JPH0664252B2 - Rotating polygon mirror - Google Patents

Rotating polygon mirror

Info

Publication number
JPH0664252B2
JPH0664252B2 JP58035358A JP3535883A JPH0664252B2 JP H0664252 B2 JPH0664252 B2 JP H0664252B2 JP 58035358 A JP58035358 A JP 58035358A JP 3535883 A JP3535883 A JP 3535883A JP H0664252 B2 JPH0664252 B2 JP H0664252B2
Authority
JP
Japan
Prior art keywords
mirror
mirror surface
point
polygon mirror
scanning
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58035358A
Other languages
Japanese (ja)
Other versions
JPS59160122A (en
Inventor
徹 亀山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP58035358A priority Critical patent/JPH0664252B2/en
Publication of JPS59160122A publication Critical patent/JPS59160122A/en
Publication of JPH0664252B2 publication Critical patent/JPH0664252B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/08Mirrors
    • G02B5/09Multifaceted or polygonal mirrors, e.g. polygonal scanning mirrors; Fresnel mirrors

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Elements Other Than Lenses (AREA)
  • Mechanical Optical Scanning Systems (AREA)
  • Facsimile Scanning Arrangements (AREA)

Description

【発明の詳細な説明】 本発明は、光偏向器として使用される回転多面鏡に関す
るものである。
The present invention relates to a rotating polygon mirror used as an optical deflector.

回転多面鏡を使つた光偏向器は、光ビームを所定の画面
上に偏向走査する装置として、レーザー・ビーム・プリ
ンターをはじめ種々な機器の光ビーム走査装置として用
いられている。第1図は回転多面鏡、そして第2図は回
転多面鏡を光偏向器として用いた光ビーム走査装置の一
例である。その動作を簡単に説明する。モーターの回転
軸等に取り付けられ、矢印の方向に回転する回転多面鏡
1の鏡面1aに光源であるレーザー発生装置2から光ビ
ームLが入射する。鏡面1aによつて反射した光ビーム
は回転多面鏡1の回転により、LからLまで、角度
θだけ偏向される。偏向を受けた光ビームは結像レンズ
3で収束され、被走査面4上に結像し、A点からB点ま
で矢印方向に走査する。5はビーム検出器で、光ビーム
がA点を走査する直前にミラー6で反射した光ビームを
検出し、ビーム検出器5につながる制御回路によつて検
知後の一定時間後に信号光を発生開始させる為のもので
ある。これは各鏡面の分割誤差の影響をなくし、信号光
の書き込み開始位置を常に被走査面上の一定点A点に揃
える為のものである。もし各鏡面が完全な平面であれ
ば、この制御により発生開始から一定時間後に終わる信
号光の書き終り位置も常に一定点B点になる。
An optical deflector using a rotating polygon mirror is used as a device for deflecting and scanning a light beam on a predetermined screen as a light beam scanning device for various devices such as a laser beam printer. FIG. 1 shows an example of a light beam scanning device using a rotating polygon mirror, and FIG. 2 shows an example of a light beam scanning device using the rotating polygon mirror as an optical deflector. The operation will be briefly described. A light beam L is incident from a laser generator 2 which is a light source on a mirror surface 1a of a rotary polygon mirror 1 which is attached to a rotating shaft of a motor and rotates in a direction of an arrow. The light beam reflected by the mirror surface 1a is deflected by an angle θ from L 1 to L 2 by the rotation of the rotary polygon mirror 1. The deflected light beam is converged by the imaging lens 3, forms an image on the surface 4 to be scanned, and scans from the point A to the point B in the arrow direction. Reference numeral 5 denotes a beam detector, which detects the light beam reflected by the mirror 6 immediately before the light beam scans point A, and a control circuit connected to the beam detector 5 starts generation of signal light after a fixed time after detection. It is to let me. This is for eliminating the influence of the division error of each mirror surface and always aligning the writing start position of the signal light with the fixed point A on the surface to be scanned. If each mirror surface is a perfect plane, the writing end position of the signal light, which ends after a fixed time from the start of generation, is always the fixed point B by this control.

