JPH0664971B2 - Manufacturing method of contact material for vacuum circuit breaker - Google Patents

Manufacturing method of contact material for vacuum circuit breaker

Info

Publication number
JPH0664971B2
JPH0664971B2 JP60249375A JP24937585A JPH0664971B2 JP H0664971 B2 JPH0664971 B2 JP H0664971B2 JP 60249375 A JP60249375 A JP 60249375A JP 24937585 A JP24937585 A JP 24937585A JP H0664971 B2 JPH0664971 B2 JP H0664971B2
Authority
JP
Japan
Prior art keywords
point metal
melting point
low melting
contact
base material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60249375A
Other languages
Japanese (ja)
Other versions
JPS62110217A (en
Inventor
肇 藤田
公 後藤
勝美 鴛海
清文 乙部
功 奥富
幹夫 大川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP60249375A priority Critical patent/JPH0664971B2/en
Priority to ZA868430A priority patent/ZA868430B/en
Priority to KR1019860009366A priority patent/KR900000922B1/en
Priority to CN86107636A priority patent/CN1003101B/en
Publication of JPS62110217A publication Critical patent/JPS62110217A/en
Publication of JPH0664971B2 publication Critical patent/JPH0664971B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/60Switches wherein the means for extinguishing or preventing the arc do not include separate means for obtaining or increasing flow of arc-extinguishing fluid
    • H01H33/66Vacuum switches

Landscapes

  • High-Tension Arc-Extinguishing Switches Without Spraying Means (AREA)
  • Contacts (AREA)

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は真空遮断器用接点に係り、特に耐溶着性と遮断
性能が改良された真空遮断器用接点材料の製造法に関す
る。
Description: TECHNICAL FIELD OF THE INVENTION The present invention relates to a contact for a vacuum circuit breaker, and more particularly to a method for manufacturing a contact material for a vacuum circuit breaker having improved welding resistance and breaking performance.

〔発明の技術的背景とその問題点〕 真空遮断器用接点に要求される基本的三要件としては、
(1)溶着性が少ないこと、(2)耐電圧が高いこと、
(3)遮断特性がよいこと、が挙げられ、この他にもさ
い断電流値が小さいこと、接触抵抗が低く安定している
こと、耐消耗性がよいこと等が重要となる。
[Technical Background of the Invention and Problems Thereof] The three basic requirements for contacts for vacuum circuit breakers are:
(1) Less weldability, (2) High withstand voltage,
(3) Good cutoff characteristics are mentioned. In addition to these, it is important that the breaking current value is small, the contact resistance is low and stable, and the wear resistance is good.

しかしながら、これら要求特性のいくつかは相反するも
のであり、このため、実用されている多くの接点におい
ては、二種以上の元素を組み合わせて特定の用途に適し
た接点材料の開発が行なわれている。
However, some of these required characteristics are contradictory. Therefore, in many practical contacts, contact materials suitable for a specific application have been developed by combining two or more elements. There is.

たとえば、従来、電流の遮断ないし通電時のジュール熱
によって接点面が溶着するのを防止する成分として、B
i、Teなどの低融点金属を含有する接点材料が知られて
いる(特公昭41−12131号公報、特公昭44−23751号公
報)。しかしながら、Cu、Agなどの高導電性成分にBi、
Teなどの蒸気圧の高い元素を含む接点合金では、鋳造工
程で鋳塊に気泡やピンホールが発生しやすい。また、低
融点金属を含む接点合金は、これら成分の母相への固溶
度が低いため偏析が生じやすい。たとえば、従来一般的
に行なわれている接点材料の製造法としては、Cuを溶融
させたのちに低融点金属を添加するとともに、低融点金
属の蒸発を防止するためにArなどの不活性ガス雰囲気下
で溶融用容器内の圧力を数Torrから数百Torrに保持する
方法がある。
For example, conventionally, as a component that prevents the contact surface from welding due to Joule heat during current interruption or energization, B
Contact materials containing low melting point metals such as i and Te are known (Japanese Patent Publication No. 41-12131 and Japanese Patent Publication No. 23751). However, Bi, Cu, Ag and other highly conductive components,
In contact alloys containing elements with high vapor pressure such as Te, bubbles and pinholes are easily generated in the ingot during the casting process. Further, the contact alloy containing a low melting point metal has a low solid solubility of these components in the matrix phase, and thus segregation easily occurs. For example, as a conventional contact material manufacturing method, a low melting point metal is added after melting Cu, and an inert gas atmosphere such as Ar is added to prevent evaporation of the low melting point metal. There is a method of keeping the pressure in the melting vessel at several Torr to several hundred Torr below.

