JPH066394A - Encoding and modulating device - Google Patents

Encoding and modulating device

Info

Publication number
JPH066394A
JPH066394A JP5097292A JP5097292A JPH066394A JP H066394 A JPH066394 A JP H066394A JP 5097292 A JP5097292 A JP 5097292A JP 5097292 A JP5097292 A JP 5097292A JP H066394 A JPH066394 A JP H066394A
Authority
JP
Japan
Prior art keywords
signal
phase
amplitude
complex envelope
converter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5097292A
Other languages
Japanese (ja)
Other versions
JP3166871B2 (en
Inventor
Shigeru Tomisato
繁 冨里
Hiroshi Suzuki
博 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTT Docomo Inc
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
NTT Mobile Communications Networks Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp, NTT Mobile Communications Networks Inc filed Critical Nippon Telegraph and Telephone Corp
Priority to JP05097292A priority Critical patent/JP3166871B2/en
Publication of JPH066394A publication Critical patent/JPH066394A/en
Application granted granted Critical
Publication of JP3166871B2 publication Critical patent/JP3166871B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J19/00Accessories fitted to manipulators, e.g. for monitoring, for viewing; Safety devices combined with or specially adapted for use in connection with manipulators
    • B25J19/0075Means for protecting the manipulator from its environment or vice versa

Landscapes

  • Engineering & Computer Science (AREA)
  • Robotics (AREA)
  • Mechanical Engineering (AREA)
  • Error Detection And Correction (AREA)
  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)

Abstract

PURPOSE:To lower the amplitude variation and decrease the power consumption by converting an encoded signal into a modulated wave complex envelope, and suppressing the amplitude variation of a sample value and performing modulation. CONSTITUTION:A phase converter 11 converts the data series outputted by a convolutional encoder 82 into a signal phase phia. A phase difference detector 13 detects the phase difference between the signal phase phia at specific time ta and a signal phase at time tn-1 which is obtained one symbol before through a delay unit 12. A phase computing element 14 calculates the quantity Sa of signal phase variation by using the phase difference thetan and performs specific signal conversion corresponding to the calculated value to make the amplitude constant. Then the amplitude vairation is suppressed and an orthogonal modulator 84 performs modulation by using the continuous waveform of the complex envelope. Consequently. a nonlinear amplifier which has high power efficiency is usable, so the amplitude variation is reduced and the power consumption is reducible.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、ディジタル通信におい
て、畳み込み符号化方式とディジタル変調方式とを組み
合わせた変調方式をとる符号化変調装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a coding / modulating apparatus which adopts a modulation system in which a convolutional coding system and a digital modulation system are combined in digital communication.

【0002】[0002]

【従来の技術】符号化変調方式は、符号化利得が高いた
めに優れた伝送特性を実現することができる。たとえ
ば、トレリス符号化8相位相変調方式(Trellis-Coded
8 PhaseShift Keying:TC8PSK)は、QPSK方式に比
べて同じ帯域で理論的には3dB程度の符号化利得を得る
ことができる( G. Ungerboeck, " Channel coding wit
hmultilevel/phase signals",IEEE Trans.Inf. Theory,
vol.IT-28,No.1,pp55-67,Jan.1982) 。
2. Description of the Related Art A coded modulation system can realize excellent transmission characteristics because of its high coding gain. For example, Trellis-Coded 8-Phase Phase Modulation
8 PhaseShift Keying: TC8PSK) can theoretically obtain a coding gain of about 3 dB in the same band as QPSK (G. Ungerboeck, "Channel coding wit
hmultilevel / phase signals ", IEEE Trans.Inf. Theory,
vol.IT-28, No.1, pp55-67, Jan.1982).

