JPH0664015B2 - Grain state detection device for circulating grain dryer and grain state determination device using the grain state detection device - Google Patents

Grain state detection device for circulating grain dryer and grain state determination device using the grain state detection device

Info

Publication number
JPH0664015B2
JPH0664015B2 JP61042809A JP4280986A JPH0664015B2 JP H0664015 B2 JPH0664015 B2 JP H0664015B2 JP 61042809 A JP61042809 A JP 61042809A JP 4280986 A JP4280986 A JP 4280986A JP H0664015 B2 JPH0664015 B2 JP H0664015B2
Authority
JP
Japan
Prior art keywords
grain
state
dryer
grains
collision plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61042809A
Other languages
Japanese (ja)
Other versions
JPS62203059A (en
Inventor
正憲 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shizuoka Seiki Co Ltd
Original Assignee
Shizuoka Seiki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shizuoka Seiki Co Ltd filed Critical Shizuoka Seiki Co Ltd
Priority to JP61042809A priority Critical patent/JPH0664015B2/en
Publication of JPS62203059A publication Critical patent/JPS62203059A/en
Publication of JPH0664015B2 publication Critical patent/JPH0664015B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
  • Drying Of Solid Materials (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は循環型穀物乾燥機の穀粒状態検出装置および
この穀粒状態検出装置を利用した穀粒状態判定装置に係
り、特に、簡単な構造で信頼性が高くしかも取付けが容
易で位置設定の自由度の高い循環型穀物乾燥機の穀粒状
態検出装置およびこの穀粒状態検出装置からの信号によ
り穀粒状態の判定を確実になし得る穀粒状態検出装置を
利用した穀粒状態判定装置に関する。
Description: TECHNICAL FIELD The present invention relates to a grain state detecting device for a circulation type grain dryer and a grain state determining device using the grain state detecting device, and particularly to a simple The grain state detection device of the circulation type grain dryer, which is structurally highly reliable, easy to install, and has a high degree of freedom in position setting, and the signal from the grain state detection device can surely determine the grain state. The present invention relates to a grain state determination device using a grain state detection device.

[従来の技術] 循環型穀物乾燥機は、穀粒を貯留部と乾燥部と集穀部と
の間を順次に循環させ、この間に穀粒を乾燥させるもの
であり、穀粒の循環が滞ると過乾燥による胴割れや穀粒
の呼吸熱により変質等により被害粒を発生する。このた
め、乾燥機に検出手段を設け、穀粒状態を検出してい
る。例えば、実開昭56−61896号公報や実公昭48−4763
号公報に開示の如く、従来、穀粒の循環途中に検出手段
としてマイクロフォンやマイクロスイッチ等を設け、循
環時に発生する穀粒衝突音や循環時の穀粒押圧力により
穀粒状態を検出している。
[Prior Art] A circulation-type grain dryer is one that circulates grains between a storage part, a drying part, and a grain-collecting part in order, and dries the grains in the meantime, and the circulation of grains is delayed. Damaged grains are generated due to alteration such as cracking of the barrel due to overdrying and respiration heat of the grain. For this reason, the dryer is provided with a detection means to detect the grain state. For example, Japanese Utility Model Publication No. 56-61896 and Japanese Utility Model Publication No. 48-4763.
Conventionally, as disclosed in Japanese Patent Publication, a microphone, a micro switch, or the like is provided as a detection means in the middle of grain circulation, and the grain state is detected by the grain collision sound generated during circulation or the grain pressing force during circulation. There is.

[発明が解決しようとする問題点] ところが、マイクロフォンにより穀粒状態を検出するも
のは、乾燥機の運転音が大きいので、この運転音と循環
時に発生する穀粒衝突音との弁別回路を設けなければな
らず、回路が複雑になる問題がある。しかも、マイクロ
フォンは、循環時に発生する穀粒衝突音を良好に感知す
べく、穀粒の循環する所要部位に臨ませて乾燥機の構成
部材に取付け孔を設け、マイクロフォンを取付けなけれ
ばならない。このため、乾燥運転時に発生する埃や塵、
藁屑などがマイクロフォンに侵入して性能低下を来たす
ことにより信頼性が低く、また取付け孔を形成しなけれ
ばならないので取付け作業が煩雑であり、さらに取付け
の位置やその方法も制約を受け自由度が低い不都合があ
る。
[Problems to be Solved by the Invention] However, the one that detects the state of the grain by the microphone has a large operating noise of the dryer, and therefore a circuit for discriminating the operating noise from the grain collision noise generated during circulation is provided. However, there is a problem that the circuit becomes complicated. In addition, the microphone must be provided with a mounting hole in the constituent member of the dryer so as to face the required portion where the grain circulates, in order to properly detect the grain collision sound generated during circulation, and the microphone must be mounted. Therefore, dust and dirt generated during the dry operation,
Straws, etc. enter the microphone and cause performance degradation, resulting in low reliability.Because mounting holes must be formed, the mounting work is complicated, and the mounting position and method are also restricted, and the degree of freedom is limited. There is a low inconvenience.

また、マイクロスイッチにより穀粒状態を検出するもの
は、循環時の穀粒押圧力で接点を作動させるべく作動板
などを設けなければならず、構造が複雑になる問題があ
る。しかも、前述マイクロフォンと同様に、乾燥運転時
に発生する埃や塵、藁屑などがマイクロスイッチの機械
的な作動部分から侵入するので防塵性が劣り、また長期
使用による作動部分の摩耗など耐久性にも問題があり、
さらに接点のオン・オフによる二つの状態しか検出でき
ない欠点がある。
Further, in the case where the grain state is detected by the microswitch, an operating plate or the like must be provided to activate the contact point by the grain pressing force during circulation, which causes a problem that the structure becomes complicated. Moreover, like the above-mentioned microphone, dust, dust, straw, etc. generated during dry operation intrude from the mechanical operation part of the micro switch, so the dust resistance is inferior and durability such as wear of the operation part due to long-term use is deteriorated. Also has a problem,
Furthermore, there is a drawback that only two states can be detected by turning the contacts on and off.

このように、従来の検出手段であるマイクロフォンやマ
イクロスイッチは、構造が複雑で信頼性が低く耐久性に
も問題があり、取付けが煩雑で位置が限定される等の不
都合があった。この結果、例えば穀粒の滞留による被害
粒の発生を未然に防止すべき穀粒状態の判定の精度にも
悪影響を及ぼして判定の精度が損なわれる不都合があ
り、改善が望まれた。
As described above, the conventional detection means, such as a microphone and a microswitch, have a complicated structure, low reliability, and a problem of durability, and there are inconveniences such as complicated mounting and limited position. As a result, for example, there is a disadvantage that the accuracy of the determination of the grain state, which should prevent the generation of damaged grains due to the retention of the grains, is adversely affected and the accuracy of the determination is impaired.

[発明の目的] そこでこの発明の目的は、簡単な構造で信頼性が高くし
かも取付けが容易で位置設定の自由度の高い循環型穀物
乾燥機の穀粒状態検出装置およびこの穀粒状態検出装置
からの信号により穀粒状態の判定を確実になし得て例え
ば穀粒の滞留による被害粒の発生を未然に防止し得る循
環型穀物乾燥機の穀粒状態検出装置を利用した穀粒状態
判定装置を実現することにある。
OBJECT OF THE INVENTION Therefore, an object of the present invention is to provide a grain state detection device for a circulating grain dryer having a simple structure, high reliability, easy installation, and high degree of freedom in position setting, and this grain state detection device. A grain state determination device using a grain state detection device of a circulation type grain dryer that can surely determine the grain state by a signal from, for example, prevent the generation of damaged grains due to the retention of grains Is to realize.

[問題点を解決するための手段] この目的を達成するために、この発明は、穀粒を循環さ
せつつ乾燥させる循環型穀物乾燥機の穀粒状態検出装置
において、前記循環する穀粒の衝突により生ずる振動か
ら穀粒状態を検出すべく前記循環する穀粒を衝突させる
前記乾燥機の一構成部材である板状部材からなる衝突板
と前記乾燥機の穀粒が循環する部位の前記衝突板の外側
に、この衝突板の振動方向に変位可能な状態で、密封空
間内に前記衝突板と略平行に、空間を介して支持した圧
電素子とからなる検出手段を前記穀粒の循環途中に設け
たことを特徴とする。
[Means for Solving the Problems] In order to achieve this object, the present invention provides a grain state detection device for a circulation type grain dryer that circulates and dries grains while allowing them to collide. The collision plate made of a plate-shaped member that is one component of the dryer that collides the circulating grains to detect the state of the grains from the vibration caused by the vibration, and the collision plate at the portion where the grains of the dryer circulate. On the outside of the collision plate, in a state in which it can be displaced in the vibration direction of the collision plate, a detection means consisting of a piezoelectric element supported through the space in a sealed space substantially parallel to the collision plate is provided during the circulation of the grain. It is characterized by being provided.

