JPH0665936A - Retaining of reinforced concrete structure - Google Patents
Retaining of reinforced concrete structureInfo
- Publication number
- JPH0665936A JPH0665936A JP4220218A JP22021892A JPH0665936A JP H0665936 A JPH0665936 A JP H0665936A JP 4220218 A JP4220218 A JP 4220218A JP 22021892 A JP22021892 A JP 22021892A JP H0665936 A JPH0665936 A JP H0665936A
- Authority
- JP
- Japan
- Prior art keywords
- concrete structure
- reinforced concrete
- water
- electrode
- seawater
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Revetment (AREA)
- Prevention Of Electric Corrosion (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は鉄筋コンクリート構造物
の防護方法、より詳しくは、例えば岸壁や桟橋の脚柱の
如き鉄筋コンクリート構造物の亀裂部を含めた気中部の
コンクリート中の空隙を充填し、コンクリート自体を緻
密化するとともに、その耐久性を向上させるようにした
鉄筋コンクリート構造物の防護方法に関するものであ
る。BACKGROUND OF THE INVENTION The present invention relates to a method for protecting a reinforced concrete structure, and more particularly to filling voids in concrete in the air, including cracks in a reinforced concrete structure such as a pier or a pier pier, The present invention relates to a method for protecting a reinforced concrete structure, in which the concrete itself is densified and its durability is improved.
【0002】[0002]
【従来の技術】コンクリートは多孔質であり、水を吸収
しやすくまた水を通しやすいので、鉄筋を鉄筋コンクリ
ートとして内装した場合に鉄筋が腐食され、その強度が
低下するとともにコンクリート層に亀裂が発生し、この
コンクリート層の強度をも低下させることとなる。2. Description of the Related Art Since concrete is porous and easily absorbs water and allows water to pass through, when reinforcing bars are reinforced concrete, the reinforcing bars are corroded, their strength decreases and cracks occur in the concrete layer. , The strength of this concrete layer will also be reduced.
【0003】特に、この鉄筋コンクリート構造物が岸壁
や桟橋の脚柱であるときは、コンクリート層に海水が侵
入することとなり、その強度低下は著しいものとなる。
このような問題を解消するために本出願人等は電着法に
よりかかる鉄筋コンクリート構造物の補修を行うことを
先に提案した。即ち、図5に示されるように海中に配設
された電極1とコンクリート構造物2の鉄筋3とを直流
電源装置4を有する配線5で連結し、電極1を陽極とし
鉄筋3を陰極として、例えば0.2〜0.5mA/cm2 程度の
電流密度の直流電流を通電させることにより海水中に溶
存しているCaイオンやMgイオンなどのアルカリ土類金属
成分が海水浸漬面6に析出して電着物 (CaCO3 , Mg(OH)
2 ) からなる防食被覆7を形成するものである (特開昭
61−198673号公報) 。In particular, when this reinforced concrete structure is a pier of a quay or a jetty, seawater will invade the concrete layer, resulting in a remarkable decrease in strength.
In order to solve such a problem, the applicants have previously proposed to repair such a reinforced concrete structure by an electrodeposition method. That is, as shown in FIG. 5, the electrode 1 arranged in the sea and the reinforcing bar 3 of the concrete structure 2 are connected by a wiring 5 having a DC power supply device 4, and the electrode 1 is used as an anode and the reinforcing bar 3 is used as a cathode. For example, when a direct current having a current density of about 0.2 to 0.5 mA / cm 2 is applied, alkaline earth metal components such as Ca ions and Mg ions dissolved in seawater are deposited on the seawater immersed surface 6. Electrodeposit (CaCO 3 , Mg (OH)
2 ) to form an anticorrosion coating 7 (Japanese Patent Application Laid-Open No. S60-12035).
61-198673).
【0004】[0004]
【発明が解決しようとする課題】ところが、このような
鉄筋コンクリート構造物においては、汐の干満により乾
燥と海水中の浸漬を繰返す干満滞部や飛沫滞部は特にそ
の腐食や亀裂が著しく発生する傾向にある。しかしなが
ら前記したような鉄筋コンクリートの防護方法において
は、海水を電解液として用いるために、その浸漬面下に
しか防食被膜を形成させることができず、充分な鉄筋コ
ンクリート構造の防護を行なうことができないという問
題があった。However, in such a reinforced concrete structure, there is a tendency that corrosion and cracks occur remarkably particularly in the tidal part and the splashed part where drying and soaking in seawater are repeated due to the tidal period. It is in. However, in the method for protecting reinforced concrete as described above, since seawater is used as the electrolytic solution, it is possible to form an anticorrosion coating only under the immersion surface, and it is impossible to sufficiently protect the reinforced concrete structure. was there.