【0003】図8は、従来のTC8PSK用符号化変調
装置の構成例を示すブロック図である。図において、入
力データは、シリアル/パラレル(S/P)変換器81
で2系列のデータ系列xn (x1n,x2n)に変換されて畳
み込み符号器82に入力される。畳み込み符号器82の
例としては上記の文献に示すものがあるが、その回路構
成を図9に示す。ここでは、3個の遅延回路(T)91
〜93と、2個の排他的論理和回路94,95により構
成し、その出力データ系列yn を (y0n, y1n,y2n
とすると、入出力間の関係は、 y0n=x1,n-1 …(1a) y1n=x1,n-2*x2n …(1b) y2n=x1n*x2,n-1 …(1c) となる。ただし、*は排他的論理和を表す。
FIG. 8 is a block diagram showing an example of the configuration of a conventional TC8PSK coding and modulating apparatus. In the figure, input data is a serial / parallel (S / P) converter 81.
Are converted into two data sequences x n (x 1n , x 2n ) and input to the convolutional encoder 82. An example of the convolutional encoder 82 is shown in the above document, and its circuit configuration is shown in FIG. Here, three delay circuits (T) 91
˜93 and two exclusive OR circuits 94 and 95, and the output data series y n is (y 0n , y 1n , y 2n )
Then, the relationship between the input and output is y 0n = x 1, n-1 (1a) y 1n = x 1, n-2 * x 2n (1b) y 2n = x 1n * x 2, n- It becomes 1 … (1c). However, * represents an exclusive OR.

【0004】畳み込み符号器82から出力されるデータ
系列yn は、IQ変換器83に入力されて変調波複素包
絡線信号I(t),Q(t) に変換される。その過程は、まず
nを図10に示す8相PSKの信号位相φn に写像す
る。ここで、φn とyn の関係は、 φn =−22.5°+45°an …(2) となる。ただし、 an =4y2n+2y1n+y0n …(3) である。
The data sequence y n output from the convolutional encoder 82 is input to the IQ converter 83 and converted into modulated wave complex envelope signals I (t) and Q (t). In the process, first, y n is mapped onto the signal phase φ n of 8-phase PSK shown in FIG. Here, the relationship between φ n and y n is φ n = −22.5 ° + 45 ° a n (2) However, a n = 4y 2n + 2y 1n + y 0n (3)

【0005】t=tn の時点における変調波複素包絡線
信号I(tn),Q(tn) は、振幅をrとすると、この信号位
相φn から I(tn)=rcos(φn) …(4a) Q(tn)=rsin(φn) …(4a) として求めることができる。これらの値からt=tn
外の時刻における波形を作って連続波形I(t),Q(t) を
生成する。なお、連続波形の生成方法としては、例えば
t=tn からt=tn+1 まではそれぞれI(tn)とQ(tn)
の値を用いて一定とする。
When the amplitude is r, the modulated wave complex envelope signals I (t n ) and Q (t n ) at the time point of t = t n are I (t n ) = r cos (φ) from this signal phase φ n. n) ... (4a) Q ( t n) = rsin (φ n) can be obtained as ... (4a). Waveforms at times other than t = t n are created from these values to generate continuous waveforms I (t) and Q (t). As a method of generating a continuous waveform, for example, from t = t n to t = t n + 1, I (t n ) and Q (t n ) are respectively generated.
It is made constant by using the value of.

【0006】IQ変換器83で得られた変調波複素包絡
線信号I(t),Q(t) は、直交変調器84に入力される。
直交変調器84では、発振器85から出力される局部発
振信号を用いた直交変調によって変調波を生成する。な
お、変調波の帯域を制限するために、変調波複素包絡線
信号I(t),Q(t) の帯域をロールオフ制限することがあ
る。図11は、ルートロールオフ(ロールオフ率0.5)で
帯域制限した従来のTC8PSK信号の信号空間軌跡を
示す。
The modulated wave complex envelope signals I (t) and Q (t) obtained by the IQ converter 83 are input to the quadrature modulator 84.
The quadrature modulator 84 generates a modulated wave by quadrature modulation using the local oscillation signal output from the oscillator 85. In order to limit the band of the modulated wave, the band of the modulated wave complex envelope signals I (t) and Q (t) may be roll-off limited. FIG. 11 shows a signal space locus of a conventional TC8PSK signal band-limited by the root roll-off (roll-off rate 0.5).

