JPH0663930A - Heat-resistant composite ceramic pipe and production thereof - Google Patents

Heat-resistant composite ceramic pipe and production thereof

Info

Publication number
JPH0663930A
JPH0663930A JP4225509A JP22550992A JPH0663930A JP H0663930 A JPH0663930 A JP H0663930A JP 4225509 A JP4225509 A JP 4225509A JP 22550992 A JP22550992 A JP 22550992A JP H0663930 A JPH0663930 A JP H0663930A
Authority
JP
Japan
Prior art keywords
ceramic
metal
component
tube
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4225509A
Other languages
Japanese (ja)
Other versions
JP2766437B2 (en
Inventor
Toru Kawai
河合  徹
Takeshi Shinozaki
斌 篠崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP4225509A priority Critical patent/JP2766437B2/en
Publication of JPH0663930A publication Critical patent/JPH0663930A/en
Application granted granted Critical
Publication of JP2766437B2 publication Critical patent/JP2766437B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Rigid Pipes And Flexible Pipes (AREA)
  • Laminated Bodies (AREA)
  • Ceramic Products (AREA)
  • Manufacturing Of Tubular Articles Or Embedded Moulded Articles (AREA)
  • Furnace Housings, Linings, Walls, And Ceilings (AREA)
  • Thermal Insulation (AREA)

Abstract

PURPOSE:To easily attach a composite ceramic pipe to a furnace wall by constituting a central part exposed to high temp. of a ceramic pipe part and constituting both end parts piercing the furnace wall of a metal pipe body to constitute the part between both end parts of an inclined part and changing the mixing ratio of the ceramic material and metal component of the inclined part in an axial direction. CONSTITUTION:A central part exposed to high temp. is constituted of a ceramic pipe part 1 formed from a ceramic material and both end parts piercing a furnace wall are constituted of a metal pipe body 3. An inclined part 2 is arranged between the pipe part 1 and the pipe part 3. The inclined part 2 is constituted so that a mixing ratio of a ceramic material and a metal material is changed in an axial direction. The part connected to the end part of the ceramic pipe part 1 consists of 100% of the ceramic component and 0% of the metal component and the mixing ratio of the metal component increases toward the leading end of the ceramic pipe part and the ceramic pipe part 1 is connected to the metal pipe body 3 at a place where the metal component is 100%. Therefore, the attaching part to a furnace wall is the metal pipe body 3 and, as a result, attachment can be made easy.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、間接加熱炉用ラジアン
トチューブ等の耐熱セラミック管及びそれの製造方法に
関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat resistant ceramic tube such as a radiant tube for an indirect heating furnace and a method for producing the same.

【0002】[0002]

【従来の技術】従来加熱炉の加熱温度は1300℃を越
える高温に達しており、加熱炉中に配設された間接加熱
用のラジアントチューブには、高温燃焼ガスに対する耐
熱、耐腐食性の厳しい条件が要求されている。この条件
に適合する材料としてはセラミックしかないため、ラジ
アントチューブは専らセラミック材料によって作られて
いる。
2. Description of the Related Art The heating temperature of a conventional heating furnace has reached a high temperature exceeding 1300 ° C., and a radiant tube for indirect heating arranged in the heating furnace has severe heat resistance and corrosion resistance against high temperature combustion gas. Conditions are required. The only material that meets this requirement is ceramic, so the radiant tube is made exclusively of ceramic material.

【0003】[0003]

【解決すべき課題】ラジアントチューブは、加熱炉を横
断するストレート管、加熱炉中にてベンドするU字管、
W字管等のタイプがあるが、何れも両端を加熱炉の炉壁
を貫通させ、炉外部のフランジ管と接続せねばならな
い。しかしながら、セラミック管へ直接に溶接を施すこ
とはできないため、炉壁の貫通部及び外部のフランジと
の接続は困難であり、セラミック管の取付けは複雑でし
かも不完全な構造とならざるを得ない問題があった。
[Problems to be solved] Radiant tubes are straight tubes that cross the heating furnace, U-shaped tubes that bend in the heating furnace,
There are types such as a W-shaped tube, but in both cases, both ends must penetrate the furnace wall of the heating furnace and be connected to a flange tube outside the furnace. However, since it is not possible to directly weld the ceramic tube, it is difficult to connect the penetration part of the furnace wall and the external flange, and the installation of the ceramic tube must be complicated and incomplete. There was a problem.