しかしながら、このような方法で製造された接点材料
は、ガスの含有、ボイドの発生あるいは低融点金属の偏
析などの欠点が生じやすい。接点材料中にガスが含有さ
れていると、電流遮断時や電流通電時のジュール熱で接
点面が溶けて含有ガスが出るため、真空容器内の真空度
が低下し真空遮断器の機能を損う。また、接点材料中に
ボイドや低融点金属の偏析があると耐電圧特性が著しく
低下する。
However, the contact material manufactured by such a method is apt to cause defects such as gas inclusion, generation of voids, and segregation of low melting point metal. If the contact material contains gas, the contact surface will melt due to Joule heat during current interruption or current application, and the gas contained will come out, reducing the degree of vacuum in the vacuum container and impairing the function of the vacuum circuit breaker. U Further, if there is a void or segregation of a low melting point metal in the contact material, the withstand voltage characteristic is significantly deteriorated.

このような欠陥の発生を防止するために、従来は、前述
した方法で一旦低融点金属を含有する銅合金を製造した
のち再度真空中で溶融して含有ガスの除去を行なうとと
もに再溶融後の徐冷操作によりボイドおよび低融点金属
の偏析が生じないようにしている。
In order to prevent the occurrence of such defects, conventionally, a copper alloy containing a low-melting point metal is once produced by the above-described method, then melted again in a vacuum to remove the contained gas, and after the re-melting, The slow cooling operation prevents voids and segregation of the low melting point metal.

しかしながら、上述したような不活性ガス雰囲気下の溶
融と真空下の再溶融との二段階の方法では、必ずしも満
足のいく性状を有する接点材料は得られないばかりか製
造設備、製造工程が複雑化する。
However, in the two-step method of melting in an inert gas atmosphere and remelting in a vacuum as described above, not only a contact material having satisfactory properties can be obtained, but also manufacturing facilities and manufacturing processes are complicated. To do.

〔発明の目的〕[Object of the Invention]

本発明は、上述した問題に鑑みてなされたものであり、
その目的とするところは、低融点金属の偏析、ボイドや
ガスが含有されることがなくて遮断特性の一層の向上が
図られ、しかも製造工程・設備の簡素化を図ることので
きる接点材料の製造方法を提供することを目的とする。
The present invention has been made in view of the above problems,
The purpose of the contact material is to segregate low-melting-point metals, to further improve the breaking characteristics without containing voids and gases, and to further simplify the manufacturing process and equipment. It is intended to provide a manufacturing method.

〔発明の概要〕[Outline of Invention]

本発明者らは、溶着防止成分として低融点金属を含有す
る接点材料に関する一連の研究において、上述した問題
を解決するための具体的方法を種々検討した結果、高導
電性成分としてのAgまたは(および)Cuからなる基材中
にあらかじめ低融点金属を充填しておき、加熱溶融後こ
れを指向性凝固させることにより、真空遮断器用接点材
料として極めてすぐれた性状を有するものが得られるこ
とを見出した。
The present inventors, in a series of research on contact materials containing a low melting point metal as a welding prevention component, as a result of various studies of specific methods for solving the above-mentioned problems, Ag or (( And) found that by pre-filling a low-melting-point metal in a base material made of Cu, heating and melting it, and then directionally solidifying it, a contact material for a vacuum circuit breaker having excellent properties can be obtained. It was

本発明は上記知見に基いて成されたものである。すなわ
ち、本発明の真空遮断器用接点材料の製造法は、Cuまた
は(および)Agからなる高導電性成分により構成された
接点材料用基材の内部に低融点金属からなる溶着防止成
分を充填し、充填した低融点金属とともに接点材料用基
材を加熱溶融し、次いで一定方向に沿って前記基材を加
熱源から離しながら冷却し凝固させることを特徴とす
る。
The present invention is based on the above findings. That is, the method for producing a contact material for a vacuum circuit breaker of the present invention is such that the inside of a base material for a contact material composed of a highly conductive component composed of Cu or (and) Ag is filled with a fusion preventing component composed of a low melting point metal. The contact material base material is heated and melted together with the filled low melting point metal, and then the base material is cooled and solidified along a certain direction while being separated from the heating source.

〔発明の具体的説明〕[Specific Description of the Invention]

以下、本発明をさらに詳細に説明する。 Hereinafter, the present invention will be described in more detail.

