JPH0665923B2 - Prevention method of pipe end erosion of feed water heater - Google Patents

Prevention method of pipe end erosion of feed water heater

Info

Publication number
JPH0665923B2
JPH0665923B2 JP10819685A JP10819685A JPH0665923B2 JP H0665923 B2 JPH0665923 B2 JP H0665923B2 JP 10819685 A JP10819685 A JP 10819685A JP 10819685 A JP10819685 A JP 10819685A JP H0665923 B2 JPH0665923 B2 JP H0665923B2
Authority
JP
Japan
Prior art keywords
feed water
heat transfer
transfer tube
erosion
water heater
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP10819685A
Other languages
Japanese (ja)
Other versions
JPS61268903A (en
Inventor
嘉之 星野
義邦 大島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP10819685A priority Critical patent/JPH0665923B2/en
Publication of JPS61268903A publication Critical patent/JPS61268903A/en
Publication of JPH0665923B2 publication Critical patent/JPH0665923B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、火力発電プラントの給水加熱器の管端侵食防
止方法に関する。
Description: FIELD OF THE INVENTION The present invention relates to a pipe end erosion prevention method for a feedwater heater of a thermal power plant.

〔発明の背景〕[Background of the Invention]

火力プラントに用いられる給水加熱器においては、伝熱
管の入口側に侵食が生ずることが知られている。この侵
食防止として例えば実公昭43−25843号公報に見られる
如く、伝熱管の入口側に整流手段を設けて乱流を防ぐ方
法や、特開昭50−83849号公報に見られる如く、伝熱管
の内面にゴムライニングを設ける方法が提案されている
が、整流手段を設ける方法は、給水の流動抵抗が増大す
る欠点があり、ゴムライニングを設ける方法は、給水温
度が高くなると耐久性に欠けるなどの問題があつた。
In feed water heaters used for thermal power plants, it is known that erosion occurs on the inlet side of heat transfer tubes. To prevent this erosion, for example, as shown in Japanese Utility Model Publication No. 43-25843, a method of preventing turbulence by providing a rectifying means on the inlet side of the heat transfer tube, or a heat transfer tube as disclosed in Japanese Patent Laid-Open No. 50-83849 Although a method of providing a rubber lining on the inner surface of the method has been proposed, the method of providing the rectifying means has a drawback that the flow resistance of the water supply increases, and the method of providing the rubber lining lacks durability when the water supply temperature rises. There was a problem.

〔発明の目的〕[Object of the Invention]

本発明は、整流手段などの特別の手段を必要としない
で、管端侵食の発生を防止する方法を提供することにあ
る。
The present invention provides a method for preventing the occurrence of tube end erosion without requiring any special means such as a rectifying means.

〔発明の概要〕[Outline of Invention]

給水加熱器の伝熱管入口部の侵食は、給水加熱器のすべ
てに生じているわけではなく、給水温度が特定の温度範
囲にあるものに集中しており、侵食が著しいもの程、伝
熱管へのスケールの付着が少なく、スケール付着が多い
程、侵食が少ないという新たな知見に基づき、スケール
が付着しにくい伝熱管を磁化することにより人為的にス
ケールを付きやすくして、付着したスケールにより、侵
食を防止するようにした。
Erosion at the inlet of the heat transfer pipe of the feed water heater does not occur in all of the feed water heater, but is concentrated in those where the feed water temperature is within a specific temperature range. Based on the new knowledge that the less scale adheres and the more scale adheres, the less erosion is, it is easier to artificially attach the scale by magnetizing the heat transfer tube where scale does not adhere easily. I tried to prevent erosion.

〔発明の実施例〕Example of Invention

第1図は、火力プラントの系統図を示すものでボイラ10
1で発生した蒸気は主蒸気管141を経て高圧タービン102
に供給され、高圧タービンで仕事をし、排気は再熱器14
3で再熱され再熱蒸気管142を通り、再熱タービン103で
仕事をし、タービン102,103に直結された発電機104を駆
動する。
Figure 1 shows a system diagram of a thermal power plant, which uses a boiler 10
Steam generated in 1 goes through the main steam pipe 141 and the high-pressure turbine 102.
Is supplied to the high-pressure turbine, and the exhaust gas is reheated.
It is reheated in 3 and passes through the reheat steam pipe 142, works in the reheat turbine 103, and drives the generator 104 directly connected to the turbines 102 and 103.