【0004】ラジアントチューブは、加熱炉中では13
00℃を越える高温の燃焼ガスにさらされるが、炉壁の
貫通部では燃焼ガスの温度分布は比較的低く、且つ炉壁
からの冷却によって約1000℃に温度低下しているか
ら、ラジアントチューブが炉壁を貫通する部分までセラ
ミック材料によって一体に構成する必要はない。しかし
セラミック材料の端部に金属を直接にネジ接続して、セ
ラミック管の端部を構成すると、セラミックの線熱膨脹
係数(4.3×10-6 1/℃)と金属の線熱膨脹係数
(17×10-6 1/℃)との極端な違いにより、接続
箇所に熱応力が生じて、セラミックは短期間で破損する
問題がある。
The radiant tube is used in a heating furnace at 13
Although exposed to high-temperature combustion gas exceeding 00 ° C, the temperature distribution of the combustion gas is relatively low at the penetration part of the furnace wall, and the temperature drops to about 1000 ° C due to cooling from the furnace wall. It is not necessary that the portion that penetrates the furnace wall be integrally formed of a ceramic material. However, if the end of the ceramic tube is formed by directly connecting the metal to the end of the ceramic material by screw connection, the linear thermal expansion coefficient of the ceramic (4.3 × 10 −6 1 / ° C.) and the linear thermal expansion coefficient of the metal (17 X10 -6 1 / ° C.) Causes a thermal stress at the connection point, and ceramics may be damaged in a short period of time.

【0005】本発明は、高温度、腐食性のガスにさらさ
れ耐熱及び耐腐食性を必要とする中央部分と、炉壁を貫
通する両端部分を、それぞれの条件にあった最適材料に
よって一体的に形成し、しかも線熱膨脹係数の違いを緩
和して厳しい高温度の環境に耐え得る複合セラミック管
及びその製法を明らかにするものである。
According to the present invention, the central portion which is exposed to high temperature and corrosive gas and requires heat resistance and corrosion resistance, and the both end portions which penetrate the furnace wall are integrally formed by the optimum material suitable for each condition. It is intended to clarify a composite ceramic tube which can be formed in the same manner and can alleviate the difference in coefficient of linear thermal expansion and withstand a severe high temperature environment, and a manufacturing method thereof.

【0006】[0006]

【課題を解決するための手段】本発明の耐熱複合セラミ
ック管は、セラミック材によって形成されたセラミック
管部(1)と、該セラミック管部(1)の両端に配設された
金属製管体(3)(3)と、セラミック材と金属材との混合
材料を加熱溶融して形成された管体であって、前記セラ
ミック管部(1)と金属製管体(3)との間に配設された傾
斜部(2)とによって構成し、該傾斜部(2)は、セラミッ
ク材と金属材の混合比は軸方向に制御されて変化し、セ
ラミック管部(1)の端部に結合する部分はセラミック成
分100%、金属成分0%であり、先端に向って金属成
分の混合比を増し、先端ではセラミック成分0%、金属
成分100%であって金属製管体(3)と一体に結合して
いる。
A heat-resistant composite ceramic tube according to the present invention comprises a ceramic tube portion (1) made of a ceramic material, and metal tube bodies arranged at both ends of the ceramic tube portion (1). (3) A tube body formed by heating and melting a mixture material of (3) and a ceramic material and a metal material, the space between the ceramic tube portion (1) and the metal tube body (3). The inclined portion (2) is disposed, and the inclined portion (2) changes at the mixing ratio of the ceramic material and the metal material while being controlled in the axial direction, and the inclined portion (2) is provided at the end portion of the ceramic tube portion (1). The portion to be joined is 100% ceramic component and 0% metal component, increasing the mixing ratio of the metal component toward the tip, and at the tip the ceramic component is 0% and the metal component is 100% and the metal tube (3) They are connected together.