【0005】[0005]
【課題を解決するための手段】本発明は、前記従来の問
題点を解決するためになされたものであって、鉄筋コン
クリート構造物の海水浸漬面上側面に保水材を張設し、
この保水材に接して電極を配置し、前記保水材に電解液
を供給・含浸させるとともに、電極を陽極に、鉄筋コン
クリート構造物の鉄筋を陰極として直流電流を流すよう
にした鉄筋コンクリート構造物の防護方法を提供せんと
するものである。SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned conventional problems, in which a water retention material is stretched over the seawater-immersed surface of a reinforced concrete structure,
An electrode is placed in contact with this water retaining material, and while supplying and impregnating an electrolyte solution to the water retaining material, a method for protecting a reinforced concrete structure in which a direct current is caused to flow by using an electrode as an anode and a reinforcing rod of the reinforced concrete structure as a cathode Is intended to be provided.
【0006】[0006]
【作 用】保水材に供給された海水や例えばCaイオンヤ
Mgイオンを多く含有させた人工海水やセメントミルク等
の電解液は、この保水材に含浸して保持され直流電流に
より、この電解液中に溶存するカルシウム (Ca) やマグ
ネシウム (Mg) などのアルカリ土類金属成分から成る電
着物がコンクリート層内の空隙 (細孔) や亀裂更には表
面に析出する。即ち、保護膜を形成することとなる。[Operation] Seawater supplied to the water retention material, such as Ca ionizer
Electrolyte solutions such as artificial seawater and cement milk containing a large amount of Mg ions are impregnated in this water retention material and held by direct current, resulting in alkalis such as calcium (Ca) and magnesium (Mg) dissolved in this electrolyte solution. Electrodeposits composed of earth metal components are deposited on voids (pores) and cracks in the concrete layer, as well as on the surface. That is, a protective film is formed.
【0007】[0007]
【実 施 例】以下図1乃至図4に基づき本発明による
鉄筋コンクリート構造物の防護方法の実施例を説明す
る。図1及び図2において、11は鉄筋12を内装するコン
クリート構造物であって、その側面でかつ海水面WL上
には、グラスウール、モルタル、プラスチックネット又
はその他の織布などからなる保水材13がボルトやバンド
等により張設され、この保水材13の表面に接触して電極
14が配置されている。[Embodiment] An embodiment of a method for protecting a reinforced concrete structure according to the present invention will be described below with reference to FIGS. 1 to 4. In FIG. 1 and FIG. 2, 11 is a concrete structure containing a reinforcing bar 12, and a water retaining material 13 made of glass wool, mortar, plastic net or other woven fabric is provided on the side surface and on the sea surface WL. It is stretched with bolts, bands, etc. and contacts the surface of this water retention material 13
14 are arranged.
【0008】この電極材は好ましくは透水性、可撓性に
優れた軽量なものが良く、例えば、チタンメッシュ電極
材、カーボンクロス繊維、あるいは通常の金網やプラス
チックネットに導電性塗料を塗布したようなものでも良
い。そしてこの保水材13にはポンプ15等の給水手段を駆
動することにより電解液となる海水Sが配管16及びノズ
ル17から散布され供給されるようになっている。そして
電極14を陽極とし鉄筋12を陰極として配線18により直流
電源装置19に連結して直流電流を流すようになってい
る。This electrode material is preferably lightweight and excellent in water permeability and flexibility. For example, titanium mesh electrode material, carbon cloth fiber, or ordinary wire net or plastic net may be coated with a conductive paint. Anything is fine. Then, by driving a water supply means such as a pump 15, seawater S as an electrolytic solution is sprinkled and supplied from the pipe 16 and the nozzle 17 to the water retaining material 13. Then, the electrode 14 is used as an anode and the reinforcing bar 12 is used as a cathode, and is connected to a DC power supply device 19 by a wiring 18 so that a DC current can flow.