第5図は、本発明の方法で得られる接点材料を適用する
真空遮断器の一構成例を示す正断面図である。第5図に
示すように、一般に真空遮断器は、絶縁容器61の両端を
端板62a,62bで閉塞した真空容器内に接点63a,63bおよび
通電軸64a,64bからなる一対の電極65a,65bが設けられ、
また接点部の周囲にはアークシールド66が配設され絶縁
容器へのアーク蒸気の被着を防止している。一方、通電
軸(固定)64aおよび通電軸(可動)64bは各々端板62a,
62bを気密に貫通して電路を構成するとともに、ベロー
ズ67により真空容器内での真空を保持した状態での電極
の開閉が可能となっている。
FIG. 5 is a front sectional view showing one structural example of a vacuum circuit breaker to which the contact material obtained by the method of the present invention is applied. As shown in FIG. 5, generally, a vacuum circuit breaker has a pair of electrodes 65a, 65b composed of contacts 63a, 63b and energizing shafts 64a, 64b in a vacuum container in which both ends of an insulating container 61 are closed by end plates 62a, 62b. Is provided,
Further, an arc shield 66 is arranged around the contact portion to prevent deposition of arc vapor on the insulating container. On the other hand, the energizing shaft (fixed) 64a and the energizing shaft (movable) 64b are respectively the end plates 62a,
An electric path is formed by hermetically penetrating 62b, and the bellows 67 can open and close the electrode while maintaining a vacuum in the vacuum container.

本発明で得られる接点材料は、上記したような接点63a,
63bの双方またはいずれか一方を構成するのに適したも
のである。
The contact material obtained in the present invention is the contact 63a,
It is suitable to form both or either of 63b.

以下、添付図面を参照して本発明の製造法を説明する。
本発明の方法においては、まず、Cuまたは(および)Ag
からなる高導電性成分により構成された接点材料用基材
内部に溶着防止成分としての低融点金属が充填される。
Hereinafter, the manufacturing method of the present invention will be described with reference to the accompanying drawings.
In the method of the present invention, first, Cu or (and) Ag
The low-melting-point metal as a welding prevention component is filled in the inside of the base material for a contact material composed of the highly conductive component.

接点材料用基材としては、一般に、耐溶着性および耐ア
ーク性(耐消耗性)を重視するときはCuを、また低接触
抵抗を重視するときはAgを主成分として用いる。
As the base material for the contact material, Cu is generally used as a main component when welding resistance and arc resistance (wear resistance) are important, and Ag is a main component when low contact resistance is important.

一方、溶着防止成分としての低融点金属としては、温度
800℃において10-3Torr以上の蒸気圧を有する金属が用
いられ、例えば、Bi、Te、Se、Sbまたはこれらの合金が
好ましく用いられる。
On the other hand, as the low melting point metal as the adhesion preventing component,
A metal having a vapor pressure of 10 −3 Torr or more at 800 ° C. is used, and for example, Bi, Te, Se, Sb or an alloy thereof is preferably used.

第1図は、低融点金属が充填された加熱溶融前の基材の
断面を概略的に示す。第1図に示すように、円柱形状の
接点材料用基材11のほぼ中心軸部分の一端から他端方向
に設けられた充填用孔の内部に、粒状の低融点金属12を
装入、その孔の開口部を金属栓13で塞ぐ。
FIG. 1 schematically shows a cross section of a base material filled with a low melting point metal before heating and melting. As shown in FIG. 1, a granular low melting point metal 12 is charged into a filling hole provided from one end to the other end of a substantially central axis portion of a base material 11 for a contact material having a cylindrical shape. The opening of the hole is closed with a metal stopper 13.

溶融前の基材の形状は、加熱装置、容器等に応じて適宜
変更でき、また、充填用の孔は必要に応じて任意の形状
で設けることができる。装入される低融点金属は、第1
図のように粒状物でも、また、必要に応じて粉状物、孔
に嵌合する形状物であってもよい。
The shape of the base material before melting can be appropriately changed depending on the heating device, container, etc., and the filling hole can be provided in any shape as necessary. The low melting point metal to be charged is the first
As shown in the figure, it may be a granular material, or may be a powdery material or a shape that fits into a hole if necessary.

孔の開口部を塞ぐ金属栓の材質は、この接点の性能を劣
化させない限り、種々のものを用いることができる。例
えば、基材と同種の金属からなるものである。
Various materials can be used as the material of the metal plug that closes the opening of the hole as long as the performance of the contact is not deteriorated. For example, it is made of the same metal as the base material.