再熱タービン排気は、復水器106で凝縮してボイラ給水
となり、復水ポンプ107、復水脱塩装置108、復水昇圧ポ
ンプ109を経て、低圧給水加熱器111,112,113を通り、脱
気器114に至る。脱気器114で脱気された給水は、給水ポ
ンプ116により昇圧され高圧給水加熱器117ないし110を
通る間に徐々に加熱され、ボイラ101に戻る。低圧給水
加熱器111ないし113,高圧給水加熱器116ないし110に
は、それぞれ、タービン103,102の抽気ライン121ないし
123、及び131ないし134を介して抽気蒸気により加熱さ
れる。第1図中太いラインは、蒸気または給水の主系統
を示している。
The reheat turbine exhaust gas is condensed in the condenser 106 to be boiler feed water, passes through the condensate pump 107, the condensate demineralizer 108, and the condensate booster pump 109, passes through the low pressure feed water heaters 111, 112, 113, and the deaerator 114. Leading to. The feed water deaerated by the deaerator 114 is gradually heated while passing through the high-pressure feed water heaters 117 to 110 after being increased in pressure by the water feed pump 116 and returned to the boiler 101. The low pressure feed water heaters 111 to 113 and the high pressure feed water heaters 116 to 110 are connected to the extraction lines 121 to 121 of the turbines 103 and 102, respectively.
Heated by bleed steam via 123, and 131-134. The thick line in FIG. 1 indicates the main system of steam or feed water.

第2図は、給水加熱器の断面図であつて、ボイラ給水
は、給水入口管台2より水室1に入り、U字形伝熱管5
を通つて給水出口管台3から送出されるようになつてい
る。伝熱管5は複数本設けられていて、管群を形成して
おり、管板4によつて水室1に開口するとともに、管支
持板6及びタイロツド7によつて、胴体9に対して支持
されている。一方、タービンから抽気された加熱蒸気
は、蒸気入口管台10より胴体9内に入り、またこの給水
加熱器よりも高圧側にある給水加熱器で加熱作用を終え
た凝縮水もドレン入口管台11から胴体9内に流入する。
FIG. 2 is a cross-sectional view of the feed water heater. The boiler feed water enters the water chamber 1 through the feed water inlet nozzle 2 and the U-shaped heat transfer tube 5
Through the water supply outlet nozzle 3. A plurality of heat transfer tubes 5 are provided to form a tube group and are opened to the water chamber 1 by the tube plate 4 and supported by the tube support plate 6 and the tie rod 7 with respect to the body 9. Has been done. On the other hand, the heated steam extracted from the turbine enters the fuselage 9 through the steam inlet nozzle 10, and the condensed water that has finished the heating action by the water heater located on the high pressure side of this water heater is also the drain inlet nozzle. It flows from 11 into the body 9.

これらの加熱流体は管群の各伝熱管5の表面に接触し
て、管内を流れる給水との間で熱交換を行ない凝縮して
ドレン12となつて胴内下部に溜りドレン出口14より排出
される。
These heating fluids come into contact with the surfaces of the heat transfer tubes 5 of the tube group, exchange heat with the feed water flowing in the tubes, condense, form drains 12, and are discharged from the drain outlet 14 at the bottom of the body. It

第3図は、伝熱管端部の詳細断面図であり、入口部の溶
接部20の境界付近に著しい侵食が認められ、給水の出口
側には、ほとんど侵食が認められない。伝熱管の端部に
侵食が生ずる原因としては、水室1内の給水が伝熱管に
流入するとき、入口近くで乱流となり、渦流が生じて一
種のキヤビテーシヨンが生ずるためと考えられる。
FIG. 3 is a detailed cross-sectional view of the end of the heat transfer tube. Significant erosion was observed near the boundary of the welded portion 20 at the inlet, and almost no erosion was observed at the outlet side of the feed water. It is considered that the cause of the erosion at the end of the heat transfer tube is that when the feed water in the water chamber 1 flows into the heat transfer tube, it becomes a turbulent flow near the inlet to generate a vortex and a kind of cavitation.