さて回転多面鏡1の各鏡面が完全な平面であれば、上述
の様に信号光の書き終り位置は常に一定点に集まるが、
実際には完全な平面ではないのでそうはならない。回転
多面鏡1の各鏡面は、鏡面加工時の加工精度上の問題か
ら、第3図に示す様に微小な凸形状(破線)であつた
り、凹形状(一点鎖線)であつたり、さらにもつと複雑
な形状と様々な形状をなしている。鏡面がこの様に彎曲
していると信号光の書き始め点A点はビーム検出器の作
用によつて一定であるが、書き終り点B点は第2図の
B′,B″点で示す様に鏡面の彎曲状況に応じてばらつ
く。それを第4図、第5図および第2図で説明する。第
4図は第1図の回転多面鏡1の鏡面を回転軸と直交する
面で切断した時、その鏡面の断面形状が凸形の円弧状を
成している回転多面鏡の場合、その鏡面1a′に光ビー
ムLが入射する時、回転多面鏡の回転に伴ないその偏向
ビームの方向がどの様に変わるか、偏向開始時点と偏向
終了時点で見たものである。偏向開始時点において回転
多面鏡1はP1の位置にあり、光ビームLは鏡面1a′-1
のS点に入射する。S点で反射した光ビームはL4の方
向に反射する。もし鏡面が1b-1の様に完全な平面であれ
ば光ビームLは鏡面1b-1上のS′点で反射し、反射光は
L3の方向に向かう。L3とL4の間のずれ角度は鏡面1a′-1
のS点における接線と1b-1面のなす角度を△ψとする
と、2△ψである。
Now, if each mirror surface of the rotary polygon mirror 1 is a perfect plane, the writing end position of the signal light always gathers at a fixed point as described above.
Not really because it's not a perfect plane. Each mirror surface of the rotary polygon mirror 1 has a minute convex shape (dashed line) or a concave shape (dashed line) as shown in FIG. 3 due to problems in processing accuracy during mirror surface processing. And has a complicated shape and various shapes. When the mirror surface is curved like this, the writing start point A of the signal light is constant due to the action of the beam detector, but the writing end point B is shown by points B'and B "in FIG. As shown in Fig. 4, Fig. 5 and Fig. 2, Fig. 4 shows the mirror surface of the rotary polygon mirror 1 of Fig. 1 in a plane orthogonal to the axis of rotation. In the case of the rotary polygonal mirror whose cross-sectional shape of the mirror surface is a convex arc when cut, when the light beam L is incident on the mirror surface 1a ', its deflected beam is caused by the rotation of the rotary polygonal mirror. It is seen at the time when the deflection is started and when the deflection is ended that the direction of the beam changes from the rotating polygonal mirror 1 to the position P1 and the light beam L is the mirror surface 1a'-1.
Incident on point S. The light beam reflected at the point S is reflected in the direction of L4. If the mirror surface is a perfect plane like 1b-1, the light beam L is reflected at the point S'on the mirror surface 1b-1, and the reflected light is
Head toward L3. The angle of deviation between L3 and L4 is mirror surface 1a′-1
If the angle between the tangent line at point S and the 1b-1 plane is Δφ, then 2Δφ.

次に偏向終了時点において回転多面鏡1はP2の位置にあ
り、光ビームLは鏡面1a′-2上のE点に入射する。E点
で反射した光ビームはL5の方向に反射する。もし鏡面が
1b-2の様に完全な平面であれば光ビームLは鏡面1b-2上
のE′で反射し、反射光はL6の方向に向かうことにな
る。L5とL6の間のずれ角度は鏡面1a′-2のE点における
接線と1b-2面のなす角度を△Ψとすると2△Ψとなる。
第2図のビーム走査装置でこの回転多面鏡を使つてビー
ム走査したならば、走査開始点はA点、走査終了点は
B′点になる。即ちB点がA点側に寄る。回転多面鏡を
通常に加工した場合、各鏡面は全て一定の形状に彎曲す
ることはなく、一般にはばらばらな形状、凸になつたり
凹になつたりして彎曲する。第5図は第2図の被走査面
4が走査ビームに直角な方向に一定速度で動く場合の各
走査線の軌跡を示したものである。各鏡面がいろいろな
形状に彎曲していると走査終了点B点の位置が図の様に
ばらつき、この結果たとえばレーザー・ビーム・プリン
ターの場合であれば走査終了点附近の記録画像が左右に
揺らいで、画質を低下させることになる。
Next, when the deflection is completed, the rotary polygon mirror 1 is at the position P2, and the light beam L is incident on the point E on the mirror surface 1a'-2. The light beam reflected at point E is reflected in the direction of L5. If the mirror surface
If it is a perfect plane like 1b-2, the light beam L is reflected by E'on the mirror surface 1b-2, and the reflected light goes in the direction of L6. The deviation angle between L5 and L6 is 2ΔΨ, where ΔΨ is the angle between the tangent at point E on the mirror surface 1a′-2 and the 1b-2 surface.
When beam scanning is performed using the rotating polygon mirror in the beam scanning device shown in FIG. 2, the scanning start point is point A and the scanning end point is point B '. That is, point B is closer to point A. When a rotating polygon mirror is processed normally, each mirror surface does not bend in a constant shape, but generally bends in a random shape, convex or concave. FIG. 5 shows the trajectory of each scanning line when the surface to be scanned 4 in FIG. 2 moves at a constant speed in the direction perpendicular to the scanning beam. When each mirror surface is curved in various shapes, the position of the scanning end point B varies as shown in the figure. As a result, in the case of a laser beam printer, the recorded image near the scanning end point fluctuates left and right. Therefore, the image quality is deteriorated.