【0007】上記セラミック管は、同心円に配置された
内型(7)と外型(8)の間にセラミック管部形成用の所定
厚さの型空間(73)を形成し、該型空間(73)の底部にセラ
ミック成分粉体と金属成分粉体の混合比を高さ方向に制
御した傾斜層(21)を所定高さに充填し、傾斜層(21)
の上へセラミック成分粉体層(14)を所定高さに充填
し、傾斜層(21)の成分は底先端はセラミック0%、金
属成分100%であり、高さ方向に沿ってセラミック成
分の混合比を増し、傾斜層上端はセラミック成分100
%、金属成分0%とし、外型(8)の外側から高周波誘導
加熱を加え、型空間(61)へ充填したセラミック層の上端
から傾斜層(21)下端へ向って加熱溶融位置を移動させ、
セラミック管部(1)の下端に傾斜部(2)を連続して形成
することによって製られる。
In the ceramic tube, a mold space (73) having a predetermined thickness for forming a ceramic tube is formed between an inner mold (7) and an outer mold (8) arranged concentrically, and the mold space (73) is formed. The bottom part of (73) is filled with a gradient layer (21) in which the mixing ratio of the ceramic component powder and the metal component powder is controlled in the height direction to a predetermined height, and the gradient layer (21)
The ceramic component powder layer (14) is filled up to a predetermined height, and the composition of the inclined layer (21) is such that the bottom tip is 0% ceramic and 100% metal component. Increasing the mixing ratio, the upper end of the sloping layer is 100% ceramic
%, Metal component 0%, high frequency induction heating is applied from the outside of the outer mold (8), and the heating and melting position is moved from the upper end of the ceramic layer filled in the mold space (61) to the lower end of the inclined layer (21). ,
It is manufactured by continuously forming an inclined portion (2) at the lower end of the ceramic tube portion (1).

【0008】[0008]

【作用】本発明の複合セラミック管は、炉壁(6)に開設
された取付け孔を貫通して両端の金属製管体(3)(3)を
炉外へ突出させ、金属製管体(3)の先端にフランジ(4)
を溶接(43)(44)によって取り付ける。
In the composite ceramic tube of the present invention, the metal tube bodies (3) and (3) at both ends are projected to the outside of the furnace by penetrating through the mounting holes formed in the furnace wall (6), and the metal tube body ( Flange (4) at the tip of 3)
Are attached by welding (43) (44).

【0009】金属製管体(3)とセラミック管部(1)の間
は、金属成分とセラミック成分の混合比が連続的に変化
する傾斜部(2)(2)を介在させているから、明確な境界
を形成することなく、金属製管体(3)(3)をセラミック
管部(1)へ一体的に接続できる。しかも傾斜部(2)は線
熱膨張率の違いを吸収して熱応力を緩和する。複合セラ
ミック管の製造は、内型(7)と外型(8)の間の型空間へ
傾斜層(21)及びセラミック層(14)を充填した後、外側か
ら誘導加熱によって一連に溶融し、溶融位置を上方から
下方へ移動することによって、セラミック管部(1)及び
傾斜部(2)が一体に繋がって境界層を形成することな
く、一体化できる。
Since the metal pipe body (3) and the ceramic pipe portion (1) have the inclined portions (2) and (2) in which the mixing ratio of the metal component and the ceramic component changes continuously, The metal tube body (3) (3) can be integrally connected to the ceramic tube portion (1) without forming a clear boundary. Moreover, the inclined portion (2) absorbs the difference in the coefficient of linear thermal expansion and relaxes the thermal stress. The composite ceramic tube is manufactured by filling the mold space between the inner mold (7) and the outer mold (8) with the gradient layer (21) and the ceramic layer (14), and then melting them in series by induction heating from the outside, By moving the melting position from the upper side to the lower side, the ceramic tube portion (1) and the inclined portion (2) can be integrated without being integrally connected and forming a boundary layer.

【0010】[0010]

【実施例】図面及び以下の説明は本発明の理解を容易に
するためのものであって、発明の範囲を狭めるために用
いるべきではない。
The drawings and the following description are intended to facilitate an understanding of the present invention and should not be used to narrow the scope of the invention.

