JPH0663901B2 - Leakage detection method for impermeable structures - Google Patents

Leakage detection method for impermeable structures

Info

Publication number
JPH0663901B2
JPH0663901B2 JP63000758A JP75888A JPH0663901B2 JP H0663901 B2 JPH0663901 B2 JP H0663901B2 JP 63000758 A JP63000758 A JP 63000758A JP 75888 A JP75888 A JP 75888A JP H0663901 B2 JPH0663901 B2 JP H0663901B2
Authority
JP
Japan
Prior art keywords
water
electrodes
potential
electrode
impervious
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63000758A
Other languages
Japanese (ja)
Other versions
JPH01178843A (en
Inventor
伯男 金子
利郎 押方
純 川上
直人 臼井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taisei Corp
Original Assignee
Taisei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taisei Corp filed Critical Taisei Corp
Priority to JP63000758A priority Critical patent/JPH0663901B2/en
Publication of JPH01178843A publication Critical patent/JPH01178843A/en
Publication of JPH0663901B2 publication Critical patent/JPH0663901B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Examining Or Testing Airtightness (AREA)

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、廃棄物最終処分場、その他の遮水構造物にお
ける漏水の有無と漏水位置を電気的に検知する方法に関
するものである。
TECHNICAL FIELD The present invention relates to a method for electrically detecting the presence or absence of water leakage and the water leakage position in a waste final disposal site and other water-impervious structures.

〈従来技術〉 地質調査技術として地中に電流を流し岩盤や地層の電気
的性質の差異を基に地質を探査する電気探査が知られて
いる。
<Prior Art> As a geological survey technology, an electric survey is known in which an electric current is passed through the ground to search the geology based on the difference in the electrical properties of rocks and strata.

電気探査では各地層の電気抵抗の測定値を基に地質を探
査する比抵抗法(ウェンナー法)が知られている。
In electrical exploration, the specific resistance method (Wenner method) is known, which searches the geology based on the measured electric resistance of each layer.

この比抵抗法を簡単に説明すると、第3図に示すように
大地の4点に電極A、B、N、Mをセットし、最外側に
配置した電極A、Bに電流を流し、最外側に配置した電
極A、Bの中間に配置した電極N、M間の電圧を測定す
る。
The specific resistance method will be briefly described. As shown in FIG. 3, the electrodes A, B, N, and M are set at four points on the ground, and a current is passed through the electrodes A and B arranged on the outermost side, and the outermost side is set. The voltage between the electrodes N and M arranged in the middle of the electrodes A and B arranged in 1 is measured.

各電極A、B、N、M間の設置距離Lが等しい場合、大
地の比抵抗ρは次式で求められる。
When the installation distances L between the electrodes A, B, N, and M are equal, the specific resistance ρ of the ground is calculated by the following equation.

上式でIは電極AB間に流した電流値であり、Vは電極
N、M間で得られた電圧(電位差)である。
In the above equation, I is the value of the current that flows between the electrodes AB, and V is the voltage (potential difference) obtained between the electrodes N and M.

また米国では上述した電極を貯水槽の水面に設置し、電
極のN、Mの例えば一方の電極Nを固定し、他方の電極
Mを移動させ、或いは電極Mの他に数個の電極をセット
し、両電極間の電位差を測定して漏水を検知する方法が
存在する。
In the United States, the above-mentioned electrodes are installed on the water surface of a water tank, one of the electrodes N and M is fixed, the other electrode M is moved, or several electrodes other than the electrode M are set. However, there is a method of detecting a water leak by measuring the potential difference between both electrodes.

この漏水検知技術による電極の配置法を第4図に示す。FIG. 4 shows the method of arranging the electrodes by this water leakage detection technology.

aは内周前面にゴム製の遮水シートbを貼着した貯水槽
である。
Reference numeral a denotes a water tank having a rubber water blocking sheet b attached to the front surface of the inner circumference.