低融点金属は加熱融解時の体積膨脹を考慮して充填する
ことが好ましい。充填量は、最終的に得られる接点材料
中の低融点金属の含有量が0.3〜0.8重量%となるような
量が好ましく、そのためには、高導電性成分98.5〜99.5
重量%に対して低融点金属0.5〜1.5重量%の範囲充填す
ることが望ましい。また、充填する孔の数は、第1図に
示すように1個に限る必要はなく、複数個であってもよ
い。さらに、孔の容量は、製造条件、用途に応じて適宜
変更することができる。
It is preferable to fill the low melting point metal in consideration of the volume expansion during heating and melting. The filling amount is preferably such that the content of the low melting point metal in the finally obtained contact material is 0.3 to 0.8% by weight, and for that purpose, the highly conductive component 98.5 to 99.5 is used.
It is desirable to fill the low melting point metal in the range of 0.5 to 1.5 wt% with respect to wt%. Further, the number of holes to be filled is not limited to one as shown in FIG. 1 and may be plural. Further, the volume of the holes can be appropriately changed depending on the manufacturing conditions and the application.

次いで、上記のようにして接点材料用基材の低融点金属
が充填された接点材料原材を加熱溶融する。第2図は上
記原材を一例の誘導加熱装置内に装着した状態を示す概
略断面図である。この図の加熱工程で用いる誘導加熱装
置例では、加熱対象物(基材および低融点金属からなる
原材)およびその溶融物を収容する収納容器22aと、そ
の収納容器22a全体を収容する可動容器22bと、収納容器
22aおよび可動容器22bをその内部に収容する加熱室21
と、加熱室内部に配設された加熱源の誘導加熱コイル23
とからなる。
Next, the contact material raw material in which the low melting point metal of the contact material base material is filled as described above is heated and melted. FIG. 2 is a schematic cross-sectional view showing a state in which the above raw material is mounted in an induction heating device as an example. In the example of the induction heating device used in the heating step of this figure, a storage container 22a for storing the object to be heated (raw material made of a base material and a low melting point metal) and its melt, and a movable container for storing the entire storage container 22a 22b and storage container
Heating chamber 21 that houses 22a and movable container 22b therein
And the induction heating coil 23 of the heating source disposed inside the heating chamber.
Consists of.

さらに加熱室21内は排気管24を介して真空ポンプ25によ
り排気することによって高真空(たとえば10-5Torr以
下)に維持される。また、容器内の真空度は真空計26に
より計測される。
Further, the inside of the heating chamber 21 is maintained at a high vacuum (for example, 10 −5 Torr or less) by exhausting with a vacuum pump 25 via an exhaust pipe 24. The degree of vacuum in the container is measured by the vacuum gauge 26.

第1図に示したように準備された接点材料原材27を収納
容器22a中に装入し、原材27を含む容器22bを可動容器22
b内部に収納して、容器22bの上部開口部に蓋28を取付
け、次いで可動容器22b全体を誘導加熱コイル23内の同
軸方向に設置する。このようにして加熱の準備を行な
う。
The contact material raw material 27 prepared as shown in FIG. 1 is loaded into the storage container 22a, and the container 22b containing the raw material 27 is moved into the movable container 22.
It is housed inside b, a lid 28 is attached to the upper opening of the container 22b, and then the entire movable container 22b is installed in the induction heating coil 23 in the coaxial direction. In this way, preparation for heating is performed.

次いで、加熱室内を10-5Torr以下の真空度に維持しなが
らコイルに通電して収納容器中の原材を融解する。加熱
は基材11および低融点金属12が充分融解する温度で行な
われる。この加熱溶融工程は、使用する金属に種類、大
きさにもよるが、好ましくは1100〜1150℃の範囲で60〜
120分間行なわれる。充填孔内に存在するガスを溶融段
階で外部に排気するために、基材11または金属栓13に充
填孔から外部に通じる通気穴を設けておくこともでき
る。例えば、金属栓13に排気のための孔を、もしくは金
属栓の側壁に細溝を設けてもよい。
Next, the coil is energized to melt the raw material in the storage container while maintaining the degree of vacuum in the heating chamber at 10 -5 Torr or less. The heating is performed at a temperature at which the base material 11 and the low melting point metal 12 are sufficiently melted. This heating and melting step depends on the type and size of the metal used, but is preferably 60 to 60 in the range of 1100 to 1150 ° C.
120 minutes. In order to exhaust the gas existing in the filling hole to the outside at the melting stage, the base material 11 or the metal stopper 13 may be provided with a vent hole communicating with the outside from the filling hole. For example, the metal plug 13 may be provided with a hole for exhaust, or the side wall of the metal plug may be provided with a fine groove.

この加熱溶融段階においては、蒸気圧の高い低融点金属
が基材11の内部に埋設された状態で溶融するので、低融
点金属の過大な蒸散が防止されるとともに基材中への低
融点金属の拡散を促進することができる。
In this heating and melting step, the low-melting-point metal having a high vapor pressure is melted in a state of being buried inside the base material 11, so that excessive evaporation of the low-melting-point metal is prevented and the low-melting-point metal in the base material is prevented. The diffusion of can be promoted.