また、この発明は、穀粒を循環させつつ乾燥させる循環
型穀物乾燥機の穀粒状態検出装置を利用した穀粒状態判
定装置において、前記循環する穀粒の衝突により生ずる
振動から穀粒状態を検出すべく前記循環する穀粒を衝突
させる前記乾燥機の一構成部材である板状部材からなる
衝突板と前記乾燥機の穀粒が循環する部位の前記衝突板
の外側に、この衝突板の振動方向に変位可能な状態で、
密封空間内に前記衝突板と略平行に、空間を介して支持
した圧電素子とからなる穀粒状態検出装置の検出手段を
前記穀粒の循環途中に設け、この穀粒状態検出装置の検
出手段から入力する検出信号を波形整形回路により直流
電圧に波形整形しこの直流電圧を制御回路により比較し
て穀粒状態を判定すべく処理する処理手段を設けたこと
を特徴とする。
Further, the present invention, in the grain state determination device using the grain state detection device of the circulation type grain dryer for drying while circulating the grain, the grain state from the vibration caused by the collision of the circulating grains. On the outside of the collision plate, which is composed of a plate-like member that is one component of the dryer that causes the circulating grains to detect, and the grains of the dryer circulate, the collision plate In the state that can be displaced in the vibration direction,
A detection means of a grain state detection device, which is formed in parallel with the collision plate in a sealed space and is supported through a space, of a grain state detection device is provided in the middle of circulation of the grain, and the detection device of the grain state detection device is provided. It is characterized in that processing means for waveform-shaping the detection signal input from the device into a DC voltage by the waveform shaping circuit and processing the DC voltage by the control circuit to determine the grain state is provided.

[作用] この発明の第1発明の構成によれば、循環する穀粒を衝
突させる乾燥機の一構成部材である板状部材からなる衝
突板と、乾燥機の穀粒が循環する部位の衝突板の外側
に、この衝突板の振動方向に変位可能な状態で、密封空
間内に衝突板と略平行に、空間を介して支持した圧電素
子と、からなる検出手段を穀粒の循環途中に設けてい
る。このように、機械的な作動部分を有しない圧電素子
を衝突板の外側の密封空間内に支持していいので構造が
簡単であり、しかも耐久性や塵埃に対する防塵性が高く
信頼性を高めており、衝突板に穀粒が衝突するように検
出手段を穀粒の循環途中に設けるので取付けが容易で位
置設定の自由度も高くなる。また、乾燥機を構成する板
状部材を衝突板としているので特別に衝突板を必要とせ
ず、取付位置の自由度を大きくし得て、穀粒が循環する
部位の衝突板の外側に圧電素子を設けているので穀粒の
流れに障害となることもない。
[Operation] According to the configuration of the first aspect of the present invention, a collision plate formed of a plate-shaped member that is a component of a dryer that causes circulating grains to collide with a collision portion of the dryer in which the grains circulate. On the outside of the plate, in a state of being displaceable in the vibration direction of the collision plate, a detection means consisting of a piezoelectric element supported in the sealed space substantially parallel to the collision plate through the space is provided during the grain circulation. It is provided. As described above, since the piezoelectric element having no mechanical operation part can be supported in the sealed space outside the collision plate, the structure is simple, and the durability and dustproofness are high and the reliability is improved. Since the detecting means is provided in the middle of the circulation of the grain so that the grain collides with the collision plate, the mounting is easy and the degree of freedom of the position setting is high. Further, since the plate-shaped member constituting the dryer is used as the collision plate, the collision plate is not particularly required, the degree of freedom of the mounting position can be increased, and the piezoelectric element is provided outside the collision plate at the portion where the grains circulate. Since it is provided, it does not hinder the grain flow.

また、この発明の第2発明の構成によれば、検出手段か
ら入力する検出信号を波形整形回路により直流電圧に波
形整形しこの直流電圧を制御回路により比較して穀粒状
態を判定すべく処理する処理手段を設けている。このよ
うに、信頼性の高い検出手段から入力する検出信号を処
理することによって穀粒状態を判定するので、例えば穀
粒の滞留による被害粒の発生を未然に防止すべく穀粒状
態の判定を確実になすことができる。
Further, according to the configuration of the second aspect of the present invention, the detection signal input from the detection means is shaped into a DC voltage by the waveform shaping circuit, and the DC voltage is compared by the control circuit to process to determine the grain state. The processing means for doing so is provided. In this way, since the grain state is determined by processing the detection signal input from the highly reliable detection means, for example, it is possible to determine the grain state in order to prevent the occurrence of damaged grains due to the retention of grains. You can definitely do it.

[実施例] 以下図面に基づいてこの発明の実施例を詳細に説明す
る。
Embodiments Embodiments of the present invention will be described in detail below with reference to the drawings.

第1〜8図はこの発明の第1発明たる穀粒状態検出装置
の実施例を示すものである。第1図に示す如く、循環型
穀物乾燥機2は、貯留部4と乾燥部6と集穀部8とを有
し、揚穀機10で揚上した穀粒を上部横送機構12により横
送して貯留部4内に落下させる。乾燥部6で穀粒を乾燥
した後に繰出バルブ14により所定量ずつ繰出し、集穀部
8で集めて下部横送機構16により前記揚穀機10の下部に
横送し、再び揚上する循環を繰り返す間に乾燥させる。
この乾燥機2の循環途中には、穀粒状態を検出する穀粒
状態検出装置の検出手段18を設けている。
1 to 8 show an embodiment of a grain state detecting device which is a first invention of the present invention. As shown in FIG. 1, the circulation type grain dryer 2 has a storage unit 4, a drying unit 6 and a grain collecting unit 8, and the grains lifted by the grain lifting machine 10 are horizontally fed by the upper transverse feeding mechanism 12. It is sent and dropped in the storage unit 4. After the grains are dried in the drying unit 6, they are fed by the feeding valve 14 in a predetermined amount, collected in the grain collecting unit 8 and fed laterally to the lower part of the fried machine 10 by the lower horizontal feeding mechanism 16, and the lifting is repeated again. Dry while repeating.
In the middle of circulation of the dryer 2, a detecting means 18 of a grain state detecting device for detecting a grain state is provided.

穀粒状態検出装置の検出手段18は、第2図に示す如く、
ハウジング20とカバー22、およびこの実施例においては
乾燥機2の一構成部材である板状部材24の一部を穀粒C
を衝突させる衝突板26として密封空間28を区画形成して
いる。この衝突板26は、板状部材24と別体に設けてもよ
く、またハウジング20と一体としてもよい。前記密封空
間28内には、ハウジング20とカバー22との間に振動方向
に変位可能に圧電素子30を挾持させて支持している。圧
電素子30は、圧電性材料を例えば焼結形成したものから
なり、機械的エネルギの加担により発生する電荷を出力
するために、両面にそれぞれ電極32・32を設けている。
The detecting means 18 of the grain state detecting device is, as shown in FIG.
The housing 20 and the cover 22, and a part of the plate-like member 24 which is one component of the drier 2 in this embodiment, are partially covered with the grain C.
A sealed space 28 is defined as a collision plate 26 that collides with each other. The collision plate 26 may be provided separately from the plate member 24, or may be integrated with the housing 20. In the sealed space 28, a piezoelectric element 30 is sandwiched and supported between the housing 20 and the cover 22 so as to be displaceable in the vibration direction. The piezoelectric element 30 is made of, for example, a sintered piezoelectric material, and has electrodes 32, 32 provided on both sides thereof in order to output electric charges generated by the load of mechanical energy.

このように構成される検出手段18は、乾燥機2を循環す
る穀粒Cの衝突により生ずる振動から穀粒状態を検出す
るために、乾燥機2の一構成部材である板状部材24から
なる衝突板26を循環する穀粒Cに対向させ、検出手段18
を穀粒Cの循環途中に設けている。この検出手段18は、
穀粒Cが衝突板26に衝突して振動を生ずると、前記圧電
素子30により第3図の如く電圧を出力する。即ち、穀粒
Cが衝突しない場合にはS1の如く小さな電圧を出力しあ
るいは出力せず、穀粒Cが衝突している場合にはS2の如
く大きな電圧を出力する。検出手段18は、この出力電圧
により穀粒状態を検出する。
The detection means 18 configured in this way is composed of a plate-like member 24 which is one component of the dryer 2 in order to detect the grain state from the vibration caused by the collision of the grain C circulating in the dryer 2. The collision plate 26 is made to face the circulating grain C, and the detecting means 18
Is provided in the middle of the circulation of the grain C. This detecting means 18 is
When the grain C collides with the collision plate 26 and vibrates, the piezoelectric element 30 outputs a voltage as shown in FIG. That is, when the grain C does not collide, a small voltage such as S1 is output or not output, and when the grain C collides, a large voltage such as S2 is output. The detection means 18 detects the grain state based on this output voltage.