【0007】[0007]

【発明が解決しようとする課題】ところで、従来の符号
化変調装置から出力される符号化変調波には、図11に
示すように振幅変動が避けられない。このような振幅変
動がある変調波を送信する場合に、帯域を広げることな
く増幅するためには、送信用電力増幅器として線形性の
高いものが要求される。しかし、線形増幅器は、一般に
飽和領域で動作させるC級増幅器などの非線形増幅器に
比べて電力効率が低い。
By the way, in the coded modulation wave output from the conventional coded modulation device, the amplitude fluctuation is unavoidable as shown in FIG. When a modulated wave having such amplitude fluctuation is transmitted, in order to amplify the modulated wave without widening the band, a transmission power amplifier having high linearity is required. However, linear amplifiers are generally less power efficient than non-linear amplifiers such as class C amplifiers operating in the saturation region.

【0008】したがって、消費電力が制限される変調装
置では、符号化変調方式の使用が困難であった。すなわ
ち、電力効率の高い非線形増幅器の利用を可能とするに
は、符号化変調波の振幅変動を十分に抑圧することが不
可欠であり、また線形増幅器を用いる場合でもその電力
効率をいかに改善するかが課題であった。
Therefore, it has been difficult to use the coded modulation method in the modulation device whose power consumption is limited. In other words, it is essential to sufficiently suppress the amplitude fluctuation of the coded modulation wave in order to enable the use of a non-linear amplifier with high power efficiency, and how to improve the power efficiency even when using a linear amplifier. Was a challenge.

【0009】本発明は、符号化変調波の振幅変動を低く
抑え、後段の送信用電力増幅器において消費電力の低減
を図ることができる符号化変調装置を提供することを目
的とする。
An object of the present invention is to provide an encoding / modulating apparatus capable of suppressing the amplitude fluctuation of an encoded modulated wave and reducing the power consumption in the transmission power amplifier in the subsequent stage.

【0010】[0010]

【課題を解決するための手段】本発明は、入力データか
ら畳み込み符号化信号を生成する畳み込み符号化手段
と、前記畳み込み符号化信号を変調波複素包絡線サンプ
ル値に変換し、このサンプル値の振幅変動分を抑制して
から複素包絡線の連続波形を生成する信号変換手段と、
前記複素包絡線の連続波形を用いて変調を行う変調手段
とを備えたことを特徴とする。
According to the present invention, convolutional coding means for generating a convolutional coded signal from input data, and the convolutional coded signal is converted into a modulated wave complex envelope sample value, and the sampled value A signal conversion unit that generates a continuous waveform of a complex envelope after suppressing the amplitude variation,
And a modulation unit that performs modulation using a continuous waveform of the complex envelope.

【0011】[0011]

【作用】本発明は、畳み込み符号化信号を信号変換手段
が変調波複素包絡線サンプル値に変換し、さらにこのサ
ンプル値の振幅変動分を抑制する。その後、変調波複素
包絡線信号の連続波形に変換して変調処理を行うことに
より、符号化変調波の振幅変動を所定の範囲内に抑圧す
ることができる。
According to the present invention, the convolutionally coded signal is converted by the signal converting means into the modulated wave complex envelope sample value, and the amplitude variation of this sample value is suppressed. Then, the amplitude fluctuation of the coded modulated wave can be suppressed within a predetermined range by converting the modulated wave complex envelope signal into a continuous waveform and performing the modulation process.

【0012】[0012]

【実施例】図1は、本発明の第一実施例構成を示すブロ
ック図である。図において、シリアル/パラレル(S/
P)変換器81,畳み込み符号器82,直交変調器84
および発振器85は、従来のものと同様である。
1 is a block diagram showing the configuration of a first embodiment of the present invention. In the figure, serial / parallel (S /
P) converter 81, convolutional encoder 82, quadrature modulator 84
The oscillator 85 is the same as the conventional one.

【0013】本発明の特徴とするところは、本実施例で
は、従来のIQ変換器83に代わる信号変換手段とし
て、位相変換器11,遅延器(T)12,位相差検出器
13,位相演算器14,加算器15および波形変換器1
6を備え、振幅が常に一定になるような定振幅化TC8
PSK信号を出力させる構成にある。
The feature of the present invention lies in that in this embodiment, a phase converter 11, a delay device (T) 12, a phase difference detector 13, and a phase calculator are used as signal converting means in place of the conventional IQ converter 83. 14, adder 15 and waveform converter 1
A constant-amplification TC8 that includes 6 and has a constant amplitude.
It is configured to output a PSK signal.