【0011】図1は加熱炉の炉壁(6)に開設した取付け
孔へ両端を貫通し、固定したストレートタイプのラジア
ントチューブを示しているが、本発明はこれに限定され
るのではなく、U字型或いはW字型のラジアントチュー
ブにも実施できることは勿論である。ラジアントチュー
ブは、直径20cm、長さ2m、管厚5〜10mmの長
尺の管体であるが、両端の20mmを金属製管体(3)と
し、該金属製管体(3)に連続する10mmを傾斜部(2)
とし、残りをセラミック管部(1)によって構成する。
FIG. 1 shows a straight type radiant tube in which both ends are penetrated and fixed to a mounting hole formed in the furnace wall (6) of the heating furnace, but the present invention is not limited to this and U Needless to say, the present invention can be applied to a radiant tube having a character shape or a W shape. The radiant tube is a long tube having a diameter of 20 cm, a length of 2 m, and a tube thickness of 5 to 10 mm, and 20 mm at both ends is a metal tube (3) and is continuous with the metal tube (3). 10 mm inclined part (2)
And the rest is constituted by the ceramic tube portion (1).

【0012】セラミック管部(1)はケイ素(Si)の粉
体と炭化ケイ素(SiC)の粉体を混合し、加熱溶融さ
せてSiCマトリックス内部にSiが浸透した耐熱、耐
腐食性の構造である。
The ceramic tube portion (1) has a heat-resistant and corrosion-resistant structure in which a powder of silicon (Si) and a powder of silicon carbide (SiC) are mixed and melted by heating to penetrate Si into the SiC matrix. is there.

【0013】その他、チタン、アルミナ等の公知のセラ
ミック材料粉末が使用できる。金属製管体(3)は、HK
材(25Cr−20Ni)その他の耐熱合金を材料とす
る管体であって、鋳造、切削加工、焼結成形等によって
形成される。
In addition, known ceramic material powders such as titanium and alumina can be used. Metal tube (3) is HK
It is a tubular body made of a material (25Cr-20Ni) or other heat-resistant alloy, and is formed by casting, cutting, sintering or the like.

【0014】傾斜部(2)は金属成分とセラミック成分を
混合し、混合比を軸方向に沿って制御した成分傾斜構造
であって、図3に示す如くセラミック管部(1)側はセラ
ミック成分100%、金属成分0%であり、軸方向に沿
って金属成分の混合比を増し、先端ではセラミック成分
0%、金属成分100%の成分構造となっている。傾斜
部(2)の成分制御は、理想的には軸方向に沿って連続的
に行うことが望ましいが、実際上は8〜10段階の階段
状の成分比として構成されている。傾斜部(2)の先端
は、金属成分100%であるから、HK材の如き耐熱合
金の金属製管体(3)を約0.5mmの幅で、例えばCu
95%、Mn,Mo又はTi5%のろう材を用いて、ろ
う接(31)して一体に接続し、或いは後で述べるようにセ
ラミック管部(1)及び傾斜部(2)の製作と同時に金属粉
末を加熱溶融して金属製管体(3)を形成し、傾斜部(2)
へ結合させることもできる。
The inclined portion (2) has a component inclination structure in which a metal component and a ceramic component are mixed and the mixing ratio is controlled along the axial direction. As shown in FIG. 3, the ceramic pipe portion (1) side has the ceramic component. The composition ratio is 100% and the metal component is 0%, the mixing ratio of the metal component is increased along the axial direction, and the tip has a composition structure of 0% ceramic component and 100% metal component. Ideally, the component control of the inclined portion (2) is desirably performed continuously along the axial direction, but in practice, it is configured as a stepwise component ratio of 8 to 10 steps. Since the tip of the inclined portion (2) has a metal component of 100%, a metal tube body (3) made of a heat-resistant alloy such as HK material has a width of about 0.5 mm, for example, Cu
Using brazing filler metal of 95%, Mn, Mo or Ti 5%, they are brazed (31) and integrally connected, or simultaneously with the production of the ceramic tube part (1) and the inclined part (2) as described later. The metal powder is heated and melted to form the metal tube body (3), and the inclined portion (2) is formed.
Can also be combined with.