貯水槽aの水面の中央と水面外にそれぞれ電極A、Bを
配置し、他方水面中央に基準用の電極Nをセットすると
ともに、この電極Nの端に計測用の電極Mを接続する。
Electrodes A and B are arranged at the center of the water surface of the water tank a and outside the water surface, respectively, and a reference electrode N is set at the center of the water surface, and an electrode M for measurement is connected to the end of the electrode N.

そして、電極A,B間に電流を流し電極Mを移動しなが
ら両電極NM間の電位差を測定し、その測定結果の分布
図を作成する。
Then, a current is caused to flow between the electrodes A and B, the potential difference between the electrodes NM is measured while moving the electrode M, and a distribution chart of the measurement result is created.

遮水シートbに破損がなければ第5図に示すように電極
Aの通電箇所を中心とした同心円状の等電位線分布が得
られる。また、遮水シートbにdのような破損があれば
第6図のD部分に示すように特徴のある歪みを持つ分布
が得られ、この歪み部分Dに対応する遮水シートb上の
dの位置が破損箇所として検知できる。なお、この歪み
とは、破損によって生じる電位分布の変動を言う。
If there is no damage to the water-blocking sheet b, a concentric equipotential line distribution centered on the energized portion of the electrode A can be obtained as shown in FIG. Further, if the water-impervious sheet b has a damage such as d, a distribution having a characteristic distortion is obtained as shown in the D portion of FIG. 6, and d on the water-impermeable sheet b corresponding to this distortion portion D is obtained. The position of can be detected as a damaged part. Note that this distortion refers to a change in potential distribution caused by breakage.

〈本発明が解決しようとする問題点〉 上記した米国で紹介された漏水の検知技術にはつぎの幾
つかの問題点がある。
<Problems to be Solved by the Present Invention> The water leakage detection technology introduced in the United States has the following several problems.

(イ)遮水構造物の貯蔵物が固体の場合の場合はこの固
体全体の均一性が水に比して劣るため、測定用に流す電
流が乱れて漏水の検知が困難となる場合がある。
(B) When the storage of the water-impervious structure is a solid, the uniformity of the solid as a whole is inferior to that of water, so the current flowing for measurement may be disturbed and detection of water leakage may be difficult. .

〈本発明の目的〉 本発明は、測定用電位電極を地中の遮水槽付近に設置
し、電位差を測定することで遮水構造物における漏水を
検知する。
<Object of the Present Invention> The present invention detects a water leak in a water-impervious structure by installing a potential electrode for measurement in the vicinity of an impermeable tank in the ground and measuring the potential difference.

〈本発明の構成〉 以下、図面を参照しながら本発明の漏水検知方法につい
て説明する。
<Structure of the Present Invention> The water leakage detection method of the present invention will be described below with reference to the drawings.

(イ)測定対象 本発明で測定可能な対象物は、素材が高抵抗材料からな
る構造物であり、例えば遮水工を施した廃棄物の最終処
分場、ビルの地下構造物等である。
(A) Object to be Measured The object that can be measured in the present invention is a structure whose material is a high resistance material, and is, for example, a final disposal site of a water-shielded waste, an underground structure of a building, or the like.

(ロ)測定原理 本発明は遮水構造物に設けた遮水部材の外部と内部に給
電用電極を配置し、電圧を印加し、又、遮水部材の外部
又は内部に基準用電位電極を配置し、他方遮水部材の近
傍に網目状に計測用電位電極を配置する。
(B) Measurement principle In the present invention, a power supply electrode is arranged outside and inside a water shield member provided in a water shield structure to apply a voltage, and a reference potential electrode is provided outside or inside the water shield member. On the other hand, the measuring potential electrodes are arranged in a mesh shape in the vicinity of the water-impervious member.

そして、計測用電位電極で計測した電位分布に特徴ある
歪みの存否により漏水の有無を判断し、また特徴ある歪
みの位置から漏水位置を求める。
Then, the presence or absence of water leakage is determined based on the presence or absence of characteristic strain in the potential distribution measured by the measurement potential electrode, and the leakage position is obtained from the characteristic strain position.