【0014】位相変換器11は、畳み込み符号器82が
出力するデータ系列yn を図10に示す8相PSKの信
号位相φn に変換する。φn とyn の関係は、 (2)式お
よび(3)式に示す通りである。位相差検出器13は、時
刻tn の信号位相φn と、遅延器12を介して得られる
1シンボル前に相当する時刻tn-1 の信号位相φn-1
の位相差θn (ただし|θn|≦180°)を検出する。
The phase converter 11 converts the data sequence y n output from the convolutional encoder 82 into the 8-phase PSK signal phase φ n shown in FIG. The relationship between φ n and y n is as shown in equations (2) and (3). Phase difference detector 13, a signal phase phi n at time t n, the phase difference between the time t n-1 of the signal phase phi n-1 corresponding to before one symbol obtained through the delay unit 12 theta n ( However, | θ n | ≦ 180 °) is detected.

【0015】位相演算器14は、この位相差θn を用い
て、時刻tn-1+tm (0<tm≦tn−tn-1 )における
φn-1 からの信号位相変化量δm を計算する。例えば、
nの値が0から3に変化した場合には、従来のTC8
PSK信号では図2に点線で示すように信号が変化する
が、位相演算器14で算出した信号位相変化量δm に応
じて実線で示すように信号を変化させることにより、定
振幅化を実現することができる。位相演算器14におい
てφn-1 からδm を求める関数の一例として、シンボル
レートを1/TS 、ロールオフ率をαとしたときに、
The phase calculator 14 uses this phase difference θ n to change the signal phase from φ n-1 at time t n-1 + t m (0 <t m ≤t n -t n-1 ). Calculate δ m . For example,
When the value of a n changes from 0 to 3, the conventional TC8
In the PSK signal, the signal changes as shown by the dotted line in FIG. 2, but constant amplitude is realized by changing the signal as shown by the solid line in accordance with the signal phase change amount δ m calculated by the phase calculator 14. can do. As an example of a function for obtaining δ m from φ n-1 in the phase calculator 14, when the symbol rate is 1 / T S and the roll-off rate is α,

【0016】[0016]

【数1】 [Equation 1]

【0017】による二乗余弦関数がある。この関数を用
いた場合には位相変化が滑らかになり、スペクトルの狭
帯域化を図ることが可能となる。 (5)式による位相変化
の様子を図3に示す。なお、通常のTC8PSK信号は
位相変化が矩形となるが、これは(5) 式でα→0とした
場合に相当する。
There is a raised cosine function according to When this function is used, the phase change becomes smooth and it becomes possible to narrow the spectrum band. Figure 3 shows how the phase changes according to Eq. (5). Note that the normal TC8PSK signal has a rectangular phase change, which corresponds to the case of α → 0 in the equation (5).

【0018】加算器15では、この信号位相変化量δm
をφn-1 に加算して信号位相pnmを求める。また、θn
=180°のときには信号の回転方向が不定となるが、こ
の回転方向については、本実施例では1つ前の信号の回
転方向と同じとした。たとえば、an の値が0→1→5
と変化する場合は、図4に示すように1→5の回転方向
は0→1と同様に反時計回りとする。
In the adder 15, this signal phase change amount δ m
Is added to φ n−1 to obtain the signal phase p nm . Also, θ n
= 180 °, the rotation direction of the signal is indefinite, but this rotation direction is the same as the rotation direction of the signal immediately before in this embodiment. For example, the value of a n is 0 → 1 → 5
4 changes as shown in FIG. 4, the rotation direction of 1 → 5 is counterclockwise as in 0 → 1.