【0015】上記複合セラミック管の製造は、図4に示
すグラファイト製の内型(7)、外型(8)、誘導加熱コイ
ル(9)を用いて製造できる。内型(7)は下端にフランジ
(71)を具え、金属製管体(3)をフランジ上に嵌め、管体
(3)とほぼ等しい高さにショルダー(72)を形成してい
る。外型(8)は内型(7)と同心に嵌め、下端をフランジ
(71)に当て、内型の外面と外型(8)の内面の間に型空間
(73)を形成している。型空間(73)の下部には金属成分と
セラミック成分を所定の混合比に混合し、8乃至10段
階に混合比を変えて型空間(73)の下部に充填し、傾斜層
(21)を形成する。傾斜層(21)の成分の混合比は、最下部
(21b)は金属成分100%、セラミック成分0%であ
り、高さ方向に沿ってセラミック成分の混合比を高め、
最上部(21a)ではセラミック成分100%、金属成分0
%とする。傾斜層(21)の上方の型空間には、内型(7)側
には細かく融点の低いSi(13)の粉末原料(13)、外型
(8)側には粗く融点の高いSiCの粉末原料(12)を約
1:1の体積としたセラミック層(14)を充填する。外
型(8)の外側には、誘導加熱コイル(9)を上下動可能に
配備し、セラミック層(14)に対し上端から加熱を開始す
る。
The composite ceramic tube can be manufactured using the graphite inner mold (7), outer mold (8) and induction heating coil (9) shown in FIG. Inner mold (7) has a flange at the bottom
(71) equipped with a metal tube (3) on the flange,
The shoulder (72) is formed at a height substantially equal to (3). The outer mold (8) is fitted concentrically with the inner mold (7), and the lower end is flanged.
Place the mold space between the outer surface of the inner mold and the inner surface of the outer mold (8).
(73) is formed. The lower part of the mold space (73) is mixed with a metal component and a ceramic component at a predetermined mixing ratio, and the mixing ratio is changed in 8 to 10 steps to fill the lower part of the mold space (73) with a gradient layer.
Form (21). The mixing ratio of the components of the sloping layer (21) is at the bottom.
(21b) is 100% of metal component and 0% of ceramic component, and increases the mixing ratio of the ceramic components along the height direction,
At the top (21a), the ceramic component is 100% and the metal component is 0.
%. In the mold space above the inclined layer (21), the powder material (13) of Si (13), which has a fine melting point and a low melting point, and the outer mold are provided on the inner mold (7) side.
The (8) side is filled with a ceramic layer (14) having a volume of the coarse SiC powder raw material (12) having a high melting point of about 1: 1. An induction heating coil (9) is provided outside the outer die (8) so as to be movable up and down, and heating is started from the upper end to the ceramic layer (14).

【0016】セラミック層(14)は加熱によって溶融し、
溶融したSi(13)はSiC(12)粉末の粒子間の隙間へ
浸透して体積を縮小し、セラミック管部(1)を形成す
る。誘導加熱コイル(9)はセラミック層(14)の上端から
下方へ向って徐々に移動し、セラミック層(14)を加熱溶
融させ、セラミック管部(1)を形成しながら下降する。
傾斜層(21)に達すると傾斜層成分を加熱溶融させ、最上
端(21a)はセラミック成分100%であるから、セラミ
ック層(14)と完全一体化する。傾斜層(21)の加熱溶融に
よって傾斜部(2)が形成される。傾斜層(21)の最下部(2
1b)が加熱溶融すると、誘導コイル(9)をその高さで暫
らく保持することにより、金属管体(3)の一部が加熱溶
融し、傾斜層(21)の最下部(21b)と一体化し、複合
セラミック管が形成されるのである。
The ceramic layer (14) is melted by heating,
The molten Si (13) penetrates into the spaces between the particles of the SiC (12) powder to reduce the volume and form the ceramic tube part (1). The induction heating coil (9) gradually moves downward from the upper end of the ceramic layer (14), heats and melts the ceramic layer (14), and descends while forming the ceramic tube portion (1).
When it reaches the gradient layer (21), the components of the gradient layer are heated and melted, and since the uppermost end (21a) is 100% of the ceramic component, it is completely integrated with the ceramic layer (14). The inclined portion (2) is formed by heating and melting the inclined layer (21). The bottom of the sloping layer (21) (2
When 1b) is heated and melted, by holding the induction coil (9) for a while at that height, a part of the metal tube body (3) is heated and melted, and the lowermost portion (21b) of the inclined layer (21) is formed. They are integrated to form a composite ceramic tube.