そこで、数年間運転を行つた火力プラントについて、各
給水加熱器の管端の侵食状況を検査した結果を第4図に
示す。検査の結果低圧側の給水加熱器111ないし113に
は、管端の侵食は認められず、かつスケールの付着もな
かつた。高圧給水加熱器116ないし120については、第4
図に示す如く、比較的低圧側の2つ、すなわち117と118
には、侵食が認められたが、高圧側の2つ、119と120に
ついては、侵食はほとんど認められなかつた。高圧側の
2つについては、給水が接する伝熱管内面及び管板の表
面は、ほゞ全面にスケールが付着していた。
Therefore, FIG. 4 shows the results of inspecting the erosion state of the pipe end of each feed water heater in a thermal power plant that has been operating for several years. As a result of the inspection, no erosion of the pipe end was observed in the feed water heaters 111 to 113 on the low pressure side, and no scale adhered. For the high-pressure feed water heaters 116 to 120,
As shown, the two on the relatively low pressure side, namely 117 and 118
However, erosion was hardly observed in the two high pressure side, 119 and 120. As for the two on the high-pressure side, the scale was attached almost all over the inner surface of the heat transfer tube and the surface of the tube sheet that contacted the feed water.

低圧給水加熱器で侵食が生じない原因は、給水圧力が低
いため、伝熱管入口での給水の流動が安定していること
に加え、復水脱塩装置に近い側にあり、給水中のスケー
ル濃度が低いため、伝熱管入口で乱流が生じたとして
も、侵食が極めて軽いことによるものと推定される。
The reason why erosion does not occur in the low-pressure feedwater heater is that the feedwater pressure is low, so that the flow of feedwater at the heat transfer tube inlet is stable and that it is near the condensate demineralizer, and the scale in the feedwater is small. Since the concentration is low, it is presumed that the erosion is extremely light even if turbulence occurs at the heat transfer tube inlet.

一方、高圧給水加熱器において、高圧側のものが、侵食
を受けないのは、伝熱管の内面に付着したスケールが侵
食に対する保護膜の機能を果しているものと推定され
る。
On the other hand, in the high-pressure feed water heater, the one on the high-pressure side is not eroded. It is presumed that the scale attached to the inner surface of the heat transfer tube functions as a protective film against erosion.

そこで、伝熱管の入口部と同一モデルを用いて、不純物
(酸化鉄)が一定(100ppm)の給水を流したとき、給水
温度とスケール付着量及び侵食量について実験した結果
を第5図に示す。給水のpHは、9.3、給水中の酸素濃度
は10ppb以下、給水の流速7.3m/secとし100時間連続運
転した結果、侵食量は、給水温度150℃のとき最大とな
り、温度上昇とともに急激に少なくなつている。一方、
スケール付着量は、200℃を越えると急速に増える傾向
を示しており、第4図に示す、実際のプラントの例に近
似している。
Therefore, using the same model as the inlet of the heat transfer tube, when the feed water with a constant impurity (iron oxide) (100 ppm) was flowed, the results of an experiment on the feed water temperature, the amount of scale adhesion, and the amount of erosion are shown in Fig. 5. . The pH of the feed water is 9.3, the oxygen concentration in the feed water is 10 ppb or less, and the flow rate of the feed water is 7.3 m / sec. As a result of continuous operation for 100 hours, the erosion amount becomes maximum when the feed water temperature is 150 ° C and decreases rapidly with increasing temperature. I'm running. on the other hand,
The scale deposit tends to increase rapidly when the temperature exceeds 200 ° C., which is similar to the example of the actual plant shown in FIG.

