturing method thereof
EP0036620A2 (en) Semiconductor device and method for fabricating the same
JP2615707B2 (en) Method for manufacturing semiconductor device
JPH06505127A (en) Bipolar transistor structure and its manufacturing method
JPH087630Y2 (en) Junction field effect transistor
JP2764988B2 (en) Semiconductor device
JPS5980968A (en) Manufacture of semiconductor integrated circuit device
JPS6239538B2 (en)