たとえば今第6図に示す破線の様に鏡面が凸の円弧状に
彎曲していたとすると、鏡面の長さHを30mmとして、
円弧の最大高さδが0.3μmとすると、△ψ+△Ψはお
よそ11秒となり、もしこれで焦点距離500mのレン
ズを通して被走査面上を走査すると走査終了点における
ずれB−B′は55μmとなる。実際には先に述べた様
に鏡面の彎曲は凸だけでなく凹形状にも彎曲する(第6
図の一点鎖線)ので、すべての鏡面でのずれの全幅B′
−B″は110μmとなる(第5図の△lに相当す
る)。走査線ピツチがもし100μmであれば、このず
れ量はほぼ走査線ピツチに相当し、画像品位上大きな問
題となる。ずれB′−B″をできるだけ小さくする為に
は、凸面の頂点と凹面の底点の高さの差2δをできるだ
け小さく抑えなければならない。上述の例であれば2δ
=0.3μm、即ちδ=0.15μm以内に抑える必要があ
る。従来の鏡面加工では、この様な高い精度を得る為に
鏡面の平面度を厳しく抑える(即ち完全な平面にできる
だけ近ずける)。上述の例ならば平面度を0.15μmに抑
えるという方法を取つて来た。しかし平面度を厳しく抑
えることは困難で、この為部品の歩留りも悪かつた。
For example, if the mirror surface is curved in a convex arc shape as shown by the broken line in FIG. 6, the length H of the mirror surface is set to 30 mm,
If the maximum height δ of the circular arc is 0.3 μm, Δψ + ΔΨ will be about 11 seconds, and if the surface to be scanned is scanned through a lens having a focal length of 500 m, the deviation BB ′ at the scanning end point will be 55 μm. Become. Actually, as described above, the curvature of the mirror surface is not only convex but also concave (6th curve).
(Dashed line in the figure), so the total width B'of the misalignment on all mirror surfaces
-B "is 110 .mu.m (corresponding to .DELTA.l in FIG. 5). If the scanning line pitch is 100 .mu.m, this deviation corresponds to the scanning line pitch, which is a serious problem in image quality. In order to make B′−B ″ as small as possible, the height difference 2δ between the apex of the convex surface and the bottom point of the concave surface must be kept as small as possible. In the above example, 2δ
= 0.3 μm, that is, δ = 0.15 μm or less. In the conventional mirror surface processing, the flatness of the mirror surface is strictly suppressed (that is, it is as close as possible to a perfect flat surface) in order to obtain such high accuracy. In the above example, the flatness is kept to 0.15 μm. However, it is difficult to suppress the flatness severely, and the yield of parts is bad.