上記のようにして高真空中で溶融することによって接点
材料用原材(基材および低融点金属)27中のガスの除去
を行なったのち、可動容器22bを長手方向(一定方向)
に徐々に移動させて溶融原材27を加熱源23から離す。こ
の移行につれて原材27を冷却し凝固させる。この可動容
器22b、収納容器22aの移動は、その移動に伴って原材中
の残存ガス、ボイド、偏析等が進行方向に従って徐々に
除去されてゆくのに充分な速度であることが望ましく、
具体的には、原材の形状、大きさ、種類等に応じて適宜
選択されるが、通常は2〜6mm/minの移動速度が好まし
い。
After the gas in the contact material (base material and low melting point metal) 27 is removed by melting in a high vacuum as described above, the movable container 22b is moved in the longitudinal direction (constant direction).
And the molten raw material 27 is separated from the heating source 23. With this transition, the raw material 27 is cooled and solidified. The movable container 22b, the movement of the storage container 22a, it is desirable that the residual gas in the raw material along with the movement, voids, segregation or the like is a speed sufficient to be gradually removed along the traveling direction,
Specifically, it is appropriately selected depending on the shape, size, type, etc. of the raw material, but usually a moving speed of 2 to 6 mm / min is preferable.

なお、この装置例において加熱源の誘導加熱コイルは固
定されているが、この発明においてはこの例に限定され
ず、加熱源も移動させて原材の冷却凝固を行なってもよ
い。
Although the induction heating coil of the heating source is fixed in this device example, the present invention is not limited to this example, and the heating source may be moved to cool and solidify the raw material.

このようにして得られた接点材料は切削、研磨等の必要
な後処理を施して、真空遮断器の接点として使われる。
The contact material thus obtained is subjected to necessary post-treatments such as cutting and polishing, and then used as a contact for a vacuum circuit breaker.

〔発明の実施例〕Example of Invention

外径50mm、長さ200mmのCu基材の中心部に設けた断面積3
00mm2、長さ50〜80mmの充填孔中に30gのBi粒子を充填し
て、第1図に示したような接点材料用原材を準備した。
この原材を、前述した第2図に示す装置を用いて、下記
の条件で加熱溶融ならびに冷却・凝固を行なった。
Cross-sectional area 3 provided at the center of a Cu base material with an outer diameter of 50 mm and a length of 200 mm 3
A contact material raw material as shown in FIG. 1 was prepared by filling 30 g of Bi particles in a filling hole having a length of 00 mm 2 and a length of 50 to 80 mm.
This raw material was heat-melted and cooled / solidified under the following conditions using the apparatus shown in FIG.

加熱温度 1100〜1140℃ 加熱時間 60〜120分 真空度 1〜3×10-6Torr 可動容器の移動速度 2〜6mm/min 最終的に得られたCu−Bi合金中のBiの含有量は0.6重量
%であった。このようにして得られた接点材料の性状、
耐溶着性、遮断特性を評価するために以下のような試験
を行なった。
Heating temperature 1100 to 1140 ° C Heating time 60 to 120 minutes Vacuum degree 1 to 3 × 10 -6 Torr Moving speed of movable container 2 to 6 mm / min Bi content in the finally obtained Cu-Bi alloy is 0.6. % By weight. The properties of the contact material thus obtained,
The following tests were conducted in order to evaluate the welding resistance and barrier properties.

(1) ボイドの確認 得られた接点材料を長手方向に中心部から切断し、その
切断面を研磨して表面組織を光学顕微鏡で観察したがボ
イドは認められなかった。
(1) Confirmation of Voids The obtained contact material was cut in the longitudinal direction from the center, the cut surface was polished, and the surface structure was observed with an optical microscope, but no voids were observed.

結晶粒子も均整のとれた良好なものであった。The crystal grains were also well-balanced and good.

(2) Biの偏析の確認 上記(1)で切断した他方の切断片を長手方向にスライ
スし、各スライスをさらに長手方向の2等分に分割した
ものを原子吸光分析法によって分析して、Biの偏析を調
べた。第3図に示す分析結果から明らかなように、Biの
分布は長手方向に対してほぼ均等であり、偏析は認めら
れなかった。
(2) Confirmation of Bi segregation The other piece cut in the above (1) was sliced in the longitudinal direction, and each slice was further divided into two equal parts, which were analyzed by atomic absorption spectrometry, The segregation of Bi was investigated. As is clear from the analysis results shown in FIG. 3, the distribution of Bi was almost uniform in the longitudinal direction, and segregation was not observed.