ここで、圧電素子30の動作を説明する。圧電素子30は、
第4図に矢印に示す如く機械的エネルギとして力が加わ
ると電荷を発生し、この電荷は電圧として出力される。
従って、圧電素子30に機械的エネルギとして振動が加わ
ると、振動の強さに応じて交流電圧を発生する。その周
波数は圧電素子30の形状により決定され、例えば第5図
に示す如く共振点を有する電圧が得られる。この圧電素
子30を振動方向に変位可能に支持し、圧電素子30自体に
あるいは圧電素子30を支持する支持体に振動を加える
と、第6図の如き周期T=1/f(fは周波数)の減衰
振動電圧が発生する。電圧の大きさは加担された振動の
強さに応じて変化すると同時に、振動周波数は圧電素子
30の形状や支持体の構造により決定される共振周波数成
分が基本成分になる。
Here, the operation of the piezoelectric element 30 will be described. The piezoelectric element 30 is
When a force is applied as mechanical energy as shown by an arrow in FIG. 4, an electric charge is generated, and the electric charge is output as a voltage.
Therefore, when vibration is applied to the piezoelectric element 30 as mechanical energy, an AC voltage is generated according to the strength of the vibration. The frequency is determined by the shape of the piezoelectric element 30, and for example, a voltage having a resonance point is obtained as shown in FIG. When this piezoelectric element 30 is supported so as to be displaceable in the vibration direction and vibration is applied to the piezoelectric element 30 itself or a support that supports the piezoelectric element 30, a cycle T = 1 / f (f is a frequency) as shown in FIG. A damped oscillating voltage is generated. The magnitude of the voltage changes according to the strength of the applied vibration, and at the same time, the vibration frequency is the piezoelectric element.
The resonance frequency component determined by the shape of 30 and the structure of the support is the basic component.

このような減衰振動電圧を発生させる振動が前記圧電素
子30に連続的に加わると、第7図の如く継続的に大きな
電圧の出力が得られる。一方、振動が前記圧電素子30に
加わらないと、第6図の如く電圧は小さくなって出力は
無くなる。従って、第3図の如く、穀粒Cが連続的に衝
突板26に衝突している場合には、衝突による高い周波数
成分によって検出手段18は検出信号として継続的に大き
な電圧を出力する。一方、穀粒Cが衝突板26に衝突して
いない場合は、乾燥機2の運転による振動周波数成分は
低いので検出手段18は検出信号として継続的に小さな電
圧を出力しあるいは出力しなくなる。
When the vibration for generating such a damped oscillation voltage is continuously applied to the piezoelectric element 30, a large voltage output is continuously obtained as shown in FIG. On the other hand, if the vibration is not applied to the piezoelectric element 30, the voltage becomes small and the output disappears as shown in FIG. Therefore, as shown in FIG. 3, when the grain C continuously collides with the collision plate 26, the detection means 18 continuously outputs a large voltage as a detection signal due to the high frequency component due to the collision. On the other hand, when the grain C does not collide with the collision plate 26, the vibration frequency component due to the operation of the dryer 2 is low, and therefore the detection means 18 continuously outputs or does not output a small voltage as a detection signal.

これにより、穀粒状態検出装置は、衝突板26と圧電素子
30とからなる検出手段18によって穀粒状態を検出し得
る。また、検出手段18の圧電素子30は、機械的な作動部
分を有せず密閉空間28内に支持しているので、耐久性や
防塵性が高く信頼性を高めることができる。この検出手
段18の出力する電圧により穀粒状態を検出するために、
第8図(a)の如く回路構成する。即ち、検出手段18の
出力する電圧の整流回路34で整流し、積分回路36で振動
の強さに応じた直流電圧に変換(第8図(b)参照)す
ることで、容易に検出することができる。さらに、出力
電圧は、穀粒の衝突する速度や重量によって変化する
が、衝突板25自体も振動を伝播することから、衝突板26
から離間して圧電素子30を設けても振動を検出すること
ができる。これにより、検出手段18は、取付ける位置の
設定の自由度も高めることができ、また外部に簡単に取
付け得る。なお、圧電素子30は、焼結体に限らずゴム状
体のものでもよく、また形状も種々変更し得るものであ
る。また、検出手段18は、乾燥機2を構成する板状部材
24を衝突板26としているので特別に衝突板を必要とせ
ず、取付位置の自由度を大きくし得て、安価に検出装置
を構成することができる。また、検出手段18は、穀粒が
循環する部位の衝突板26の外側に圧電素子30を設けてい
るので穀粒の流れに障害となることもなく、防塵構造に
より信頼性を高め得て、保守・点検も容易にすることが
できる。
As a result, the grain state detecting device includes the collision plate 26 and the piezoelectric element.
The state of grain can be detected by the detecting means 18 composed of 30 and. In addition, since the piezoelectric element 30 of the detecting means 18 does not have a mechanically operating portion and is supported in the closed space 28, it has high durability and dust resistance, and can enhance reliability. In order to detect the grain state by the voltage output by this detecting means 18,
The circuit is constructed as shown in FIG. That is, the voltage output from the detection means 18 is rectified by the rectifier circuit 34 and converted by the integrating circuit 36 into a DC voltage according to the strength of vibration (see FIG. 8B), so that the voltage can be easily detected. You can Further, although the output voltage changes depending on the speed and weight of the collision of the grain, the collision plate 25 itself also propagates vibrations, so the collision plate 26
The vibration can be detected even if the piezoelectric element 30 is provided apart from. As a result, the detection means 18 can be increased in the degree of freedom in setting the mounting position and can be easily mounted to the outside. The piezoelectric element 30 is not limited to a sintered body and may be a rubber-like body, and the shape can be variously changed. Further, the detection means 18 is a plate-shaped member that constitutes the dryer 2.
Since 24 is the collision plate 26, the collision plate is not particularly required, the degree of freedom of the mounting position can be increased, and the detection device can be constructed at low cost. Further, the detection means 18, since the piezoelectric element 30 is provided on the outer side of the collision plate 26 at the portion where the grain circulates, does not hinder the flow of the grain, and the reliability can be improved by the dustproof structure, Maintenance and inspection can also be facilitated.

第9図、前記穀粒状態検出装置の検出手段18から入力す
る信号により穀粒状態を判定すべく処理する処理手段を
設けた第2発明たる穀粒状態検出装置を利用した穀粒状
態判定装置の基本構成を示すものである。図において、
18は検出手段、34は整流回路、36は積分回路、38は処理
手段たる制御回路である。穀粒状態検出装置は、前述の
如く、検出手段18により穀粒状態検出している。穀粒状
態判定装置は、この検出手段18の出力する検出信号たる
電圧を、波形整形回路である整流回路34で整流して積分
回路36で振動の強さに応じた直流電圧に変換することに
より波形整形し、制御回路38で穀粒状態を判定すべく、
例えば基準値との比較等の処理を行う。このように、穀
粒状態判定装置は、前記信頼性の高い検出手段18から入
力する検出信号によって判定を処理するので、穀粒状態
の判定を確実になし得る。この穀粒状態判定装置の判定
により、穀粒状態に応じて乾燥機2の運転を制御して得
て、例えば穀粒の滞留による被害粒の発生を未然に防止
することができる。
FIG. 9 is a grain state judging device utilizing the grain state detecting device according to the second aspect of the invention, which is provided with processing means for processing the grain state according to a signal inputted from the detecting means 18 of the grain state detecting device. The basic configuration of is shown. In the figure,
18 is a detecting means, 34 is a rectifying circuit, 36 is an integrating circuit, and 38 is a control circuit which is a processing means. As described above, the grain state detecting device detects the grain state by the detecting means 18. The grain state determination device rectifies the voltage which is the detection signal output by the detection means 18 by the rectification circuit 34 which is a waveform shaping circuit and converts the voltage into a DC voltage according to the vibration intensity by the integration circuit 36. In order to shape the waveform and determine the grain condition with the control circuit 38,
For example, processing such as comparison with a reference value is performed. In this way, the grain state determination device processes the determination based on the detection signal input from the highly reliable detection means 18, so that the grain state determination can be reliably performed. By the determination of the grain state determination device, it is possible to control the operation of the dryer 2 according to the state of the grain to obtain, for example, the generation of the damaged grain due to the retention of the grain.