これらの結果から、給水温度が高くなる程、スケールが
付着しやすく、スケールの付着が多い程侵食が少なくな
ることが判る。
From these results, it can be seen that the higher the feed water temperature, the easier the scale adheres, and the more the scale adheres, the less the erosion.

そこで、本発明は、スケールが付きにくい、比較的給水
温度が低い領域にある給水加熱器に人工的にスケールが
付きやすくするものである。
Therefore, the present invention artificially makes it easy to attach a scale to a feedwater heater in a region where the feedwater temperature is relatively low and where the scale is difficult to attach.

給水加熱器の伝熱管に付着するスケールは、そのほとん
どが酸化鉄であるため、伝熱管を磁化すれば、給水温度
が低くともスケールが付着しやすくなる。そこで、10
の給水に実際の火力プラントから採集したスケールと、
人工的に作つたスケール(組成Fe3O4:d−Fe2O3=3:1)
を別々にとかしてスケール濃度10ppmの溶液を作り、こ
の溶液を磁気の強さ3Kガウスの永久磁石の面を1/mi
nの流速で循環させたときの、磁石への付着量を測定し
た。その結果を第6図に示す。実際のプラントから採集
したスケールつまり実機スケールは15分程度でほゞその
全量が磁石に吸着されたのに対し、人工スケールの場合
は、50分すぎると飽和し、吸着量は80%程度であつた。
Most of the scale attached to the heat transfer tube of the feed water heater is iron oxide. Therefore, if the heat transfer tube is magnetized, the scale easily attaches even if the feed water temperature is low. So 10
A scale collected from an actual thermal power plant for the water supply of
An artificially made scale (composition Fe 3 O 4 : d−Fe 2 O 3 = 3: 1)
To produce a solution with a scale concentration of 10 ppm, and apply this solution to 1 / mi of the surface of a permanent magnet with a magnetic strength of 3K gauss.
The amount of adhesion to the magnet was measured when it was circulated at a flow rate of n. The result is shown in FIG. The scale collected from the actual plant, that is, the actual scale, was adsorbed to the magnet in about 15 minutes, whereas the artificial scale was saturated after 50 minutes and the adsorption amount was about 80%. It was

この結果、実際のスケールは、磁気により吸着しやすい
性質をもつており、実際の火力プラントで侵食が生ずる
までの時間的余裕を考慮すると磁気の強さは、それ程強
くなくても良いと思われる、他の実験から、600ガウス
程度あれば、数日間でスケールが付着することが確認さ
れた。
As a result, the actual scale has the property of being easily attracted by magnetism, and considering the time margin until erosion occurs in an actual thermal power plant, it seems that the magnetic strength does not have to be so strong. From other experiments, it was confirmed that the scale adhered within a few days if it was about 600 gauss.

鋼管製の伝熱管を磁化するには、それ程高度な技術を必
要としない。鋼管は、強磁性体であるので、例えば、渦
流探傷検査を実施する場合には、検査後の消磁操作(一
般には切り粉などの付着を防止するために必ず行うこと
になつている。)を省略すれば残留磁気を残すことがで
きる。
Magnetizing a steel tube heat transfer tube does not require so high skill. Since the steel pipe is a ferromagnetic material, for example, when performing an eddy current flaw detection test, a degaussing operation after the test (generally, it is always necessary to perform demagnetization operation to prevent adhesion of cutting chips and the like). If omitted, residual magnetism can be left.

この場合、渦流探傷検査の後で消磁操作を行わないた
め、切り粉などが付着しない配慮が必要である。そのた
め、この検査は、給水加熱器の組み立てが終り、水フラ
ツシングにより異物を除去した後に行うことが好まし
い。
In this case, since degaussing operation is not performed after the eddy current flaw detection inspection, it is necessary to consider that chips and the like do not adhere. Therefore, this inspection is preferably performed after the assembly of the feed water heater is completed and the foreign matter is removed by water flushing.