(3) ガス含有の確認 上記(2)で作成したスライス片を試料として含有ガス
の量をガスクロマトグラフィー方式の酸素・窒素・水素
の2元素分析装置を用いて測定した。測定は、真空遮断
器内の残存ガスとして最も好ましくないO2について行な
った。第4図に測定結果を示すように、O2含有量は約2p
pmであった。なお、これは従来行なわれていた方法、た
とえば1150℃でCuを溶解後、Arガスで150Torrに昇圧し
て所定量のBiを投入して得られる接点材料のほぼ10分の
1の値である。
(3) Confirmation of gas content Using the sliced piece prepared in (2) above as a sample, the amount of contained gas was measured using a gas chromatography type two-element analyzer for oxygen, nitrogen, and hydrogen. The measurement was carried out on the most unfavorable O 2 gas remaining in the vacuum circuit breaker. As shown in the measurement results in Fig. 4, the O 2 content is about 2p.
It was pm. It should be noted that this is about one-tenth of the value of the contact material obtained by a conventional method, for example, after melting Cu at 1150 ° C., boosting the pressure to 150 Torr with Ar gas and charging a predetermined amount of Bi. .

(4) 通電耐溶着性の確認 前記(1)で述べたと同様の方法で製造した接点材料か
ら外径25mm、厚さ5mmの円板状接点を作成し、その耐溶
着性を測定した。まず、上記円板状接点を外径25mmの通
電軸の先端に取付け、一方これと対向する接点として
は、先端半径が100mmに球面仕上げされたものを用い
た。これら一対の接点に100gの荷重をかけた状態で両接
点面を接触させ、10-6Torrの真空雰囲気中で、8KA〜25K
Aの範囲の通電を行ない、このときの接触面の引きはず
し力(kg)を測定した。引はずし力は、いずれも0〜10
kgであり良好な値を示した。
(4) Confirmation of resistance to welding by energization A disc-shaped contact having an outer diameter of 25 mm and a thickness of 5 mm was prepared from a contact material manufactured by the same method as described in (1) above, and its welding resistance was measured. First, the disc-shaped contact was attached to the tip of a current-carrying shaft having an outer diameter of 25 mm, and the contact facing the same was spherically finished with a tip radius of 100 mm. With a load of 100 g applied to the pair of contacts, both contact surfaces are contacted, and in a vacuum atmosphere of 10 -6 Torr, 8KA to 25K.
Current was applied in the range of A, and the tripping force (kg) of the contact surface at this time was measured. Tripping force is 0-10
The value was kg, which was a good value.

(5) 電流遮断性の確認 前記(1)と同様の方法で外径50mm、長さ200mm、Bi含
有量0.6%の接点材料を製造し、さらにこれから外径30m
m、厚さ5mmの円板状接点を作成し、真空遮断器に取付け
て電流遮断試験を行なった。電流遮断条件を、交流12K
V、25KVに設定して行なったところ、再発弧確率はいず
れも1%以下であり、前記(3)で述べた従来法で製造
した接点の再発弧確率の約1/30の値を示した。
(5) Confirmation of current cutoff property A contact material with an outer diameter of 50 mm, a length of 200 mm, and a Bi content of 0.6% was manufactured in the same manner as in (1) above, and then an outer diameter of 30 m
A disk-shaped contact having a thickness of 5 mm and a thickness of 5 mm was prepared and mounted on a vacuum circuit breaker to perform a current interruption test. Current cutoff condition is AC 12K
When set to V and 25KV, the recurrence probability was 1% or less in all cases, and it was about 1/30 of the recurrence probability of the contact manufactured by the conventional method described in (3) above. .

〔発明の効果〕〔The invention's effect〕

上記実施例の結果からも明らかなように、本発明の方法
は、高導電性成分により構成された接点材料用基材の内
部にあらかじめ溶着防止成分として低融点金属を充填
し、さらにこれを加熱溶融したのち指向性凝固させるよ
うにしたので、比較的簡易な方法で、ボイドやガスの含
有ならびに低融点金属の偏析が防止され遮断特性にすぐ
れた接点材料を得ることができる。
As is clear from the results of the above-mentioned examples, the method of the present invention is such that the inside of the contact material base material composed of the highly conductive component is previously filled with a low melting point metal as an anti-welding component, and this is further heated. Since the material is melted and then directionally solidified, it is possible to obtain a contact material having excellent blocking characteristics by preventing inclusion of voids and gas and segregation of low melting point metal by a relatively simple method.