次に、第2発明たる穀粒状検出装置を利用した穀粒状態
判定装置の実施例を説明する。
Next, an embodiment of a grain state determination device using the grain detection device according to the second invention will be described.

第10〜14図は、第2発明の第1実施例を示すものであ
る。この第1実施例は、穀粒の張込状態を検出し判定す
るものである。
10 to 14 show a first embodiment of the second invention. The first embodiment is for detecting and determining the stuck state of grain.

張込状態を検出するために、第10・11図に示す如く、乾
燥機2を構成する貯留部4内の穀粒Cの最高堆積高さに
位置させて穀粒状態検出装置の検出手段18を設ける。こ
の検出手段18は、例えば第10図の如く最高堆積高さに位
置させて、貯留部4内を落下される穀粒Cに対向する乾
燥機側板40の一部を衝突板26とするとともに乾燥機2の
外側に設ける。或いは、第11図の如く最高堆積高さに位
置させて、貯留部4内を落下される穀粒Cに対向させて
側板40に取付板42を設けるとともにこの取付板42の一部
を衝突板26とし、この取付板42に設けても良い。
In order to detect the stuck state, as shown in FIGS. 10 and 11, the detecting means 18 of the grain state detecting device is set at the highest accumulation height of the grain C in the storage section 4 constituting the dryer 2. To provide. This detecting means 18 is positioned at the maximum stacking height as shown in FIG. 10, for example, and a part of the dryer side plate 40 facing the grain C falling inside the storage part 4 is used as the collision plate 26 and dried. It is provided outside the machine 2. Alternatively, as shown in FIG. 11, the mounting plate 42 is provided at the side plate 40 so as to face the falling grain C in the storage portion 4 while being positioned at the highest stacking height, and a part of the mounting plate 42 is provided as a collision plate. 26 and may be provided on the mounting plate 42.

この乾燥状態検出装置の検出手段18は、衝突板26上に第
12図の如く穀粒Cが堆積すると、穀粒Cが衝突時の衝撃
を吸収して検出手段18の出力を低下させる。このため、
検出手段18の出力は、第13図の如く堆積の厚さtにより
出力が変化し、ある厚さまでは出力が緩慢に低下し、そ
の厚さを越えると出力は急激に低下する。この特性によ
り、検出手段18は、張込状態を少なくとも2状態に検出
する。この実施例では、検出手段18は、第14図に示す如
く3状態に検出する。即ち、検出手段18は、乾燥機2に
運転しているが穀粒Cが張込まれていない場合にはS1の
如く小さな電圧を出力しあるいは出力せず、張込量が満
量未満の場合にはS2の如く出力し、張込量が満量の場合
には堆積した穀粒Cにより衝突の衝撃が吸収されてS3の
如く少許低下した電圧を出力する。
The detection means 18 of this dry state detecting device is provided on the collision plate 26
When the grains C are accumulated as shown in FIG. 12, the grains C absorb the impact at the time of collision and reduce the output of the detecting means 18. For this reason,
The output of the detecting means 18 changes depending on the thickness t of the deposit as shown in FIG. 13, the output gradually decreases up to a certain thickness, and when the thickness is exceeded, the output sharply decreases. Due to this characteristic, the detecting means 18 detects the stake-in state in at least two states. In this embodiment, the detecting means 18 detects three states as shown in FIG. That is, the detecting means 18 outputs a small voltage or does not output a small voltage like S1 when the grain C is not stretched while the drying means 2 is operating, and when the stretched amount is less than the full amount. When the amount of swelling is full, the accumulated grain C absorbs the impact of collision and outputs a voltage slightly reduced as S3.

このように、張込状態を3状態に検出する穀粒状態検出
装置の検出手段18の出力する検出信号たる電圧を、穀粒
状態判定装置は、第9図について説明した如く、波形整
形回路である整流回路34で整流して積分回路36で振動の
強気に広じた直流電圧に変換することにより波形整形
し、制御回路38で張込状態を3状態に判定すべく、比較
する。即ち、穀粒状態判定装置は、処理手段たる制御回
路36により検出手段18の出力を比較して何れの張込状態
かを判定する。これにより、穀粒状態判定装置は、穀粒
状態検出装置の検出手段18の出力を利用して、張込状態
を3状態に判定し得るので、例えば判定した張込状態に
応じて乾燥機2を運転制御することが可能となる。ま
た、穀粒状態判定装置は、前述の如く信頼性の高い検出
手段18から入力する検出信号によって判定を処理するの
で、張込状態の判定を確実になし得て、例えば張込状態
に応じて乾燥機2の運転を制御し得て過乾燥等による被
害粒の発生を未然に防止することができる。
As described above, the grain state determination device determines the voltage, which is the detection signal output by the detection unit 18 of the grain state detection device that detects the squeezed state into three states, by the waveform shaping circuit as described with reference to FIG. The waveform is shaped by rectifying it by a certain rectifying circuit 34 and converting it into a DC voltage spread to the vibration strongness by the integrating circuit 36, and the control circuit 38 makes a comparison to determine the squeezed state into three states. That is, the grain state determination device compares the output of the detection means 18 by the control circuit 36 as the processing means and determines which of the stuck states. As a result, the grain state determination device can determine the stake-in state into three states by using the output of the detection unit 18 of the grain state detection device. Therefore, for example, the dryer 2 can be determined according to the determined stake-in state. Can be controlled. Further, since the grain state determination device processes the determination by the detection signal input from the highly reliable detection means 18 as described above, it is possible to reliably determine the stuck state, for example, depending on the stuck state. The operation of the dryer 2 can be controlled to prevent the generation of damaged particles due to overdrying or the like.

第15〜20図は、第2発明の第2実施例を示すものであ
る。この第2実施例は、穀粒の堆積状態を検出し判定す
るものである。
15 to 20 show a second embodiment of the second invention. The second embodiment is for detecting and determining the accumulation state of grains.

堆積状態を検出するために、第15〜17図に示す如く、乾
燥機2を構成する貯留部4内の穀粒Cの堆積高さ方向に
複数個の穀粒状態検出装置の検出手段18を設ける。これ
ら検出手段18は、例えば第15図の如く貯留部4内を落下
される穀粒Cに対向する乾燥機板40の一部を衝突板26と
するとともに乾燥機2の外側に堆積高さ方向に複数個設
ける。あるいは、検出手段18は、第16図の如く、貯留部
4内を落下される穀粒Cに対向させて側板40に堆積高さ
方向に取付板44の設けるとともにこの取付板44の一部を
衝突板26とし、取付板44に堆積高さ方向に複数個設けて
も良い。さらには、検出手段18は、第17図の如く貯留部
4内を落下される穀粒Cに対向する乾燥機側板40の一部
を衝突板26とするとともに乾燥機2の外側に堆積高さ方
向に複数個設け、最上方の高さに位置する検出手段18を
最高堆積高さの位置よりも上方に、例えば上部横送機構
12の出口部に対向させて、設けても良い。
In order to detect the accumulation state, as shown in FIGS. 15 to 17, the detection means 18 of a plurality of grain state detection devices are provided in the accumulation height direction of the grains C in the storage unit 4 constituting the dryer 2. Set up. These detecting means 18 use, for example, as shown in FIG. 15, a part of the dryer plate 40 facing the grain C falling in the storage part 4 as the collision plate 26 and the outside of the dryer 2 in the stacking height direction. Provide a plurality of them. Alternatively, as shown in FIG. 16, the detecting means 18 provides the side plate 40 with a mounting plate 44 in the stacking height direction so as to face the falling grain C in the storage section 4 and partially mounts this mounting plate 44. A plurality of collision plates 26 may be provided on the mounting plate 44 in the stacking height direction. Further, as shown in FIG. 17, the detection means 18 uses a part of the dryer side plate 40 facing the grain C falling in the storage section 4 as the collision plate 26 and at the outside of the dryer 2 the stacking height. A plurality of detection means 18 provided in the uppermost direction are provided above the position of the maximum stacking height, for example, the upper transverse feeding mechanism.
It may be provided so as to face the 12 outlets.

このように、穀粒状態検出装置は、第17図の如く最上方
の検出手段18を最高堆積高さの位置よりも上方に設ける
ことにより、前記上部横送機構12の動作が正常か否かを
確認することができ、また最上方の検出手段48の出力の
みが大きく他の下方の検出手段18の出力が小さい場合手
に満量の堆積状態を検出することができる。
Thus, the grain state detecting device, by providing the uppermost detection means 18 above the position of the maximum stacking height as shown in FIG. 17, whether the operation of the upper transverse transport mechanism 12 is normal or not. Can be confirmed, and when only the output of the uppermost detection means 48 is large and the output of the other lower detection means 18 is small, it is possible to detect the full accumulation state by hand.