【0019】波形変換器16では、信号位相pnmから信
号振幅がrとなるような時刻tn-1+tm の時点におけ
る変調波複素包絡線信号I(tn-1+tm),Q(tn-1+tm)
は、振幅をrとすると、 I(tn-1+tm)=rcos(pnm) …(6a) Q(tn-1+tm)=rsin(pnm) …(6a) として求めることができる。これらの値から連続波形で
あるI(t),Q(t) を生成する。連続波形の生成方法は、
例えば、t=tn-1+tmからt=tn-1+tm+1まではそ
れぞれI(tn-1+tm)とQ(tn-1+tm)の値を用いて一定と
する。
In the waveform converter 16, the modulated wave complex envelope signals I (t n-1 + t m ), Q (at the time t n-1 + t m such that the signal amplitude becomes r from the signal phase p nm. t n-1 + t m )
Can be calculated as I (t n-1 + t m ) = r cos (p nm ) ... (6a) Q (t n-1 + t m ) = rsin (p nm ) ... (6a) where r is the amplitude. it can. From these values, continuous waveforms I (t) and Q (t) are generated. The continuous wave generation method is
For example, from t = t n-1 + t m to t = t n-1 + t m + 1 , the values of I (t n-1 + t m ) and Q (t n-1 + t m ) are used as constant values. To do.

【0020】直交変調器84では、この変調波複素包絡
線信号I(t),Q(t) を用いて直交変調し、変調波を生成
する。したがって、変調波の包絡線は一定となり、送信
用電力増幅器として電力効率の高いC級増幅器のような
非線形増幅器を使用することが可能となり、従来に比べ
て電力効率を改善することができる。
The quadrature modulator 84 quadrature-modulates the modulated wave complex envelope signals I (t) and Q (t) to generate a modulated wave. Therefore, the envelope of the modulated wave becomes constant, and a non-linear amplifier such as a class C amplifier having high power efficiency can be used as the power amplifier for transmission, and the power efficiency can be improved as compared with the conventional case.

【0021】図5は、本発明の第二実施例構成を示すブ
ロック図である。図において、シリアル/パラレル(S
/P)変換器81,畳み込み符号器82,直交変調器8
4および発振器85は、従来のものと同様である。
FIG. 5 is a block diagram showing the configuration of the second embodiment of the present invention. In the figure, serial / parallel (S
/ P) converter 81, convolutional encoder 82, quadrature modulator 8
4 and oscillator 85 are similar to conventional ones.

【0022】本実施例では、従来のIQ変換器83に代
える信号変換手段として、T/2サンプルIQ値変換器
51,振幅制限変換器52および補間波形生成器53を
備える構成にある。
In this embodiment, a T / 2 sample IQ value converter 51, an amplitude limit converter 52, and an interpolation waveform generator 53 are provided as signal converting means in place of the conventional IQ converter 83.

【0023】T/2サンプルIQ値変換器51では、T
/2ごとの帯域制限後の変調波複素包絡線信号I(t),Q
(t) のサンプル値を求める。振幅制限変換器52では、
許容する振幅の最小値Rmin を設定し、T/2サンプル
IQ値変換器51から出力されるサンプル値において振
幅がRmin より小さくなる場合に、そのサンプル値を補
正する。本実施例では、サンプル値I1,Q1に対して、
新たなサンプル値I2,Q2 を I2 =I1(Rmin/r1) …(7) Q2 =Q1(Rmin/r1) …(8) とする。ただし、 r1 =(I1 2+Q1 21/2 …(9) である。たとえば、図6に示すように、信号点が0から
3へ移るときに、途中のサンプル点S1 の振幅が最小値
min より小さいときに、新たなサンプル点S2を設定
する。
In the T / 2 sample IQ value converter 51, T
/ 2 band-limited modulated wave complex envelope signal I (t), Q
Find the sample value of (t). In the amplitude limiting converter 52,
The minimum value R min of the allowable amplitude is set, and when the amplitude is smaller than R min in the sample value output from the T / 2 sample IQ value converter 51, the sample value is corrected. In this embodiment, for the sampled values I 1 and Q 1 ,
The new sample values I 2 and Q 2 are set to I 2 = I 1 (R min / r 1 ) ... (7) Q 2 = Q 1 (R min / r 1 ) ... (8) However, r 1 = (I 1 2 + Q 1 2 ) 1/2 (9). For example, as shown in FIG. 6, when the signal point moves from 0 to 3, a new sample point S 2 is set when the amplitude of the intermediate sample point S 1 is smaller than the minimum value R min .