【0017】U型或いはW型ラジアントチューブの場
合、予め製造した半円状のセラミック管を、複合セラミ
ック管のセラミック管部(1)先端へ接続することによっ
て形成される。また、傾斜層(21)の最下部(21b)を長く
延長することにより、金属製管体(3)を別個に配置する
代りに、金属成分の加熱溶融により金属製管体(3)を一
体に形成できる。
In the case of a U-shaped or W-shaped radiant tube, it is formed by connecting a semicircular ceramic tube manufactured in advance to the tip of the ceramic tube portion (1) of the composite ceramic tube. In addition, by extending the lowermost portion (21b) of the inclined layer (21) long, instead of separately disposing the metal pipe body (3), the metal pipe body (3) is integrated by heating and melting the metal components. Can be formed into

【0018】上記複合フランジ管は、両端を炉壁(6)に
開設した取付孔を貫通して、炉外へ突出し、端部の金属
製管体(3)に対してベローズ(41)を溶接(43)し、ベ
ローズ先端をHK材のフランジ(4)へ溶接(44)し、該
フランジ(4)を取付管(42)を介して炉壁へ溶接固定す
る。バーナ(5)はフランジ(4)を貫通し、金属製管体
(3)中にて開口している。
Both ends of the composite flange pipe penetrate through the mounting holes formed in the furnace wall (6) and project out of the furnace, and the bellows (41) is welded to the metal pipe body (3) at the end. (43) Then, the tip of the bellows is welded (44) to the flange (4) of HK material, and the flange (4) is welded and fixed to the furnace wall through the mounting pipe (42). The burner (5) penetrates the flange (4) and is made of metal tube.
It is open in (3).

【0019】[0019]

【効果】複合セラミック管は端部に傾斜部(2)を介して
金属製管体(3)を配備しているから、端部に機械加工を
施すことが可能であり、従来極めて困難であったラジア
ントチューブの端部を炉壁へ容易に取り付けできる。ま
た、傾斜部(2)はセラミック管部(1)と金属製管体(3)
の熱膨脹の違いを吸収し、仮令セラミック管部が高温に
さらされても炉壁の取付部への影響は軽減できる。ま
た、内型(7)と外型(8)の間に傾斜層(21)、セラミック
層(14)の成分粉末を充填することによって、セラミック
管部(1)及び傾斜部(2)を一体化し、しかも成分が連続
的に変化する複合セラミック管を一挙に製造できる。
[Effect] Since the composite ceramic tube has the metal tube body (3) disposed at the end through the inclined portion (2), it is possible to machine the end, which has been extremely difficult in the past. The end of the radiant tube can be easily attached to the furnace wall. In addition, the inclined portion (2) is composed of the ceramic pipe portion (1) and the metal pipe body (3).
By absorbing the difference in thermal expansion, the effect on the attachment part of the furnace wall can be reduced even if the temporary ceramic tube part is exposed to high temperature. Also, the ceramic tube portion (1) and the inclined portion (2) are integrated by filling the gradient layer (21) and the component powder of the ceramic layer (14) between the inner die (7) and the outer die (8). It is possible to manufacture a composite ceramic tube whose composition is changed and whose components continuously change.

【0020】本発明は特許請求の範囲の記載に限定され
ることはなく、当業者であれば本発明の技術的範囲に於
て多くの実施例をつくることができるのは勿論である。
The present invention is not limited to the description of the claims, and it goes without saying that those skilled in the art can make many examples within the technical scope of the present invention.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の使用状況を示す正面図である。FIG. 1 is a front view showing a use situation of the present invention.

【図2】複合セラミック管の端部拡大図である。FIG. 2 is an enlarged view of an end portion of a composite ceramic tube.