これら複数個の検出手段18は、穀粒Cが堆積せず衝突板
26が露出していると衝突板26に衝突する穀粒Cにより大
きな電圧を出力し、穀粒Cが堆積して衝突板26が埋設さ
れると穀粒Cが衝突時の衝撃を吸収して小さな電圧を出
力しあるいは出力しなくなる。これにより、各検出手段
18は、第20図の如く下方の検出手段18から順次に出力を
低下し、堆積状態を検出し得る。
The plurality of detection means 18 are arranged so that the grain C does not accumulate and the collision plate
When 26 is exposed, a larger voltage is output to the grain C that collides with the collision plate 26, and when the grain C accumulates and the collision plate 26 is buried, the grain C absorbs the impact at the time of collision. Outputs a small voltage or stops outputting. By this, each detection means
18, the output can be sequentially decreased from the lower detecting means 18 as shown in FIG. 20, and the deposition state can be detected.

これら穀粒状態検出装置の検出手段18の出力する検出信
号たる電圧を、穀粒状態判定装置は、第18図の如く切換
回路46により切換えて、例えば前述整流回路と積分回路
とよりなる波形整形回路48に入力し、波形整形した直流
電圧の出力を制御回路38に入力して堆積状態を判定すべ
く比較する。即ち、穀粒状態判定装置は、制御回路38か
ら切換回路46に切換信号を出力し、各検出手段18を順次
に切換えてその出力を波形整形回路48を介して制御回路
38に入力させ、出力の低下した検出手段18と高い出力の
検出手段18と比較して穀粒Cの堆積状態を判定する。或
いは、第19図の如く、切換回路46を設けずに各検出手段
18の出力する電圧をそれぞれの波形整形回路48により波
形整形して制御回路38に入力させ、穀粒Cの堆積状態を
判定することもできる。
The voltage, which is the detection signal output by the detecting means 18 of these grain state detecting devices, is switched by the switching circuit 46 as shown in FIG. The output of the DC voltage which has been input to the circuit 48 and whose waveform has been shaped is input to the control circuit 38 for comparison in order to judge the deposition state. That is, the grain state determination device outputs a switching signal from the control circuit 38 to the switching circuit 46, sequentially switches each detecting means 18, and outputs the output through the waveform shaping circuit 48 to the control circuit.
38, and the accumulation state of the grain C is determined by comparing the detection means 18 having a reduced output with the detection means 18 having a high output. Alternatively, as shown in FIG. 19, each detecting means is not provided with the switching circuit 46.
It is also possible to determine the deposition state of the grain C by waveform-shaping the voltage output from 18 by each waveform shaping circuit 48 and inputting it to the control circuit 38.

ところで、第15・16図の如く、穀粒状態検出装置は、全
ての検出手段18が最高堆積高さ位置よりも下に設けてあ
ると、乾燥機2は運転しているが穀粒Cが張込まれてい
ない場合に検出手段18の出力が全て小さくなるので、穀
粒Cが堆積しているものと誤検出することがある。そこ
で、穀粒状態判定装置は、検出手段18により、乾燥機2
は運転しているが穀粒Cが張込まれていない場合、穀粒
Cは張込まりているが衝突板26が埋設されていない場
合、穀粒Cが張子まれていて衝突板26を埋設している場
合、の3状態を検出し、処理手段により判定する必要が
ある。
By the way, as shown in FIGS. 15 and 16, in the grain state detecting device, if all the detecting means 18 are provided below the maximum stacking height position, the dryer 2 is operating but the grain C is Since all the outputs of the detecting means 18 become small when the grain C is not stuck, it may be erroneously detected that the grain C is accumulated. Therefore, the grain state determination device uses the detection unit 18 to cause the dryer 2 to
Is operating but the grain C is not stretched, the grain C is stretched but the collision plate 26 is not buried, the grain C is stretched and the collision plate 26 is buried. If so, it is necessary to detect the three states of and perform the determination by the processing means.

ここで、検出手段18は、前述の如く穀粒Cの堆積厚さに
より出力が変化し、ある厚さまでは出力が緩慢に低下
し、その厚さを越えると出力は急激に低下する。これに
より、検出手段18は、乾燥機2は運転しているが穀粒C
が張込まれていない場合に小さな電圧を出力しあるいは
出力せず、穀粒Cは張込まれているが衝突板26が埋設さ
れていない場合に大きな電圧を出力し、穀粒Cが張込ま
れていて衝突板26を埋設してい場合に堆積した穀粒Cに
より衝突の衝撃を吸収されて少許低下した電圧を出力す
る。
Here, as described above, the output of the detecting means 18 changes depending on the deposition thickness of the grain C, the output gradually decreases up to a certain thickness, and the output sharply decreases when the thickness is exceeded. As a result, the detecting means 18 operates the dryer 2 but operates the grain C.
When the grain C is not stretched, a small voltage is output or not output, and when the grain C is stretched but the collision plate 26 is not buried, a large voltage is output and the grain C is stretched. When the collision plate 26 is buried and the collision plate 26 is buried, the impact of the collision is absorbed by the grain C accumulated and a voltage slightly reduced is output.

穀粒状態判定装置は、堆積状態を3状態に検出する穀粒
状態検出装置の検出手段18の出力する検出信号たる電圧
を、前記第18・19図により説明した如く波形整形回路48
により直流電圧に波形整形し、制御回路38により前述の
如く堆積状態を3状態に判定すべく、比較する。即ち、
穀粒状態判定装置は、検出手段18の出力を比較して何れ
の堆積状態かを判定する。これにより、穀粒状態判定装
置は、堆積状態を、乾燥機2は運転しているが穀粒Cが
張込まれていない場合、穀粒Cは張込まれているが衝突
下26が埋設されていない場合、穀粒Cが張込まれていて
衝突板26を埋設している場合、の3状態に判定し得るの
で、例えば制御回路38の出力により判定した堆積状態に
応じて乾燥機2を運転制御することが可能となる。
The grain state judging device determines the voltage, which is the detection signal output by the detecting means 18 of the grain state detecting device for detecting the accumulation state in three states, as described with reference to FIGS.
Then, the waveform is shaped into a DC voltage by the control circuit 38, and the control circuit 38 makes a comparison to determine the deposition state into three states as described above. That is,
The grain state determination device compares the outputs of the detection means 18 to determine which accumulation state. As a result, the grain state determination device is in the piled state, and when the dryer 2 is operating but the grain C is not stretched, the grain C is stretched but the under collision 26 is buried. Otherwise, when the grain C is stretched and the collision plate 26 is buried, it is possible to determine the three states of, for example, the dryer 2 is set according to the accumulation state determined by the output of the control circuit 38. The operation can be controlled.

また、穀粒状態判定装置は、前述の如く信頼性の高い穀
粒状態検出装置の検出手段18から入力する検出信号によ
り判定を処理するので、堆積状態の判定を確実になし得
て、例えば堆積状態に応じて最適の乾燥をなし得て過乾
燥等による被害粒の発生を未然に防止することができ
る。
Further, since the grain state determination device processes the determination by the detection signal input from the detection means 18 of the highly reliable grain state detection device as described above, it is possible to reliably determine the deposition state, for example, the deposition Optimum drying can be performed according to the condition, and damage particles due to overdrying can be prevented in advance.

第21〜27図は、第2発明の第3実指例を示すものであ
る。この第3実施例は、穀粒の搬送状態を検出し判定す
るものである。
21 to 27 show a third practical example of the second invention. The third embodiment is for detecting and determining the transportation state of grain.

搬送状態を検出するために、第21図に示す如く、乾燥部
6で乾燥した穀粒Cを所定量ずつ繰出す搬送機構たる繰
出バルブ14の出口部にあたる集穀部8の集穀板50の一部
を衝突板26とし、集穀部8の外側に穀粒状態検出装置の
検出手段18を設けている。
In order to detect the transport state, as shown in FIG. 21, the grain collecting plate 50 of the grain collecting unit 8 corresponding to the outlet of the feeding valve 14 serving as a transport mechanism that feeds the grain C dried in the drying unit 6 by a predetermined amount. Part of the collision plate 26 is provided, and the detecting means 18 of the grain state detecting device is provided outside the grain collecting unit 8.