【0024】補間波形生成器53では、振幅制限変換器
52で補正されたサンプル値から、T/2サンプリング
関数により値を補間することにより、連続波形であるI
(t),Q(t) を生成する。直交変調器84では、この変調
波複素包絡線信号I(t),Q(t) を用いて直交変調し、変
調波を生成する。
The interpolated waveform generator 53 interpolates a value from the sample value corrected by the amplitude limiting converter 52 with a T / 2 sampling function to obtain a continuous waveform I.
Generate (t) and Q (t). The quadrature modulator 84 performs quadrature modulation using the modulated wave complex envelope signals I (t) and Q (t) to generate a modulated wave.

【0025】図7は、Rmin/r=0.25 の場合のルート
ロールオフ(ロールオフ率0.5)で帯域制限した本発明第
二実施例のTC8PSK信号の信号空間軌跡を示す。図
11に示す従来の信号空間軌跡に比べて、振幅変動に制
限が加えられていることがわかる。 一般に、線形増幅
器は入力振幅が小さい場合に電力効率が低くなるので、
振幅が0に近い信号点がない本実施例のTC8PSK信
号を増幅する場合は、従来のTC8PSK信号を増幅す
る場合に比べて、線形増幅器においても電力効率を改善
することができる。
FIG. 7 shows the signal space locus of the TC8PSK signal of the second embodiment of the present invention band-limited by the root roll-off (roll-off rate 0.5) when R min /r=0.25. It can be seen that the amplitude fluctuation is limited compared to the conventional signal space locus shown in FIG. Linear amplifiers are generally less power efficient when the input amplitude is small, so
In the case of amplifying the TC8PSK signal of this embodiment in which there is no signal point whose amplitude is close to 0, the power efficiency can be improved even in the linear amplifier as compared with the case of amplifying the conventional TC8PSK signal.

【0026】なお、第二実施例における振幅制限変換器
52では、振幅がRmin より小さいものについて補正す
ることにより振幅変動を制限しているが、振幅が所定の
値R max より大きい場合にその値を補正し、振幅のピー
ク値を抑制することによって振幅変動を制限する方法を
とってもよい。通常、A級増幅器等の線形増幅器では、
増幅器への供給電力は出力ピーク電力以上必要となるの
で、この場合には振幅のピーク値を抑えることにより供
給電力を減らすことができ、その結果電力効率の改善を
図ることができる。
The amplitude limiting converter in the second embodiment
At 52, the amplitude is RminCorrect for smaller ones
The amplitude fluctuation is limited by
Value R maxIf it is larger, the value is corrected and the amplitude peak
Method to limit the amplitude fluctuation by suppressing the
Very good. Normally, in a linear amplifier such as a class A amplifier,
The power supplied to the amplifier needs to exceed the output peak power.
Therefore, in this case, the peak value of the amplitude is suppressed.
Power supply can be reduced, resulting in improved power efficiency
Can be planned.

【0027】なお、所定の範囲に対して上限を超える振
幅および下限を下回る振幅の両方について抑制する方法
でも、同様に線形増幅器における電力効率の改善を図る
ことができる。
Incidentally, the method of suppressing both the amplitude exceeding the upper limit and the amplitude lower than the lower limit with respect to the predetermined range can similarly improve the power efficiency in the linear amplifier.

【0028】[0028]

【発明の効果】以上説明したように、本発明の符号化変
調装置では符号化変調波の振幅変動を制限することがで
き、電力効率の高い非線形増幅器の利用を可能とする
か、あるいは線形増幅器における電力効率の改善を図る
ことができる。
As described above, the coded modulation apparatus of the present invention can limit the amplitude fluctuation of the coded modulated wave and can use a non-linear amplifier having high power efficiency, or a linear amplifier. It is possible to improve the power efficiency in.