【図3】複合セラミック管端部の混合比説明図である。FIG. 3 is an explanatory view of a mixing ratio of an end portion of a composite ceramic tube.

【図4】製造装置の断面図である。FIG. 4 is a sectional view of a manufacturing apparatus.

【符号の説明】[Explanation of symbols]

(1) セラミック管部 (14) セラミツク層 (2) 傾斜部 (21) 傾斜層 (3) 金属製管体 (31) ろう接部 (4) フランジ (43)(44) 溶接 (7) 内型 (73) 型空間 (8) 外型 (9) 誘導加熱コイル (1) Ceramic tube part (14) Ceramic layer (2) Inclined part (21) Inclined layer (3) Metal tube (31) Brazing part (4) Flange (43) (44) Welding (7) Inner mold (73) Mold space (8) Outer mold (9) Induction heating coil

フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 F27D 1/00 N 8939−4K Continuation of the front page (51) Int.Cl. 5 Identification code Office reference number FI technical display location F27D 1/00 N 8939-4K

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 セラミック材によって形成されたセラミ
ック管部(1)と、該セラミック管部(1)の両端に配設さ
れた金属製管体(3)(3)と、セラミック材と金属材との
混合材料を加熱溶融して形成された管体であって、前記
セラミック管部(1)と金属製管体(3)との間に配設され
た傾斜部(2)とによって構成し、該傾斜部(2)は、セラ
ミック材と金属材の混合比は軸方向に制御されて変化
し、セラミック管部(1)の端部に結合する部分はセラミ
ック成分100%、金属成分0%であり、先端に向って
金属成分の混合比を増し、先端ではセラミック成分0
%、金属成分100%であって金属製管体(3)と一体に
結合している耐熱複合セラミック管。
1. A ceramic tube portion (1) formed of a ceramic material, metal tube bodies (3) (3) arranged at both ends of the ceramic tube portion (1), a ceramic material and a metal material. And a slanted portion (2) arranged between the ceramic pipe portion (1) and the metal pipe body (3). In the inclined portion (2), the mixing ratio of the ceramic material and the metal material is changed in the axial direction, and the portion connected to the end of the ceramic tube portion (1) has a ceramic component of 100% and a metal component of 0%. And the mixing ratio of the metal component increases toward the tip, and the ceramic component is 0 at the tip.
%, A metal component 100%, and a heat-resistant composite ceramic tube integrally bonded to the metal tube body (3).
【請求項2】 同心円に配置された内型(7)と外型(8)
の間にセラミック管部形成用の所定厚さの型空間(61)を
形成し、該型空間(61)の底部にセラミック成分粉体と金
属成分粉体の混合比を高さ方向に制御した傾斜層(21)
を所定高さに充填し、傾斜層(21)の上へセラミック成
分粉体層(14)を所定高さに充填し、傾斜層(21)の成
分は底先端はセラミック0%、金属成分100%であ
り、高さ方向に沿ってセラミック成分の混合比を増し、
傾斜層上端はセラミック成分100%、金属成分0%と
し、外型(8)の外側から高周波誘導加熱を加え、型空間
(61)へ充填したセラミック層の上端から傾斜層(21)下端
へ向って加熱溶融位置を移動させ、セラミック管部(1)
の下端に傾斜部(2)を連続して形成する耐熱複合セラミ
ック管を製造する方法。
2. An inner mold (7) and an outer mold (8) arranged in concentric circles.
A mold space (61) having a predetermined thickness for forming a ceramic tube portion was formed between the two, and the mixing ratio of the ceramic component powder and the metal component powder was controlled in the height direction at the bottom of the mold space (61). Inclined layer (21)
Is filled to a predetermined height, and the ceramic component powder layer (14) is filled to a predetermined height on the inclined layer (21). The components of the inclined layer (21) are 0% ceramic at the bottom tip and 100% metallic component. %, Increasing the mixing ratio of ceramic components along the height direction,
The upper part of the sloping layer is made of ceramic component 100% and metal component 0%, and high frequency induction heating is applied from the outside of the outer mold (8) to form the mold space.
The heating and melting position is moved from the upper end of the ceramic layer filled in (61) to the lower end of the inclined layer (21), and the ceramic tube portion (1) is moved.
A method for manufacturing a heat-resistant composite ceramic tube in which a slanted portion (2) is continuously formed at the lower end of the.
JP4225509A 1992-08-25 1992-08-25 Manufacturing method of heat-resistant composite ceramic tube Expired - Lifetime JP2766437B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4225509A JP2766437B2 (en) 1992-08-25 1992-08-25 Manufacturing method of heat-resistant composite ceramic tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4225509A JP2766437B2 (en) 1992-08-25 1992-08-25 Manufacturing method of heat-resistant composite ceramic tube