【0009】前記構成の電解回路において、ポンプ15を
駆動してノズル17から保水材13に海水Sを散水するとと
もに、直流電源装置19から電極14及び鉄筋12間に直流電
流を流すと、保水材13中に含まれる海水S中のカルシウ
ム等が電着物となってコンクリート構造物11の表面に析
出する。この場合、保水材13内の海水Sが乾燥等により
無くならないようにポンプ15により海水Sを補給すると
ともに直流電流の電流密度は40〜400 mA/ft 2 となるよ
うに制御するのが好ましい。In the electrolysis circuit having the above construction, when the pump 15 is driven to spray the seawater S from the nozzle 17 onto the water retaining material 13, and a direct current is passed from the DC power supply device 19 between the electrode 14 and the reinforcing bar 12, the water retaining material is Calcium or the like in the seawater S contained in 13 becomes an electrodeposit and deposits on the surface of the concrete structure 11. In this case, it is preferable to replenish the seawater S by the pump 15 so that the seawater S in the water retaining material 13 will not be lost due to drying or the like, and to control the current density of the direct current to be 40 to 400 mA / ft 2 .
【0010】図3は電流密度と電着生成物の化学組成と
の関係を示す実験データであるが、このデータに示すよ
うに電流密度が40 mA/ft2 以下であると電解によって析
出する物質は、多孔質の結晶質のものとなる。一方、40
0 mA /ft2 以上になると電解によって析出する物質は非
結晶質で崩壊し易いものとなっている。有効な被膜が得
られる電流密度は、40〜400 、最良の電流密度は50〜30
0mA/ft2 である。このような実験結果を考慮して直流電
流を制御するのが良い。FIG. 3 shows experimental data showing the relationship between the current density and the chemical composition of the electrodeposition product. As shown in this data, the substance deposited by electrolysis when the current density is 40 mA / ft 2 or less. Will be porous and crystalline. On the other hand, 40
At 0 mA / ft 2 and above, the substances deposited by electrolysis are amorphous and easily disintegrated. Current densities that give effective coatings are 40-400, best current densities are 50-30
It is 0 mA / ft 2 . It is better to control the direct current in consideration of such experimental results.
【0011】電流密度が小さいとカルシウム質が多く、
反対にマグネシウム質が少なくなることが確認されてい
る。このような電着物は結晶質で多孔質な状態となり、
その結果、通気、通水性が大となり防護膜として好適な
ものとならない。一方、電流密度が大となると非結晶質
でかつ崩壊しやすい電着物となり、防護膜として好適な
ものとならない。When the current density is low, the calcium content is high,
On the contrary, it has been confirmed that the amount of magnesium is reduced. Such an electrodeposit becomes crystalline and porous,
As a result, ventilation and water permeability become large, and it is not suitable as a protective film. On the other hand, when the current density is high, the electrodeposit is amorphous and easily disintegrates, and is not suitable as a protective film.
【0012】図4は他の実施例を示すものであって、鉄
筋コンクリート構造物11の側面には保水材13が張設され
るとともに、この保水材13に接触するように電極14が配
置され、そしてこの電極14を覆うように例えばゴムシー
トやビニールシートの如き防水シート20が取付けられて
いる。そしてこの防水シート20内にはポンプ15より海水
Sを供給するものである。この場合、防水シート20の作
用により保水材13内の海水Sは比較的長時間保持でき
る。その結果、間けつ的な給水でも充分な電着物を形成
することが可能である。FIG. 4 shows another embodiment. A water retaining material 13 is stretched on the side surface of a reinforced concrete structure 11, and an electrode 14 is arranged so as to contact the water retaining material 13. A waterproof sheet 20 such as a rubber sheet or a vinyl sheet is attached so as to cover the electrode 14. The seawater S is supplied from the pump 15 into the waterproof sheet 20. In this case, the seawater S in the water retaining material 13 can be retained for a relatively long time by the action of the waterproof sheet 20. As a result, it is possible to form a sufficient electrodeposit even with intermittent water supply.
【0013】以上の実施例においては電解液として海水
Sを用いたが、例えば人工海水やセメントミルク等の人
工電解液を用いてもよい。また、保水材13、電極14等は
あらかじめユニット化しておき、これをボルトやバンド
等により鉄筋コンクリート構造物11の側面に取付けるよ
うにしてもよい。Although seawater S is used as the electrolytic solution in the above embodiments, artificial seawater or artificial electrolytic solution such as cement milk may be used. Further, the water retaining material 13, the electrode 14 and the like may be unitized in advance and attached to the side surface of the reinforced concrete structure 11 with bolts, bands or the like.