本発明はこの様な回転多面鏡の加工精度上の問題を克服
すべく、たとえ平面度が悪くとも、各鏡面の彎曲形状が
全て同じに揃つていさえすれば走査終了点で各走査線の
終了点はばらつくことがなく、たとえこれによつて走査
終了点の絶対位置がずれたとしても、実用上それはほと
んど問題にならないという点に着目し、各鏡面の歪み形
状を揃えることにより鏡面の平面度の許容値を大幅に緩
和して、回転多面鏡の加工を容易にしたものである。
In order to overcome such a problem in the processing accuracy of the rotary polygon mirror, the present invention provides a scanning end point for each scanning line as long as the curved shapes of the respective mirror surfaces are all the same even if the flatness is poor. Paying attention to the fact that the end points do not vary, and even if this causes the absolute position of the scan end point to shift, it does not pose a problem in practical use. The degree of tolerance of the degree is greatly relaxed to facilitate the processing of the rotary polygon mirror.

本発明は、複数の反射平面鏡を有する回転多面鏡に於い
て、前記各平面鏡の鏡面加工を行う際に、前記各平面鏡
の彎曲形状を、全て凸面または全て凹面の同じ形状に揃
え、その彎曲量もほぼ同じに揃えることにより、前記各
平面鏡の平面度の許容値を1μmにした事を特徴とする
回転多面鏡である。
The present invention, in a rotary polygon mirror having a plurality of reflecting plane mirrors, when performing the mirror surface processing of each of the plane mirrors, the curved shape of each of the plane mirrors, all the convex surface or all the concave surface to the same shape, the amount of curvature Is the same, so that the flatness tolerance of each of the plane mirrors is set to 1 μm.

第7図は本発明の実施例で、二つの典型的な例を一つの
図に書いてある。要点は各鏡面の彎曲形状を全て同じに
揃え、彎曲量もほぼ同じに揃えたことである。破線の形
状は凸形状の場合、一点鎖線は凹形状の場合である。そ
れぞれの場合各鏡面の彎曲形状は円弧でほぼ同じ形状、
彎曲量δもほぼ同じとなつている。鏡面の平面度は悪く
ても、この様に各鏡面の彎曲形状が同じ形状に揃つてい
れば、各鏡面の走査終了点は第2図で示す全てB′点近
傍あるいはB″点近傍に集まり、ばらつくことがない。
この様に鏡面を彎曲させると被走査面の走査線上の各走
査点は走査開始点から離れるに従つて正規の位置からず
れるが、一部の特別な用途を除き、このずれは実用上ほ
とんど問題にならない。レーザー・ビーム・プリンター
であれば、単に文字等を印字する場合、第9図に示す様
に走査終了点においてB点がそつくり1mmずれても問題
はない。鏡面を彎曲させて加工することは平面度を出す
ことよりもやさしく、この様に各鏡面の形状を意識的に
彎曲させ揃えてやれば鏡面の平面度はかなり緩くするこ
とができ、鏡面加工がだいぶ楽になる。前述の例の場合
であれば、各鏡面の彎曲度のばらつき、即ち回転多面鏡
の鏡面を回転軸と直交する面で切断した時の断面形状を
全て重ね合わせた時の各鏡面の彎曲度のばらつきが0.3
μm以内であれば、平面度はδ=1μmであつても、走
査終了点における各鏡面による走査点のばらつきは55
μmに収まるので全く問題なく使用することができる。
FIG. 7 shows an embodiment of the present invention, and two typical examples are shown in one drawing. The point is that the curved shapes of the mirror surfaces are all the same and the amount of curvature is also the same. The shape of the broken line is the case of a convex shape, and the dashed-dotted line is the case of a concave shape. In each case, the curved shape of each mirror surface is a circular arc with almost the same shape,
The amount of bending δ is almost the same. Even if the flatness of the mirror surface is poor, if the curved shape of each mirror surface is the same, the scanning end points of each mirror surface are all near the B'point or near the B "point shown in FIG. There are no gatherings and variations.
When the mirror surface is curved in this way, each scanning point on the scanning line of the surface to be scanned deviates from the normal position as it moves away from the scanning start point, but this deviation is practically a problem except for some special applications. do not become. In the case of a laser beam printer, when characters are simply printed, there is no problem even if point B is misaligned by 1 mm at the scanning end point as shown in FIG. It is easier to bend the mirror surface to process it than to give it flatness.In this way, if the shapes of the mirror surfaces are intentionally curved and aligned, the flatness of the mirror surface can be considerably loosened. It will be much easier. In the case of the above example, the variation in the curvature of each mirror surface, that is, the curvature of each mirror surface when all the cross-sectional shapes when the mirror surface of the rotary polygon mirror is cut along a plane orthogonal to the rotation axis is overlapped Variation 0.3
Within the range of .mu.m, even if the flatness is .delta. = 1 .mu.m, the variation of the scanning points by each mirror surface at the scanning end point is 55.
Since it falls within μm, it can be used without any problem.