Publications (2)

Publication Number Publication Date
JPH0663930A true JPH0663930A (en) 1994-03-08
JP2766437B2 JP2766437B2 (en) 1998-06-18

Family

ID=16830436

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4225509A Expired - Lifetime JP2766437B2 (en) 1992-08-25 1992-08-25 Manufacturing method of heat-resistant composite ceramic tube

Country Status (1)

Country Link
JP (1) JP2766437B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104265647A (en) * 2014-07-31 2015-01-07 苏州淮通电气有限公司 Wear-resisting impact-resisting immersible pump
CN106439393A (en) * 2016-11-29 2017-02-22 广西大学 Insulating layer structure of light foamed ceramic pipe

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6167565A (en) * 1984-09-08 1986-04-07 Ishikawajima Harima Heavy Ind Co Ltd Joining method of ceramics pipe and metallic pipe
JPH04160072A (en) * 1990-10-24 1992-06-03 Mitsubishi Heavy Ind Ltd Method for joining metallic material and ceramic material

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6167565A (en) * 1984-09-08 1986-04-07 Ishikawajima Harima Heavy Ind Co Ltd Joining method of ceramics pipe and metallic pipe
JPH04160072A (en) * 1990-10-24 1992-06-03 Mitsubishi Heavy Ind Ltd Method for joining metallic material and ceramic material

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104265647A (en) * 2014-07-31 2015-01-07 苏州淮通电气有限公司 Wear-resisting impact-resisting immersible pump
CN106439393A (en) * 2016-11-29 2017-02-22 广西大学 Insulating layer structure of light foamed ceramic pipe

Also Published As

Publication number Publication date
JP2766437B2 (en) 1998-06-18

Similar Documents

Publication Publication Date Title
US6221499B1 (en) Method using a thick joint for joining parts in SiC-based materials by refractory brazing and refractory thick joint thus obtained
AU773960B2 (en) Exothermic weld mold assembly
US20150352650A1 (en) Brazing method
JPS59113203A (en) Connection part of ceramic rotary member and metal rotary part for jet engine and fabrication thereof
US4059712A (en) Metal-ceramic composite and method for making same
US5364010A (en) Joining of metal to ceramic bodies by brazing
ZA200506235B (en) Reinforcing device for bushing used to produce filaments such as glass-based filaments
US5016610A (en) Radiant tube type heater
JPH0663930A (en) Heat-resistant composite ceramic pipe and production thereof
CN110963672A (en) Crucible for use in crucible pulling method, method for manufacturing the same, and vertical crucible pulling method for manufacturing cylindrical member using glass
JP3573815B2 (en) Cooling device manufacturing method
US10989345B2 (en) Process for brazing an accessory on a tube, and corresponding assembly
US4759297A (en) Furnace burner block
US3503631A (en) Brazed joints
US5708257A (en) Heating device for transfer of liquid metal and process for manufacturing the device
JP2005509521A (en) Liquid phase sintered brazed molded product
US4541474A (en) Process for manufacturing a moulding plunger for hollow glass objects
JPS58187284A (en) Diffusion welding method for structure element consisting of high heat-resistant metallic material
EP0636445B1 (en) Brazing
US6478213B1 (en) Fluxless fabrication of a multi-tubular structure
EP0601700A2 (en) Reinforced ceramic tube
JPS5832339A (en) End hat for magnetron
JP2613599B2 (en) Piston and method of manufacturing the same
EP3122705A2 (en) Method for joining ceramics to ceramics or ceramics to metals, and apparatus
JP2903740B2 (en) Ring assembly made of functionally gradient material and method of manufacturing the same

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19980324