【0014】[0014]
【発明の効果】本発明による鉄筋コンクリート構造物の
防護方法は、鉄筋コンクリート構造物の海水浸漬面上側
面に保水材を張設し、この保水材に接して電極を配置
し、前記保水材に電解液を供給するとともに前記電極を
陽極とし前記鉄筋コンクリート構造物の鉄筋を陰極とし
て直流電流を流して電着被膜を形成するものである。The method for protecting a reinforced concrete structure according to the present invention comprises a water retaining material stretched over the seawater-immersed surface of the reinforced concrete structure, and an electrode is placed in contact with the water retaining material. And an electrode is used as an anode and a reinforcing bar of the reinforced concrete structure is used as a cathode to apply a direct current to form an electrodeposition coating.
【0015】従って、海水面上の鉄筋コンクリート構造
物の側面にも電着物による防護膜を形成することがで
き、その結果、特に腐食や亀裂の著しい海面近傍の側面
の耐久性を向上させることができるという効果がある。Therefore, it is possible to form a protective film by an electrodeposit on the side surface of the reinforced concrete structure on the sea surface, and as a result, it is possible to improve the durability of the side surface near the sea surface where corrosion and cracking are particularly remarkable. There is an effect.
【図1】本発明による鉄筋コンクリート構造物の防護方
法の一実施例におけるコンクリート構造物の横断面図で
ある。FIG. 1 is a cross-sectional view of a concrete structure in an embodiment of a method for protecting a reinforced concrete structure according to the present invention.
【図2】本発明による鉄筋コンクリート構造物の防護方
法の一実施例におけるコンクリート構造物の正面図であ
る。FIG. 2 is a front view of a concrete structure in an embodiment of a method for protecting a reinforced concrete structure according to the present invention.
【図3】本発明による鉄筋コンクリート構造物の防護方
法の一実施例におけるコンクリート構造物の電流密度と
電着物の関係を示すデータであるFIG. 3 is data showing a relationship between a current density of a concrete structure and an electrodeposit in an embodiment of the method for protecting a reinforced concrete structure according to the present invention.
【図4】他の実施例における鉄筋コンクリート構造物の
断面図である。FIG. 4 is a cross-sectional view of a reinforced concrete structure according to another embodiment.
【図5】従来の鉄筋コンクリート構造物の防護方法の説
明図である。FIG. 5 is an explanatory diagram of a conventional method for protecting a reinforced concrete structure.
1, 14 電極 2, 11 コンクリート構造物 3,
12 鉄筋 4, 19 直流電源装置 6 海水浸漬面 7 防食
被膜 13 保水材 15 ポンプ 20 防水シート。1, 14 Electrode 2, 11 Concrete structure 3,
12 Reinforcing bar 4, 19 DC power supply device 6 Seawater immersion surface 7 Anticorrosion coating 13 Water retaining material 15 Pump 20 Waterproof sheet.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 福手 勤 神奈川県横須賀市長瀬3丁目1番1号 運 輸省港湾技術研究所内 (72)発明者 阿部 正美 神奈川県横須賀市長瀬3丁目1番1号 運 輸省港湾技術研究所内 (72)発明者 横田 優 香川県高松市屋島西町2109番地8 株式会 社四国総合研究所内 (72)発明者 佐々木 晴敏 東京都中央区築地5丁目6番4号 三井造 船株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Fukute Tsutomu 3-1-1 Nagase, Yokosuka City, Kanagawa Prefecture, Port Research Institute of the Ministry of Transport (72) Masami Abe 3-1-1, Nagase, Yokosuka City, Kanagawa Prefecture (72) Inventor, Yutaka Yokota, 2109, Yashimanishimachi, Takamatsu City, Kagawa 8 Shikoku Research Institute, Inc. (72) Harutoshi Sasaki, 5-6-4 Tsukiji, Chuo-ku, Tokyo Mitsui Shipbuilding Co., Ltd.