この発明によって接点材料用基材を加熱源から離しなが
ら冷却凝固するので、連続的に加熱溶融および冷却凝固
が可能となり、効率的に製造することができる。
According to the present invention, the contact material base material is cooled and solidified while being separated from the heating source, so that the heating and melting and the cooling and solidification can be continuously performed, and the manufacturing can be efficiently performed.

【図面の簡単な説明】[Brief description of drawings]

第1図は接点材料用基材内に低融点金属が充填された接
点材料用原材の断面図、第2図は加熱溶融に用いること
のできる加熱装置例の断面図、第3図はBiの偏析状態を
示すグラフ、第4図はO2含有量の分析結果を示すグラ
フ、第5図は真空遮断器の断面図である。 11……基材、12……低融点金属、13……栓、21……加熱
室、22a……収納容器、22b……可動容器、23……誘導加
熱コイル、24……排気管、25……真空ポンプ、26……真
空計、27……原材、28……蓋、61……絶縁容器、62a,62
b……端板、63a,63b……接点、64a,64b……通電性、65
a,65b……電極、66……アークシールド、67……ベロー
ズ。
FIG. 1 is a sectional view of a raw material for a contact material in which a low melting point metal is filled in a base material for a contact material, FIG. 2 is a sectional view of an example of a heating device that can be used for heating and melting, and FIG. Fig. 4 is a graph showing the segregation state of Fig. 4, Fig. 4 is a graph showing the analysis result of O 2 content, and Fig. 5 is a sectional view of the vacuum circuit breaker. 11 ... Substrate, 12 ... Low melting point metal, 13 ... Stopper, 21 ... Heating chamber, 22a ... Storage container, 22b ... Movable container, 23 ... Induction heating coil, 24 ... Exhaust pipe, 25 …… Vacuum pump, 26 …… Vacuum gauge, 27 …… Raw material, 28 …… Lid, 61 …… Insulation container, 62a, 62
b …… End plate, 63a, 63b …… Contact, 64a, 64b …… Conductivity, 65
a, 65b …… electrode, 66 …… arc shield, 67 …… bellows.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 乙部 清文 東京都府中市東芝町1 株式会社東芝府中 工場内 (72)発明者 奥富 功 東京都府中市東芝町1 株式会社東芝府中 工場内 (72)発明者 大川 幹夫 東京都府中市東芝町1 株式会社東芝府中 工場内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Kiyofumi Otobe 1 Toshiba Town Fuchu-shi, Tokyo Inside the Toshiba Fuchu factory (72) Inventor Isao Okutomi 1 Toshiba Town Fuchu-shi inside the Toshiba Fuchu factory (72) Inventor Mikio Okawa 1 Toshiba-cho, Fuchu-shi, Tokyo Inside Toshiba Fuchu factory

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】Cuまたは(および)Agからなる高導電性成
分により構成された接点材料用基材の内部に低融点金属
からなる溶着防止成分を充填し、充填した低融点金属と
ともに接点材料用基材を加熱溶融し、次いで一定方向に
沿って前記基材を加熱源から離しながら冷却し凝固させ
ることを特徴とする、真空遮断器用接点材料の製造法。
1. A contact material base material composed of a highly conductive component of Cu or / and Ag is filled with an anti-adhesion component composed of a low melting point metal, and used for the contact material together with the filled low melting point metal. A method for producing a contact material for a vacuum circuit breaker, which comprises heating and melting a base material, and then cooling and solidifying the base material while separating the base material from a heating source along a certain direction.
【請求項2】前記低融点金属が、800℃において10-3Tor
r以上の蒸気圧を有する金属である、特許請求の範囲第
1項に記載の方法。
2. The low melting point metal is 10 −3 Tor at 800 ° C.
The method according to claim 1, which is a metal having a vapor pressure of r or more.
【請求項3】前記低融点金属が、Bi、Te、Se、Sbおよび
これらの金属の合金から選ばれる、特許請求の範囲第1
項に記載の方法。
3. The low melting point metal is selected from Bi, Te, Se, Sb and alloys of these metals.
The method described in the section.
【請求項4】低融点金属の0.5〜1.5重量%充填する、特
許請求の範囲第1項に記載の方法。
4. The method according to claim 1, wherein the content of the low melting point metal is 0.5 to 1.5% by weight.
【請求項5】溶着防止成分の充填が、前記接点材料用基
材に設けられた少なくとも1個の充填用孔に溶着防止成
分を装入し、その孔の開口部を金属栓で塞ぐことにより
なる、特許請求の範囲第1項に記載の方法。
5. The filling of the anti-fusing component is performed by charging the anti-fusing component into at least one filling hole provided in the base material for contact material, and closing the opening of the hole with a metal stopper. The method according to claim 1, which comprises:
【請求項6】加熱源の誘導加熱コイルを一定方向に沿っ
て移行させる、特許請求の範囲第1項に記載の方法。
6. The method according to claim 1, wherein the induction heating coil of the heating source is moved along a certain direction.
【請求項7】加熱溶融および冷却凝固を10-5Torr以下の
真空雰囲気下で行なう、特許請求の範囲第1〜6項のい
ずれか1項に記載の方法。
7. The method according to any one of claims 1 to 6, wherein the heat melting and the cooling solidification are performed in a vacuum atmosphere of 10 -5 Torr or less.
JP60249375A 1985-11-07 1985-11-07 Manufacturing method of contact material for vacuum circuit breaker Expired - Lifetime JPH0664971B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP60249375A JPH0664971B2 (en) 1985-11-07 1985-11-07 Manufacturing method of contact material for vacuum circuit breaker
ZA868430A ZA868430B (en) 1985-11-07 1986-11-05 Method for producing contact forming material
KR1019860009366A KR900000922B1 (en) 1985-11-07 1986-11-05 Fabrication method of contact materials
CN86107636A CN1003101B (en) 1985-11-07 1986-11-06 Method for manufacture of contact material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60249375A JPH0664971B2 (en) 1985-11-07 1985-11-07 Manufacturing method of contact material for vacuum circuit breaker