前記繰出バルブ14により乾燥部6から集穀部8に間欠的
に繰出される穀粒Cは、集穀板50上に落下して衝突板26
に衝突する。この衝突で、検出手段18は第25図(a)の
如く電圧を出力する。穀粒状態判定装置は、この出力を
前記波形整形回路を構成する整流回路34により第25図
(b)の如く整流して積分回路36により第25図(c)の
如く振動の強さに応じた直流電圧に変換して波形整形
し、前記制御回路38により所定周期毎に比較して、搬送
状態を判定する。即ち、穀粒状態判定装置は、積分回路
36からの出力が継続して高い場合は、繰出バルブ14から
穀粒Cが落下して搬送されている判定する。一方、穀粒
状態判定装置は、積分回路36からの主力が所定周期以上
継続して低い場合は、繰出バルブ14から穀粒Cが落下せ
ず滞留していると判定する(第25図(d)および第26図
参照)。穀粒状態判定装置は、この穀粒Cの滞留を判定
した場合には、ブザやランプ等の警告手段(図示せず)
を作動させて運転者に警告を発し、あるいは乾燥機2の
運転を停止制御させることにより、運転者による常時の
搬送状態の監視作業を要することなく穀粒Cの滞留によ
る被害粒の発生を未然に防止して、自動的に且つ安全に
乾燥機2の運転を制御することが可能になる。もちろ
ん、前述の如く穀粒状態検出装置の検出手段18は耐久性
や防塵性が高く十分な信頼性を有し、構造も簡単で取付
けの位置設定の自由度も高めることができる。
The grain C intermittently fed from the drying unit 6 to the grain collecting unit 8 by the feeding valve 14 falls on the grain collecting plate 50 and collides with the collision plate 26.
Clash with. By this collision, the detecting means 18 outputs a voltage as shown in FIG. The grain state judging device rectifies this output by the rectifying circuit 34 constituting the waveform shaping circuit as shown in FIG. 25 (b) and by the integrating circuit 36 as shown in FIG. 25 (c) according to the strength of vibration. The DC voltage is converted into a DC voltage, the waveform is shaped, and the control circuit 38 compares the DC voltage with each other at predetermined intervals to determine the conveyance state. That is, the grain state determination device is the integration circuit
If the output from 36 continues to be high, it is determined that the grain C has fallen from the feeding valve 14 and is being conveyed. On the other hand, when the main force from the integration circuit 36 continues to be low for a predetermined period or more, the grain state determination device determines that the grain C has not fallen from the delivery valve 14 and remains (FIG. 25 (d. ) And Figure 26). The grain state determination device, when determining the retention of the grain C, is a warning means (not shown) such as a buzzer or a lamp.
Is activated to issue a warning to the driver or control the operation of the dryer 2 to be stopped, so that the generation of damaged grains due to the retention of the grains C can be prevented without requiring the driver to constantly monitor the transport state. Therefore, the operation of the dryer 2 can be automatically and safely controlled. Of course, as described above, the detection means 18 of the grain state detection device has high durability and dust resistance, has sufficient reliability, has a simple structure, and has a high degree of freedom in setting the mounting position.

また、搬送状態は、前述の搬送されている場合と滞留し
ている場合との2状態だけでなく、穀粒Cが張込まれて
いず搬送されていない場合と、穀粒Cが張込まれて搬送
されている場合と、穀粒Cが滞留している場合との3状
態に、第27図の如く検出手段18の出力から検出し判定す
ることもできる。これにより、搬送状態に応じてより的
確に乾燥機2の運転を制御することが可能になる。
In addition, the transportation state is not limited to the above-mentioned two states, that is, the case where the grain C is transported and the state where the grain C is retained, and the case where the grain C is not stretched and is not transported and the grain C is stretched. It is also possible to judge by detecting from the output of the detecting means 18 in three states, that is, the case where the grains C are conveyed and the case where the grains C are staying. As a result, it becomes possible to more accurately control the operation of the dryer 2 according to the transport state.

なお、検出手段18は、前記繰出バルブ14の出口部の他
に、第22図の如く下部横送機構16の出口部に設け、ある
いは上部横送機構12の出口部(図示せず)に設けること
もできる。また、検出手段18は、第23図の如くスロワ52
の出口部に設け、さらに第24図の如く複数台の乾燥機2
を設置した場合におけるホッパ54の出口部やベルトコン
ベヤ56の出口部に設けることもできる。このように、多
様な搬送機構の搬送状態を検出し判定することにより、
穀粒Cの滞留による被害粒の発生を未然に防止し得てよ
り的確に乾燥機2の運転を制御することが可能になる。
The detecting means 18 is provided at the outlet of the lower transverse feed mechanism 16 as shown in FIG. 22 or at the outlet of the upper transverse feed mechanism 12 (not shown) in addition to the outlet of the feeding valve 14. You can also In addition, the detecting means 18 has a thrower 52 as shown in FIG.
Installed at the exit of the dryer, and as shown in Fig. 24, a plurality of dryers 2
It can also be provided at the exit of the hopper 54 or the exit of the belt conveyor 56 when installed. In this way, by detecting and determining the transport state of various transport mechanisms,
It is possible to prevent the generation of damaged grains due to the retention of the grains C, and it is possible to more accurately control the operation of the dryer 2.

[発明の効果] 以上詳細に説明した如く、この発明の第1発明の構成に
よれば、乾燥機を構成する板状部材からなる衝突板の外
側の密封空間内に振動方向に変位可能に支持した圧電素
子からなる検出手段を、循環する穀粒に衝突面を対向さ
せて穀粒の循環途中に設けている。このように、機械的
な作動部分を有しない圧電素子を前記衝突板の外側の密
封空間内に支持しているので構造が簡単であり、しかも
耐久性や塵埃に対する防塵性が高いので信頼性を高め得
て、取付けが容易で位置設定の自由度も高くし得る。ま
た、乾燥機を構成する板状部材を衝突板としているので
特別に衝突板を必要とせず、取付位置の自由度を大きく
し得て、安価に検出装置を構成することができ、穀粒が
循環する部位の衝突板の外側に設けているので穀粒の流
れに障害となることもなく、防塵構造により信頼性を高
め得て、保守・点検も容易にすることができる。
[Effects of the Invention] As described in detail above, according to the configuration of the first aspect of the present invention, the dryer is supported so as to be displaceable in the vibration direction inside the sealed space outside the collision plate formed of the plate-shaped members that constitute the dryer. The detecting means including the piezoelectric element is provided in the middle of the circulation of the grain with the collision surface facing the circulating grain. As described above, since the piezoelectric element having no mechanical operation part is supported in the sealed space outside the collision plate, the structure is simple, and the durability and the dustproofness against dust are high, so that the reliability is improved. It can be increased in height, easy to install, and more flexible in position setting. Further, since the plate-shaped member that constitutes the dryer is the collision plate, a collision plate is not particularly required, the degree of freedom of the mounting position can be increased, and the detection device can be configured at low cost, and the grain is Since it is provided on the outside of the collision plate in the circulating portion, it does not hinder the flow of grains, and the dust-proof structure can improve reliability and facilitate maintenance and inspection.

また、この発明の第2発明の構成によれば、検出手段か
ら入力する検出信号を波形整形回路により直流電圧に波
形整形し、この直流電圧を制御回路により比較して穀粒
状態を判定すべく処理する処理手段を設けている。この
ように、信頼性の高い検出手段から入力する検出信号を
処理することによって穀粒状態を判定するので、被害粒
の発生を未然に防止すべき穀粒状態の判定を確実になす
ことができる。これにより、穀粒状態に応じて乾燥機の
運転を制御することが可能になる。
Further, according to the configuration of the second aspect of the present invention, the detection signal input from the detection means is shaped into a DC voltage by the waveform shaping circuit, and the DC voltage is compared by the control circuit to determine the grain state. A processing means for processing is provided. In this way, since the grain state is determined by processing the detection signal input from the highly reliable detection means, it is possible to reliably determine the grain state that should prevent the occurrence of damaged grains. . This makes it possible to control the operation of the dryer according to the grain state.