Claims (1)
の気中部に保水材を張設し、この保水材に接して電極を
配置し、前記保水材に電解液を供給するとともに前記電
極を陽極とし前記鉄筋コンクリート構造物の鉄筋を陰極
として直流電流を流すことを特徴とする鉄筋コンクリー
ト構造物の防護方法。1. A water retaining material is stretched in the air above the seawater immersion surface of a reinforced concrete structure, an electrode is arranged in contact with this water retaining material, an electrolytic solution is supplied to the water retaining material, and the electrode serves as an anode. A method for protecting a reinforced concrete structure, characterized in that a direct current is caused to flow using the reinforcing bar of the reinforced concrete structure as a cathode.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4220218A JP2767519B2 (en) | 1992-08-19 | 1992-08-19 | How to protect reinforced concrete structures |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4220218A JP2767519B2 (en) | 1992-08-19 | 1992-08-19 | How to protect reinforced concrete structures |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0665936A true JPH0665936A (en) | 1994-03-08 |
JP2767519B2 JP2767519B2 (en) | 1998-06-18 |
Family
ID=16747734
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP4220218A Expired - Lifetime JP2767519B2 (en) | 1992-08-19 | 1992-08-19 | How to protect reinforced concrete structures |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2767519B2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005530920A (en) * | 2002-05-13 | 2005-10-13 | プロテクター アーエス | Method for cathodic protection of reinforcement corrosion in wet and damp offshore structures. |
CN106894452A (en) * | 2017-04-17 | 2017-06-27 | 中山市华蕴新能源科技有限公司 | Bionic grass device for underwater scour prevention protection |
CN110241437A (en) * | 2019-06-20 | 2019-09-17 | 同济大学 | A kind of electrochemistry induction mineral deposition system and method |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6353279A (en) * | 1986-08-25 | 1988-03-07 | Mitsui Eng & Shipbuild Co Ltd | Protective method for concrete structure |
JPH02102467U (en) * | 1989-02-03 | 1990-08-15 |
-
1992
- 1992-08-19 JP JP4220218A patent/JP2767519B2/en not_active Expired - Lifetime
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6353279A (en) * | 1986-08-25 | 1988-03-07 | Mitsui Eng & Shipbuild Co Ltd | Protective method for concrete structure |
JPH02102467U (en) * | 1989-02-03 | 1990-08-15 |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005530920A (en) * | 2002-05-13 | 2005-10-13 | プロテクター アーエス | Method for cathodic protection of reinforcement corrosion in wet and damp offshore structures. |
CN106894452A (en) * | 2017-04-17 | 2017-06-27 | 中山市华蕴新能源科技有限公司 | Bionic grass device for underwater scour prevention protection |
CN110241437A (en) * | 2019-06-20 | 2019-09-17 | 同济大学 | A kind of electrochemistry induction mineral deposition system and method |
CN110241437B (en) * | 2019-06-20 | 2021-03-26 | 同济大学 | Electrochemical induction mineral deposition system and method |
Also Published As
Publication number | Publication date |
---|---|
JP2767519B2 (en) | 1998-06-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4692066A (en) | Cathodic protection of reinforced concrete in contact with conductive liquid | |
CA2040610A1 (en) | Apparatus for the removal of chloride from reinforced concrete structures | |
US5643424A (en) | Apparatus for the prevention of fouling and/or corrosion of structures in seawater, brackish water and/or fresh water | |
JP4435717B2 (en) | Desalination method for concrete structures | |
EP0631637B1 (en) | Method and apparatus for the prevention of fouling and/or corrosion of structures in seawater, brackish water and/or fresh water | |
JPH0665936A (en) | Retaining of reinforced concrete structure | |
GB1597305A (en) | Marine potentiometric antifouling and anticorrosion device | |
EP0152336A1 (en) | Process for directing and accelerating the formation of concretions in a marine environment and apparatus for carrying it out | |
US4539078A (en) | Method of and apparatus for making a synthetic breakwater | |
CA1211403A (en) | Accretion coating and mineralization of materials for protection against biodegradation | |
US2534234A (en) | Electrocoating method | |
US3410771A (en) | Treatment of lead alloy anodes | |
US3020216A (en) | Process for protection against electrolytic corrosion of vessel hulls and the like in fresh water | |
JPH0665938A (en) | Repairing method of reinforced concrete structure | |
JPS62267485A (en) | Method for electrically protecting concrete structure | |
JPH0665928A (en) | Manufacture of reinforced concrete structure | |
GB2040232A (en) | Submersible or semi-submersible structures | |
JPH0666767A (en) | Diagnosing method for cracking spot of reinforced concrete structure in early stage | |
JPH11303041A (en) | Pollution preventing method for structure in contact with sea water | |
JPH07103540B2 (en) | Biofouling prevention method for concrete structures | |
JP3325316B2 (en) | Concrete regeneration method | |
JPH0741410A (en) | Pollution-preventing membrane effective for preventing adhesion of shellfishes | |
JP3432300B2 (en) | Electrochemical treatment of concrete | |
JPH0423406Y2 (en) | ||
JPH0772354B2 (en) | How to protect concrete structures |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 19980217 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090410 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090410 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100410 Year of fee payment: 12 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110410 Year of fee payment: 13 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130410 Year of fee payment: 15 |
|
EXPY | Cancellation because of completion of term | ||
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130410 Year of fee payment: 15 |