【0029】したがって、消費電力が制限される変調装
置でも符号化変調方式の適用を可能とすることができ
る。たとえば、移動通信における携帯電話機のように電
池を電源とし、使用可能な電力が制限されるものについ
ても、符号化利得の高い符号化変調方式が利用でき、伝
送特性の向上に寄与することができる。
Therefore, it is possible to apply the coded modulation method even to a modulation device whose power consumption is limited. For example, even in the case of a mobile phone that uses a battery as a power source and the usable power is limited, such as a mobile phone in mobile communication, a coding modulation method with a high coding gain can be used, which can contribute to improvement of transmission characteristics. .

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第一実施例構成を示すブロック図であ
る。
FIG. 1 is a block diagram showing the configuration of a first embodiment of the present invention.

【図2】本発明第一実施例の信号遷移方法を説明する図
である。
FIG. 2 is a diagram illustrating a signal transition method according to the first embodiment of the present invention.

【図3】本発明第一実施例の位相遷移関数の一例を示す
図である。
FIG. 3 is a diagram showing an example of a phase transition function of the first embodiment of the present invention.

【図4】本発明第一実施例の信号遷移の一例を示す図で
ある。
FIG. 4 is a diagram showing an example of signal transition according to the first embodiment of the present invention.

【図5】本発明の第二実施例構成を示すブロック図であ
る。
FIG. 5 is a block diagram showing the configuration of a second embodiment of the present invention.

【図6】本発明第二実施例の信号遷移方法を説明する図
である。
FIG. 6 is a diagram illustrating a signal transition method according to the second embodiment of the present invention.

【図7】本発明第二実施例のTC8PSK信号の信号空
間軌跡の一例を示す図である。
FIG. 7 is a diagram showing an example of a signal space locus of a TC8PSK signal according to the second embodiment of the present invention.

【図8】従来のTC8PSK用符号化変調装置の構成例
を示すブロック図である。
FIG. 8 is a block diagram showing a configuration example of a conventional TC8PSK coding and modulating apparatus.

【図9】畳み込み符号器の構成例を示すブロック図であ
る。
FIG. 9 is a block diagram illustrating a configuration example of a convolutional encoder.

【図10】TC8PSK信号の位相配置を示す図であ
る。
FIG. 10 is a diagram showing a phase arrangement of TC8PSK signals.

【図11】従来のTC8PSK信号の信号空間軌跡の一
例を示す図である。
FIG. 11 is a diagram showing an example of a signal space locus of a conventional TC8PSK signal.

【符号の説明】[Explanation of symbols]

11 位相変換器 12 遅延器(T) 13 位相差検出器 14 位相演算器 15 加算器 16 波形変換器 51 T/2サンプルIQ値変換器 52 振幅制限変換器 53 補間波形生成器 81 シリアル/パラレル(S/P)変換器 82 畳み込み符号器 83 IQ変換器 84 直交変調器 85 発振器 91〜93 遅延回路(T) 94,95 排他的論理和回路 11 phase converter 12 delay device (T) 13 phase difference detector 14 phase calculator 15 adder 16 waveform converter 51 T / 2 sample IQ value converter 52 amplitude limit converter 53 interpolation waveform generator 81 serial / parallel ( S / P converter 82 Convolutional encoder 83 IQ converter 84 Quadrature modulator 85 Oscillator 91-93 Delay circuit (T) 94, 95 Exclusive OR circuit

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 入力データから畳み込み符号化信号を生
成する畳み込み符号化手段と、 前記畳み込み符号化信号を変調波複素包絡線サンプル値
に変換し、このサンプル値の振幅変動分を抑制してから
複素包絡線の連続波形を生成する信号変換手段と、 前記複素包絡線の連続波形を用いて変調を行う変調手段
とを備えたことを特徴とする符号化変調装置。
1. Convolutional coding means for generating a convolutional coded signal from input data; converting the convolutional coded signal into a modulated wave complex envelope sample value; and suppressing an amplitude variation of the sample value. An encoding / modulating apparatus comprising: a signal converting unit that generates a continuous waveform of a complex envelope and a modulating unit that performs modulation using the continuous waveform of the complex envelope.
JP05097292A 1992-03-09 1992-03-09 Coded modulator Expired - Lifetime JP3166871B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP05097292A JP3166871B2 (en) 1992-03-09 1992-03-09 Coded modulator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP05097292A JP3166871B2 (en) 1992-03-09 1992-03-09 Coded modulator