【図面の簡単な説明】[Brief description of drawings]

第1〜第8図は穀粒状態検出装置の実施例を示し、第1
図は循環型穀物乾燥機の概略構成図、第2図は検出手段
の断面図、第3図は検出手段の出力電圧波形図、第4図
は圧電素子の概略構成図、第5図は圧電素子の出力特性
図、第6図は衝撃による圧電素子の出力減衰特性図、第
7図は穀粒の衝撃による圧電素子の出力特性図、第8図
(a)(b)は回路構成図及び波形図である。第9図
は、穀粒状態判定装置の基本構成を示す回路構成図及び
波形図である。第10〜14図は穀粒状態判定装置の第1実
施例を示し、第10図は側板に検出手段を設けた乾燥機の
概略断面図、第11図は取付板に検出手段を設けた乾燥機
の概略断面図、第12図は衝突板に穀粒が堆積した状態の
断面図、第13図は穀粒の堆積状態における検出手段の出
力特性図、第14図は穀粒の堆積状態における検出手段の
出力電圧波形図である。第15〜20図は穀粒状態判定装置
の第2実施例を示し、第15図は堆積高さ方向に複数個の
検出手段を側板に設けた乾燥機の概略断面図、第16図は
堆積高さ方向に複数個の検出手段を取付板に設けた乾燥
機の概略断面図、第17図は最高堆積高さよりも上方に最
上方の検出手段を設けた乾燥機の概略断面図、第18図は
穀粒状態判定装置の第2実施例における回路構成図、第
19図は穀粒状態判定装置の第2実施例における他の回路
構成図、第20図は堆積高さ方向に設けた複数個の検出手
段の出力電圧特性図である。第21〜27図は穀粒状態判定
装置の第3実施例を示し、第21図は繰出バルブの出口部
に検出手段を設けた乾燥機の概略断面図、第22図は検出
手段を設けた下部横送機構の概略側面図、第23図は検出
手段を設けたスロワの概略側面図、第24図は検出手段を
設けたベルトコンベヤの概略側面図、第25図(a)〜
(d)は各出力波形と判定とのタイムチャート、第26図
は穀粒の搬送状態における検出手段の出力特性図、第27
図は穀粒の搬送状態における検出手段の出力電圧波形図
である。 図において、2は循環型穀物乾燥機、4は貯留部、6は
乾燥部、8は集穀部、10は揚穀機、12は上部横送機構、
14は繰出バルブ、16は下部横送機構、18は検出手段、24
は板状部材、26は衝突板、28は密封空間、30は圧電素
子、34は整流回路、36は積分回路、38は制御回路、40は
側板、42は取付板、44は取付板、46は切換回路、48は波
形整形回路、50は集穀板、52はスロワ、54はホッパ、56
はベルトコンベヤである。
1 to 8 show an embodiment of a grain state detecting device, and
FIG. 2 is a schematic configuration diagram of a circulation type grain dryer, FIG. 2 is a sectional view of detection means, FIG. 3 is an output voltage waveform diagram of detection means, FIG. 4 is a schematic configuration view of a piezoelectric element, and FIG. 6 is an output characteristic diagram of the piezoelectric element due to impact, FIG. 7 is an output characteristic diagram of the piezoelectric element due to impact of the grain, and FIGS. 8A and 8B are circuit configuration diagrams and It is a waveform diagram. FIG. 9 is a circuit configuration diagram and a waveform diagram showing the basic configuration of the grain state determination device. 10 to 14 show a first embodiment of the grain state judging device, FIG. 10 is a schematic sectional view of a dryer in which a side plate is provided with a detection means, and FIG. 11 is a drying in which a mounting plate is provided with a detection means. Fig. 12 is a schematic cross-sectional view of the machine, Fig. 12 is a cross-sectional view of the state in which grains are deposited on the collision plate, Fig. 13 is an output characteristic diagram of the detection means in the state of grain accumulation, and Fig. 14 is a state of grain accumulation. It is an output voltage waveform diagram of a detection means. FIGS. 15 to 20 show a second embodiment of the grain state judging device, FIG. 15 is a schematic sectional view of a dryer in which a plurality of detecting means are provided on a side plate in the stacking height direction, and FIG. 16 is a stacking device. FIG. 17 is a schematic sectional view of a dryer in which a plurality of detecting means are provided on a mounting plate in the height direction, and FIG. 17 is a schematic sectional view of a dryer in which an uppermost detecting means is provided above the maximum stacking height, FIG. 1 is a circuit configuration diagram of a second embodiment of the grain state determination device,
FIG. 19 is another circuit configuration diagram in the second embodiment of the grain state determination device, and FIG. 20 is an output voltage characteristic diagram of a plurality of detecting means provided in the stacking height direction. 21 to 27 show a third embodiment of the grain state judging device, FIG. 21 is a schematic sectional view of a dryer in which a detecting means is provided at the outlet of the feeding valve, and FIG. 22 is provided with a detecting means. FIG. 23 is a schematic side view of a lower traverse mechanism, FIG. 23 is a schematic side view of a thrower provided with detection means, FIG. 24 is a schematic side view of a belt conveyor provided with detection means, and FIG.
(D) is a time chart of each output waveform and determination, FIG. 26 is an output characteristic diagram of the detecting means in the state of transportation of the grain, 27th
The figure is an output voltage waveform diagram of the detection means in the transportation state of the grain. In the figure, 2 is a circulation type grain dryer, 4 is a storage section, 6 is a drying section, 8 is a grain collecting section, 10 is a grain lifting machine, 12 is an upper transverse feeding mechanism,
14 is a feeding valve, 16 is a lower traverse mechanism, 18 is detection means, 24
Is a plate member, 26 is a collision plate, 28 is a sealed space, 30 is a piezoelectric element, 34 is a rectifying circuit, 36 is an integrating circuit, 38 is a control circuit, 40 is a side plate, 42 is a mounting plate, 44 is a mounting plate, 46. Is a switching circuit, 48 is a waveform shaping circuit, 50 is a grain collecting plate, 52 is a thrower, 54 is a hopper, 56
Is a belt conveyor.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】穀粒を循環させつつ乾燥させる循環型穀物
乾燥機の穀粒状態検出装置において、前記循環する穀粒
の衝突により生ずる振動から穀粒状態を検出すべく前記
循環する穀粒を衝突させる前記乾燥機の一構成部材であ
る板状部材からなる衝突板と前記乾燥機の穀粒が循環す
る部位の前記衝突板の外側に、その衝突板の振動方向に
変位可能な状態で、密封空間内に前記衝突板と略平行
に、空間を介して支持した圧電素子とからなる検出手段
を前記穀粒の循環途中に設けたことを特徴とする循環型
穀物乾燥機の穀粒状態検出装置。
1. A grain state detecting device for a circulation type grain dryer which dries while circulating the grain, wherein the circulating grain is detected in order to detect the grain state from vibration generated by collision of the circulating grain. Outside the collision plate of a collision plate and a grain circulation of the dryer that is a plate-shaped member that is one component of the dryer to be collided, in a state that can be displaced in the vibration direction of the collision plate, Detecting the grain state of a circulation type grain dryer, characterized in that a detection means consisting of a piezoelectric element supported through a space is provided substantially parallel to the collision plate in a sealed space during the circulation of the grain. apparatus.
【請求項2】穀粒を循環させつつ乾燥させる循環型穀物
乾燥機の穀粒状態検出装置を利用した穀粒状態判定装置
において、前記循環する穀粒の衝突により生ずる振動か
ら穀粒状態を検出すべく前記循環する穀粒を衝突させる
前記乾燥機の一構成部材である板状部材からなる衝突板
と前記乾燥機の穀粒が循環する部位の前記衝突板の外側
に、この衝突板の振動方向に変位可能な状態で、密封空
間内に前記衝突板と略平行に、空間を介して支持した圧
電素子とからなる穀粒状態検出装置の検出手段を前記穀
粒の循環途中に設け、この穀粒状態検出装置の検出手段
から入力する検出信号を波形整形回路により直流電圧に
波形整形しこの直流電圧を制御回路により比較して穀粒
状態を判定すべく処理する処理手段を設けたことを特徴
とする循環型穀物乾燥機の穀粒状態検出装置を利用した
穀粒状態判定装置。
2. A grain state determination device using a grain state detection device of a circulation type grain dryer that circulates and dries grains while detecting the grain state from vibration generated by collision of the circulating grains. In order to make the circulating grains collide with each other, a collision plate formed of a plate-shaped member that is one component of the dryer and a vibration of the collision plate on the outside of the collision plate at the portion where the grains of the dryer circulate. In a state of being displaceable in a direction, substantially parallel to the collision plate in the sealed space, the detection means of the grain state detection device consisting of a piezoelectric element supported through the space is provided in the middle of circulation of the grain, The detection signal input from the detection means of the grain state detection device is subjected to waveform shaping by the waveform shaping circuit into a DC voltage, and the processing means is provided for processing the DC voltage by the control circuit to compare and determine the grain state. Characteristic recycling grain Grain state determining device using the kernel state detecting device 燥機.
【請求項3】穀粒を循環させつつ乾燥させる循環型穀物
乾燥機の穀粒状態検出装置を利用した穀粒状態判定装置
において、この乾燥機の貯留部内に落下される穀粒の衝
突により生ずる振動から穀粒の張込状態を検出すべく前
記貯留部内に落下される穀粒を衝突させる前記乾燥機の
一構成部材である乾燥機側壁からなる衝突板と前記乾燥
機の穀粒が落下される貯留部の前記衝突板の外側に、こ
の衝突板の振動方向に変位可能な状態で、密封空間内に
前記衝突板と略平行に、空間を介して支持した圧電素子
とからなる穀粒状態検出装置の検出手段を前記貯留部内
の穀粒の最高堆積高さに位置させて設け、この穀粒状態
検出装置の検出手段から入力する検出信号を波形整形回
路により直流電圧に波形整形しこの直流電圧を制御回路
により比較して前記貯留部内に落下される穀粒の張込状
態を判定すべく処理する処理手段を設けたことを特徴と
する特許請求の範囲第2項に記載の循環型穀物乾燥機の
穀粒状態検出装置を利用した穀粒状態判定装置。
3. A grain state determination device using a grain state detection device of a circulation type grain dryer that circulates and dries grains while causing the grains to circulate and is caused by collision of grains dropped in a storage part of the dryer. Collision plate consisting of a dryer side wall which is one component of the dryer for colliding the grains dropped into the storage section to detect the state of grain infiltration from vibration and the grains of the dryer are dropped. A state of a grain consisting of a piezoelectric element supported outside the collision plate of the storage part in a sealed space, in a state of being displaceable in the vibration direction of the collision plate and substantially parallel to the collision plate through a space. The detection means of the detection device is provided at the highest accumulation height of the grains in the storage section, and the detection signal input from the detection means of the grain state detection device is waveform-shaped by a waveform shaping circuit into a DC voltage. Before comparing the voltage with the control circuit A grain state detecting device for a circulating grain dryer according to claim 2, further comprising: a processing unit that processes to determine a stuck state of the grain dropped into the storage unit. Used grain condition determination device.
【請求項4】穀粒を循環させつつ乾燥させる循環型穀物
乾燥機の穀粒状態検出装置を利用した穀粒状態判定装置
において、この乾燥機の貯留部内に落下される穀粒の衝
突により生ずる振動から穀粒の堆積状態を検出すべく前
記貯留部内に落下される穀粒を衝突させる前記乾燥機の
一構成部材である乾燥機側壁からなる衝突板と前記乾燥
機の穀粒が落下される貯留部の前記衝突板の外側に、こ
の衝突板の振動方向に変位可能な状態で、密封空間内に
前記衝突板と略平行に、空間を介して支持した圧電素子
とからなる穀粒状態検出装置の検出手段を前記貯留部内
の穀粒の堆積高さ方向に複数個設け、これら複数個の穀
粒状態検出装置の検出手段から入力する検出信号を波形
整形回路により直流電圧に波形整形しこの直流電圧を制
御回路により比較して前記貯留部内に落下される穀粒の
堆積状態を判定すべく処理する処理手段を設けたことを
特徴とする特許請求の範囲第2項に記載の循環型穀物乾
燥機の穀粒状態検出装置を利用した穀粒状態判定装置。
4. A grain state determination device using a grain state detection device of a circulation type grain dryer which circulates and dries grains, which is caused by collision of grains dropped in a storage part of the dryer. The collision plate formed of a side wall of a dryer, which is a component of the dryer that collides the grains that are dropped into the storage unit to detect the accumulation state of the grains from the vibration, and the grains of the dryer are dropped. Detecting a grain state, which is formed outside the collision plate of the storage portion and is movably in the vibration direction of the collision plate, and includes a piezoelectric element supported in a sealed space substantially parallel to the collision plate through a space. A plurality of detection means of the device are provided in the accumulation height direction of the grain in the storage part, and the detection signal input from the detection means of the plurality of grain state detection devices is waveform shaped into a DC voltage by a waveform shaping circuit. DC voltage comparison by control circuit 3. A grain state detecting device for a circulating grain dryer according to claim 2, further comprising processing means for performing a process for determining a state of accumulation of grains falling into the storage section. Grain state determination device using.
【請求項5】穀粒を循環させつつ乾燥させる循環型穀物
乾燥機の穀粒状態検出装置を利用した穀粒状態判定装置
において、この乾燥機の搬送機構により搬送される穀粒
の衝突により生ずる振動から穀粒の搬送状態を検出すべ
く前記搬送機構の出口部から搬出される穀粒を衝突させ
る前記乾燥機の一構成部材である乾燥機側壁からなる衝
突板と前記乾燥機の穀粒が落下される貯留部の前記衝突
板の外側に、この衝突板の振動方向に変位可能な状態
で、密封空間内に前記衝突板と略平行に、空間を介して
支持した圧電素子とからなる穀粒状態検出装置の検出手
段を前記搬送機構の出口部に設け、この穀粒状態検出装
置の検出手段から入力する検出信号を波形整形回路によ
り直流電圧に波形整形しこの直流電圧を制御回路により
比較して前記搬送機構により搬送される穀粒の搬送状態
を判定すべく処理する処理手段を設けたことを特徴とす
る特許請求の範囲第2項に記載の循環型穀物乾燥機の穀
粒状態検出装置を利用した穀粒状態判定装置。
5. A grain state determination device using a grain state detection device of a circulation type grain dryer that circulates and dries grains, which is caused by collision of grains transported by a transport mechanism of the dryer. The grain of the dryer and the collision plate consisting of a dryer side wall which is one component of the dryer that collides the grain carried out from the outlet of the transport mechanism to detect the transportation state of the grain from vibration. A grain composed of a piezoelectric element that is supported outside the collision plate of the storage part that is dropped in a sealed space in a state that is displaceable in the vibration direction of the collision plate and is substantially parallel to the collision plate through a space. The detection means of the grain state detection device is provided at the outlet of the transport mechanism, and the detection signal input from the detection means of the grain state detection device is shaped into a DC voltage by a waveform shaping circuit, and this DC voltage is compared by a control circuit. Then the carrier 3. A grain using the grain state detection device of the circulating grain dryer according to claim 2, further comprising processing means for processing to determine the transport state of the grain transported by Grain state determination device.
JP61042809A 1986-03-01 1986-03-01 Grain state detection device for circulating grain dryer and grain state determination device using the grain state detection device Expired - Lifetime JPH0664015B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61042809A JPH0664015B2 (en) 1986-03-01 1986-03-01 Grain state detection device for circulating grain dryer and grain state determination device using the grain state detection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61042809A JPH0664015B2 (en) 1986-03-01 1986-03-01 Grain state detection device for circulating grain dryer and grain state determination device using the grain state detection device