鏡面をほぼ同一の歪み形状に加工する為には、鏡面を加
工する際、回転多面鏡を、鏡面にかかる機械的変形、熱
的変形が各鏡面で常に一定になる様に保持すること、ま
た鏡面を加工する刃物の各鏡面毎の動きの繰り返し精度
を向上させることで実現できる。具体的な例を言えば、
ガラスなどの硬い材料でできたものをラツピングで鏡面
加工する場合、両端部付近は凸型にだれ易いが、このだ
れ量を等しく、さらに中央部の彎曲形状も凸型にして全
体がほぼ同等な凸の円弧状となる様にするには、鏡面加
工時各鏡面を両側から挾む補助材を均質なものに揃える
と共に、鏡面と補助材が同一温度の時に両者の接合を行
なう様にし、ラツピング時の研磨圧が等しくなる様荷調
整する等配慮すれば良い。
In order to process the mirror surface to almost the same distortion shape, when processing the mirror surface, the rotary polygon mirror should be held so that mechanical deformation and thermal deformation applied to the mirror surface are always constant on each mirror surface. This can be achieved by improving the accuracy of repeating the movement of each mirror surface of the blade for processing the mirror surface. To give a specific example,
When mirror-finishing a material made of hard material such as glass by lapping, it is easy to sag in a convex shape near both ends, but this sagging amount is equal, and the curved shape of the central part is also convex so that the whole is almost the same. In order to form a convex arc shape, the auxiliary materials that sandwich each mirror surface from both sides during mirror surface processing are made uniform, and when both the mirror surface and the auxiliary material are at the same temperature, they are joined by lapping. The load may be adjusted so that the polishing pressures at the time become equal.

鏡面の歪み形状は、円弧の様な単純なものだけでなく、
様々なもつと複雑な形状であつても良く、たとえば第8
図の様に波打つた凹凸状であつても良いし、さらにもつ
と複雑なものであつても良いものである。
The distorted shape of the mirror surface is not only a simple one like an arc,
It may have various complicated shapes, for example,
It may have a wavy uneven shape as shown in the figure, or it may have a complicated shape.

以上述べた様に本発明によれば、画像品位はそのまま
に、鏡面の加工精度を非常に緩くした、製造が大変楽な
回転多面鏡を供給することができ有効な発明である。
As described above, according to the present invention, it is possible to supply a rotary polygon mirror which is very easy to manufacture and which has a very low mirror surface processing accuracy while maintaining the image quality.

【図面の簡単な説明】[Brief description of drawings]

第1図は回転多面鏡の斜視図、第2図は光ビーム走査装
置の一例を示す図、第3図は回転多面鏡の1鏡面の斜視
図、第4図は回転多面鏡が光ビームを偏向する時の様子
を説明した図、第5図は従来の回転多面鏡で被走査面上
に書かれる走査線を示した図、第6図は回転多面鏡の一
鏡面を回転軸と直交する面で切断した断面図、第7図は
本発明の回転多面鏡を示す図、第8図は本発明の回転多
面鏡の他の実施例の鏡面の斜視図、第9図は本発明に係
る回転多面鏡で被走査面上に書かれる走査線の一例を示
した図。 1,1′,1″…回転多面鏡 1a,1a′-1,1a′-2…鏡面 2…レーザー発生装置 3…結像レンズ 4…被走査面 L…光ビーム
FIG. 1 is a perspective view of a rotary polygon mirror, FIG. 2 is a view showing an example of a light beam scanning device, FIG. 3 is a perspective view of one mirror surface of the rotary polygon mirror, and FIG. 4 is a rotary polygon mirror showing a light beam. FIG. 5 is a diagram for explaining the state of deflection, FIG. 5 is a diagram showing scanning lines written on the surface to be scanned by the conventional rotary polygon mirror, and FIG. 6 is one mirror surface of the rotary polygon mirror orthogonal to the rotation axis. FIG. 7 is a sectional view taken along a plane, FIG. 7 is a view showing a rotary polygon mirror of the present invention, FIG. 8 is a perspective view of a mirror surface of another embodiment of the rotary polygon mirror of the present invention, and FIG. 9 is a view showing the present invention. The figure which showed an example of the scanning line written on the to-be-scanned surface with a rotating polygon mirror. 1,1 ', 1 "... Rotating polygon mirror 1a, 1a'-1,1a'-2 ... Mirror surface 2 ... Laser generator 3 ... Imaging lens 4 ... Scanned surface L ... Light beam