Publications (2)

Publication Number Publication Date
JPH066394A true JPH066394A (en) 1994-01-14
JP3166871B2 JP3166871B2 (en) 2001-05-14

Family

ID=12873731

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05097292A Expired - Lifetime JP3166871B2 (en) 1992-03-09 1992-03-09 Coded modulator

Country Status (1)

Country Link
JP (1) JP3166871B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5604004A (en) * 1995-02-27 1997-02-18 Tdk Corporation Optical recording medium using formazan metal complex dye and photo-stabilizing method
WO1998023068A1 (en) * 1996-11-19 1998-05-28 Matsushita Electric Industrial Co., Ltd. Transmitter
JP2011199772A (en) * 2010-03-23 2011-10-06 Advantest Corp Modulator, setting method, and testing device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101566809B1 (en) 2014-01-09 2015-11-06 류주현 Tea Making Appliance

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5604004A (en) * 1995-02-27 1997-02-18 Tdk Corporation Optical recording medium using formazan metal complex dye and photo-stabilizing method
WO1998023068A1 (en) * 1996-11-19 1998-05-28 Matsushita Electric Industrial Co., Ltd. Transmitter
US6418173B1 (en) 1996-11-19 2002-07-09 Matsushita Electric Industrial Co., Ltd. Transmission Apparatus
JP2011199772A (en) * 2010-03-23 2011-10-06 Advantest Corp Modulator, setting method, and testing device
US8598959B2 (en) 2010-03-23 2013-12-03 Advantest Corporation Modulation apparatus, phase setting method and test apparatus

Also Published As

Publication number Publication date
JP3166871B2 (en) 2001-05-14

Similar Documents

Publication Publication Date Title
US6928122B2 (en) Amplifier predistortion system and method
JP4426577B2 (en) Pseudopolar modulation for wireless transmitters
AU633189B2 (en) A method of compensating for non-linearities in an end amplifier incorporated in a radio transmitter
US8666325B2 (en) Polar feedback receiver for modulator
US20030058960A1 (en) Predistortion type-linearized power amplification system using digital if technology
US7751496B2 (en) Electromagnetic wave transmitter, receiver and transceiver systems, methods and articles of manufacture
JP2000286915A (en) Signal modulation circuit and method
JPH1032435A (en) Method for correcting nonlinearity of amplifier and radio transmitter using the method
JP2000138723A (en) Method and device for forming transmission signal
WO2006118015A1 (en) Polar coordinate modulating circuit, integrated circuit and radio apparatus
US7269232B2 (en) Device for producing a phase and amplitude modulated radio frequency signal
US8503571B2 (en) Dual purpose modulator
US7221915B2 (en) Electromagnetic wave transmitter, receiver and transceiver systems, methods and articles of manufacture
US5260673A (en) π/4 differential encoding for digital cellular mobile systems
JP3166871B2 (en) Coded modulator
JP2018046434A (en) Transmission device
JPH1075267A (en) Pseudo gmsk modulator
CN114172768A (en) Phase-shift control-based radio frequency pulse width modulation method, modulator and transmitter
US20050157816A1 (en) Circuit and method for binary modulation
JP2004320329A (en) Digital feedback system distortion compensation circuit
JP4395044B2 (en) Modulation apparatus and modulation method
JPH11196140A (en) Power amplifier
JPH03265333A (en) Linear phase modulation circuit
JPH09149086A (en) Digital fm system modulation circuit
JP2005039725A (en) Data converter and transmitter

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 7

Free format text: PAYMENT UNTIL: 20080309

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090309

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 8

Free format text: PAYMENT UNTIL: 20090309

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 9

Free format text: PAYMENT UNTIL: 20100309

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 9

Free format text: PAYMENT UNTIL: 20100309

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 10

Free format text: PAYMENT UNTIL: 20110309

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110309

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 11

Free format text: PAYMENT UNTIL: 20120309

EXPY Cancellation because of completion of term