Publications (2)

Publication Number Publication Date
JPS62203059A JPS62203059A (en) 1987-09-07
JPH0664015B2 true JPH0664015B2 (en) 1994-08-22

Family

ID=12646284

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61042809A Expired - Lifetime JPH0664015B2 (en) 1986-03-01 1986-03-01 Grain state detection device for circulating grain dryer and grain state determination device using the grain state detection device

Country Status (1)

Country Link
JP (1) JPH0664015B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104535646B (en) * 2014-12-17 2017-05-24 河南工业大学 Method for detecting imperfection of food grains
CN107407520B (en) * 2015-03-31 2020-08-14 株式会社久保田 Dryer, support device, and agricultural support system

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5661896U (en) * 1979-10-17 1981-05-26
JPS604820A (en) * 1983-06-23 1985-01-11 Nouken Kogyo Kk Small sized vibration type level detector
JPS6124977A (en) * 1984-07-13 1986-02-03 井関農機株式会社 Detector for flow-down of cereal grain in cereal grain drier
JPS6269085A (en) * 1985-09-20 1987-03-30 井関農機株式会社 Cereal drying controller

Also Published As

Publication number Publication date
JPS62203059A (en) 1987-09-07

Similar Documents

Publication Publication Date Title
JPH0664015B2 (en) Grain state detection device for circulating grain dryer and grain state determination device using the grain state detection device
CN208771923U (en) A kind of household batteries screening plant
CN212197220U (en) Vibration dish feedway
KR200405458Y1 (en) Apparatus for sorting aggregate
CN216374687U (en) Lithium battery transportation device with fixing function
CN213706704U (en) Conveying chute
JPH0524428B2 (en)
KR101235631B1 (en) Apparatus for measuring a level
CN113788297A (en) Belt conveyor with cleaning part
CN209736093U (en) Large-size sorting trolley
CN216402690U (en) Conveyer with high unloading efficiency
CN218909019U (en) Battery discharging mechanism
CN215542766U (en) Efficient color sorter for tea processing
CN216857434U (en) Chip sorting machine with dustproof and pushing functions
CN216051058U (en) Engineering supervision is with concrete detection device who has dust containing box
CN217296437U (en) Discharge mechanism that large-scale sorter was used
CN217955828U (en) Feeding device and semiconductor equipment
CN218641621U (en) Automatic waste discharge device of trimmer for producing lamp strip
CN107876386A (en) Screen cloth sensor-based system
CN211079073U (en) Novel cooling body of living beings granulation machine
CN214975604U (en) Barite screening device
JP2004018245A (en) Bucket conveyor
CN216037462U (en) Automatic control blanking device for mud bin
CN219723676U (en) Patch capacitor sorting device
CN117129370B (en) Dust detection device and detection method for explosive logistics warehouse