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】複数の反射平面鏡を有する回転多面鏡に於
いて、前記各平面鏡の鏡面加工を行う際に、前記各平面
鏡の彎曲形状を、全て凸面または全て凹面の同じ形状に
揃え、その彎曲量もほぼ同じに揃えることにより、前記
各平面鏡の平面度の許容値を1μmにした事を特徴とす
る回転多面鏡。
1. In a rotary polygon mirror having a plurality of reflecting plane mirrors, when performing the mirror surface processing of each of the plane mirrors, the curved shape of each of the plane mirrors is made to be the same shape of all convex surfaces or all concave surfaces, and the curved shape. A rotary polygon mirror characterized in that the flatness tolerance of each plane mirror is set to 1 μm by arranging the amounts to be substantially the same.
JP58035358A 1983-03-04 1983-03-04 Rotating polygon mirror Expired - Lifetime JPH0664252B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58035358A JPH0664252B2 (en) 1983-03-04 1983-03-04 Rotating polygon mirror

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58035358A JPH0664252B2 (en) 1983-03-04 1983-03-04 Rotating polygon mirror

Publications (2)

Publication Number Publication Date
JPS59160122A JPS59160122A (en) 1984-09-10
JPH0664252B2 true JPH0664252B2 (en) 1994-08-22

Family

ID=12439654

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58035358A Expired - Lifetime JPH0664252B2 (en) 1983-03-04 1983-03-04 Rotating polygon mirror

Country Status (1)

Country Link
JP (1) JPH0664252B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61167608U (en) * 1985-04-05 1986-10-17
JPS62119514A (en) * 1985-11-20 1987-05-30 Toray Ind Inc Rotary polygonal mirror
JP4890932B2 (en) * 2006-05-08 2012-03-07 株式会社リコー Optical scanning apparatus and image forming apparatus

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5249851A (en) * 1975-10-18 1977-04-21 Hitachi Ltd Optical device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5249851A (en) * 1975-10-18 1977-04-21 Hitachi Ltd Optical device

Also Published As

Publication number Publication date
JPS59160122A (en) 1984-09-10

Similar Documents

Publication Publication Date Title
US4941719A (en) Light scanning system
JP3739841B2 (en) Scanning angle doubling system and scanning system
US4915465A (en) Laser beam printer using only one side surface of a rotational mirror to scanningly deflect a substantially perpendicular laser beam
US4982205A (en) Laser beam scanner in which the line scan time is maintained constant by decreasing the rotating speed of a scanning element as the number of reflective facets thereon increases
JP2572300B2 (en) Image scanning device
JPH0664252B2 (en) Rotating polygon mirror
JP2994799B2 (en) Scanning imaging lens system and optical scanning device
US5196956A (en) Beam deflector and laser beam printer using only two inclined reflecting surfaces
JP3243013B2 (en) Optical scanning device with shading correction function
JPS62278521A (en) Light beam scanning device
JPH0514885B2 (en)
EP0552825A2 (en) Rotational scanning member
JP3198685B2 (en) Light beam scanning device
JPS597922A (en) Light beam printer
JP3034634B2 (en) Optical scanning device and method of correcting field curvature of scanning imaging lens in optical scanning device
JP2633560B2 (en) Optical scanning device
JPS63287816A (en) Optical scanner
US5056882A (en) Laser beam deflecting device including a surface with a groove which receives a laser beam without reflecting the beam to a scanned portion
JP2750597B2 (en) High density scanning device
JP2749850B2 (en) Optical deflection device
JPH0514884B2 (en)
JPS62255915A (en) Converging lens for optical scanner
JP2893872B2 (en) Optical scanning device
JPS62218919A (en) Scanning optical system
JPS6355517A (en) Optical scanner