Publications (2)

Publication Number Publication Date
JPS62110217A JPS62110217A (en) 1987-05-21
JPH0664971B2 true JPH0664971B2 (en) 1994-08-22

Family

ID=17192083

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60249375A Expired - Lifetime JPH0664971B2 (en) 1985-11-07 1985-11-07 Manufacturing method of contact material for vacuum circuit breaker

Country Status (4)

Country Link
JP (1) JPH0664971B2 (en)
KR (1) KR900000922B1 (en)
CN (1) CN1003101B (en)
ZA (1) ZA868430B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100410414C (en) * 2004-04-08 2008-08-13 中南大学 Heat treatment for improving strong toughness of super high aluminium alloy
DE102016218518C5 (en) * 2016-09-27 2023-05-11 Siemens Energy Global GmbH & Co. KG Contact piece for a high-voltage circuit breaker and method for its manufacture

Also Published As

Publication number Publication date
ZA868430B (en) 1987-07-29
KR900000922B1 (en) 1990-02-19
KR870005426A (en) 1987-06-08
CN1003101B (en) 1989-01-18
JPS62110217A (en) 1987-05-21
CN86107636A (en) 1987-07-08

Similar Documents

Publication Publication Date Title
US4537745A (en) Method of producing copper-chromium fusion alloys as contact material for vacuum power switches
CN100388403C (en) Electrical contact, method of manufacturing the same, electrode for vacuum interrupter, and vacuum circuit breaker
EP0083200A1 (en) Electrode composition for vacuum switch
US5687472A (en) Method of manufacturing a vacuum interrupter
US3592987A (en) Gettering arrangements for vacuum-type circuit interrupters comprising fibers of gettering material embedded in a matrix of material of good conductivity
US4008081A (en) Method of making vacuum interrupter contact materials
US4547639A (en) Vacuum circuit breaker
JPH0677420B2 (en) Vacuum contactor
JPH0664971B2 (en) Manufacturing method of contact material for vacuum circuit breaker
JPH0658778B2 (en) Manufacturing method of contact material for vacuum and breaker
US4906291A (en) Method for manufacturing melt materials of copper, chromium, and at least one readily evaporable component using a fusible electrode
KR950008375B1 (en) Process for forming contact material
JPS6359217B2 (en)
EP0982744B1 (en) Contact material for contacts for vacuum interrupter and method of manufacturing the contact
US4229631A (en) Vacuum-type circuit breaker
JPS6324516A (en) Manufacture of contact material for vacuum breaker
US4091248A (en) Vacuum-type circuit breaker
US3811939A (en) Method for the manufacture of heterogeneous penetration compound metal
US5985000A (en) Method for manufacturing electrode material for vacuum circuit breaker
JPH0612646B2 (en) Contact material for vacuum valve
JP2000188045A (en) Vacuum breaker, vacuum bulb used therefor and its electrode
JPH01258330A (en) Manufacture of contact material for vacuum bulb
EP0097906B1 (en) Contacts for vacuum switches
JP2000173415A (en) Electric contact and its manufacture
JPH0680572B2 (en) Equipment for manufacturing contact materials for vacuum valves

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term