第7図は、渦流探傷検査の状況を示すもので、作業者70
が水室1内に入り、コードウインチ72により巻き取られ
るコード73の先端に設けた探傷子コイル75を伝熱管5内
に挿入し、コイル75の磁気の変化をオシロスコープ76で
見ながら検査するもので、コイル75の電流は探傷器本体
77により制御され、オシロスコープ76の表示はペンレコ
ーダ78に記録される。
Fig. 7 shows the situation of the eddy current flaw detection inspection.
Enters the water chamber 1 and inserts the test coil 75 provided at the tip of the cord 73 wound up by the cord winch 72 into the heat transfer tube 5 and inspects the change in the magnetism of the coil 75 with the oscilloscope 76. And the current of the coil 75 is the flaw detector main body.
Controlled by 77, the display of oscilloscope 76 is recorded on pen recorder 78.

この検査において、伝熱管5はコイル75の磁気により磁
化され、検査終了後、特別の消磁操作を行わなければ、
600ガウス程度の残留磁気を得ることができる。
In this inspection, the heat transfer tube 5 is magnetized by the magnetism of the coil 75, and if a special degaussing operation is not performed after the inspection is completed,
A remanence of about 600 Gauss can be obtained.

渦流探傷検査を行わない場合には、給水加熱器の組立
後、伝熱管内の着磁のためのコイルを挿入して、電流を
流すことにより着磁することができる。
When the eddy current flaw detection test is not performed, after the feed water heater is assembled, a coil for magnetizing in the heat transfer tube is inserted and a current can be applied to magnetize.

尚、給水加熱器の給水温度は、150℃〜300℃程度であ
り、この温度領域では、鋼の磁気変態点(780℃)より
も低いため、運転中の消磁はきわめて小さい。
The feed water temperature of the feed water heater is about 150 ° C to 300 ° C, which is lower than the magnetic transformation point (780 ° C) of steel in this temperature range, so that demagnetization during operation is extremely small.

〔発明の効果〕〔The invention's effect〕

以上説明した如く、本発明によれば、給水の流動抵抗を
増大させることなく伝熱管端部の侵食を防止することが
できる。
As described above, according to the present invention, it is possible to prevent corrosion of the end portion of the heat transfer tube without increasing the flow resistance of the feed water.

【図面の簡単な説明】[Brief description of drawings]

第1図は、火力発電プラントの系統図、第2図は、給水
加熱器の断面図、第3図は、伝熱管端部の詳細断面図、
第4図は、実際のプラントにおけるスケール付着と侵食
状況を示した比較図、第5図は、侵食量とスケール付着
量を示す特性図、第6図は、スケール付着特性図、第7
図は、渦流探傷検査の状況を示す説明図である。 1……水室、4……管板、5……伝熱管。
1 is a system diagram of a thermal power plant, FIG. 2 is a cross-sectional view of a feed water heater, FIG. 3 is a detailed cross-sectional view of a heat transfer tube end,
FIG. 4 is a comparison diagram showing scale adhesion and erosion conditions in an actual plant, FIG. 5 is a characteristic diagram showing erosion amount and scale attachment amount, FIG. 6 is a scale adhesion characteristic diagram, and FIG.
The figure is an explanatory view showing the situation of the eddy current flaw detection inspection. 1 ... Water chamber, 4 ... Tube plate, 5 ... Heat transfer tube.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】磁性材料よりなる伝熱管を有する給水加熱
器において、前記伝熱管を磁化し、残留磁気を残した状
態で給水を通し、給水中のスケールを前記伝熱管に付着
させて、付着したスケールにより管端の侵食を防止する
ことを特徴とする給水加熱器の管端侵食防止方法。
1. A feed water heater having a heat transfer tube made of a magnetic material, wherein the heat transfer tube is magnetized to allow water to pass through while leaving a residual magnetism, and a scale in the water is attached to the heat transfer tube. A method for preventing erosion of a pipe end of a feed water heater, which is characterized by preventing erosion of a pipe end by the scale.
【請求項2】特許請求の範囲第1項において、前記伝熱
管の磁化は、伝熱管の渦流探傷試験の際の励磁により行
うことを特徴とする給水加熱器の管端侵食防止方法。
2. The method for preventing erosion of a pipe end of a feed water heater according to claim 1, wherein the heat transfer tube is magnetized by excitation during eddy current flaw testing of the heat transfer tube.
【請求項3】特許請求の範囲第1項において、前記伝熱
管の磁化は、給水温度が150℃〜230℃の給水加熱器にの
み適用したことを特徴とする給水加熱器の管端侵食防止
方法。
3. The pipe end erosion prevention of a feed water heater according to claim 1, wherein the magnetization of the heat transfer tube is applied only to a feed water heater having a feed water temperature of 150 ° C. to 230 ° C. Method.
JP10819685A 1985-05-22 1985-05-22 Prevention method of pipe end erosion of feed water heater Expired - Lifetime JPH0665923B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10819685A JPH0665923B2 (en) 1985-05-22 1985-05-22 Prevention method of pipe end erosion of feed water heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10819685A JPH0665923B2 (en) 1985-05-22 1985-05-22 Prevention method of pipe end erosion of feed water heater

Publications (2)

Publication Number Publication Date
JPS61268903A JPS61268903A (en) 1986-11-28
JPH0665923B2 true JPH0665923B2 (en) 1994-08-24

Family

ID=14478446

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10819685A Expired - Lifetime JPH0665923B2 (en) 1985-05-22 1985-05-22 Prevention method of pipe end erosion of feed water heater

Country Status (1)

Country Link
JP (1) JPH0665923B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2478569A (en) * 2010-03-10 2011-09-14 Spirax Sarco Ltd Energy recovery unit with flash steam and condensate heat exchangers

Also Published As

Publication number Publication date
JPS61268903A (en) 1986-11-28

Similar Documents

Publication Publication Date Title
TW540069B (en) Method for controlling water quality in nuclear reactor and nuclear power generation equipment
JPH0665923B2 (en) Prevention method of pipe end erosion of feed water heater
Turner et al. Corrosion product transport and fouling in nuclear steam generators
Mizuno et al. Removal of iron oxide with superconducting magnet high gradient magnetic separation from feed-water in thermal plant
JP3281213B2 (en) Water quality control method for boiling water reactor plant
Vepsäläinen et al. Magnetite dissolution and deposition in NPP secondary circuit
JPS5989775A (en) Method for inhibiting leaching of cobalt from metal containing cobalt
JPS6295498A (en) Constitutional member of nuclear power plant
CN103553199B (en) A kind of method ensureing alkaline oxygenated water-chemical regime
JPS5895580A (en) Water processing method
Man’kina et al. Steam-oxygen and steam-water-oxygen methods for cleaning, passivation, and conservation of power engineering equipment
JPS6398597A (en) Condensate system
Bogachev et al. Use of a magnetization effect for monitoring thermal inhomogeneities in steam superheaters made of 12Kh18N12T steel
JPS62140099A (en) Corrosion protective film formation method of nuclear power plant and device thereof
JPS59112104A (en) Feedwater heater in heat power plant
Montshiwagae Evaluation of corrosion product transport in the secondary plant of a pressurised water reactor
JPS58166912A (en) Removing device of iron oxide contained in water of water feeding system in power plant
Larsen-Basse et al. OTEC heat transfer experiments at Keahole Point, Hawaii, 1982-1983
JPS61138005A (en) Feedwater heater
JPH07159056A (en) Condenser
Manabe et al. Refurbishment of Secondary System and High AVT Water Treatment of Genkai# 1 and# 2
JPS60166049A (en) Purifier of fluid
JPS61256104A (en) Water treatment method of composite generating plant
Gras et al. PREDICTION OF THE IGSCC RESISTANCE OF DISC STEELS AND ASSESSMENT OF RESTORATIVE METHODS
Marks et al. Benefits of Partial Removal of Corrosion Deposits from Nuclear Steam Generators: ASCA and CODE Applications