なお、供給用電極の接続位置は、基準用電位電極と計測
用電位電極間に電位差を発生できるのであるなら如何な
る電流の流し方であっても良い。
The connection position of the supply electrode may be any current flow method as long as a potential difference can be generated between the reference potential electrode and the measurement potential electrode.

〈実施例〉 本実施例では廃棄物の最終処分場を想定した実験につい
て説明する(第1、2図) (イ)廃棄物最終処分場の模型全体の構造 管理型の最終処分場は各種廃棄物から発生する環境汚染
物質の地山浸透を防止するため、最終処分場の全域に遮
水槽が形成される。
<Example> In this example, an experiment assuming a final disposal site for waste will be described (Figs. 1 and 2). (A) Structure of entire model of final disposal site for waste Various disposals for a final disposal site of management type. Impermeable tanks will be formed in the entire landfill site to prevent the infiltration of environmental pollutants generated from materials.

遮水槽に用いられる低透水性材料としては、コンクリー
ト、合成ゴム・プラスチックなどの遮水シートの他、粘
土、アスファルトを単独で或いはこれらを積層して用い
られている。
As the low water-permeable material used for the water shield tank, clay, asphalt are used alone or as a laminate thereof in addition to water shield sheets such as concrete and synthetic rubber / plastic.

最近では図示するように遮水シート1を用いるのが主流
である。
Recently, as shown in the figure, it is the mainstream to use the water blocking sheet 1.

具体的には、基盤2の前面に粘土質の低透水性土3を敷
設し、この低透水性土3の上面に遮水シート1を敷設
し、最後に遮水シート1上の全面に遮水シート1を破損
から守るために覆土31を敷設している。
Specifically, the clay-based low water-permeable soil 3 is laid on the front surface of the base 2, the water-permeable sheet 1 is laid on the upper surface of the low-water-permeable soil 3, and finally the entire surface of the water-permeable sheet 1 is shielded. A cover soil 31 is laid to protect the water sheet 1 from damage.

(ロ)遮水シート 本実施例では遮水シート1を上下二枚に積層した場合に
ついて説明する。
(B) Impermeable Sheet In this embodiment, a case where the impermeable sheets 1 are laminated in two layers, one on top of the other, will be described.

2枚の遮水シート1の間には砂等を充填して排水槽32
を形成するとともに、遮水シート1の上部の覆土31内
および排水槽32内にそれぞれ排水管34、35を埋設
する。
Fill the space between the two water-impervious sheets 1 with sand etc.
And the drainage pipes 34 and 35 are embedded in the soil cover 31 and the drainage tank 32 above the water-blocking sheet 1, respectively.

(ハ)電極の設置位置 上下二枚の遮水シート1間に網目状に電極4を多数埋設
する。
(C) Electrode installation position A large number of electrodes 4 are embedded in a mesh shape between the upper and lower two water-blocking sheets 1.

本実施例では上位側の遮水シート1の下面に電極4を設
ける場合について説明する。
In this embodiment, a case where the electrode 4 is provided on the lower surface of the upper water-blocking sheet 1 will be described.

これらの電極4は、前述した計測用電位電極に相当する
もので、例えば鉄、ステンレス、真鍮や炭素等の低抵抗
材を用いることができる。
These electrodes 4 correspond to the above-mentioned potential electrodes for measurement, and low resistance materials such as iron, stainless steel, brass and carbon can be used.

各電極4に接続する出力ケーブルは管理室等へ案内し、
管理室で電位差を測定したり、電位分布を制作できるよ
う構成する。
Guide the output cable connected to each electrode 4 to the control room,
Configured so that the potential difference can be measured and the potential distribution can be created in the control room.

他方、基準電位電極5は最終処分場の中央部に接続す
る。
On the other hand, the reference potential electrode 5 is connected to the central part of the final disposal site.

前記電極4、5間に電位差を生じさせるために、最終処
分場に投棄された廃棄物6内に別の供給用電極を位置さ
せる。
In order to generate a potential difference between the electrodes 4 and 5, another supply electrode is placed in the waste 6 dumped at the final disposal site.

(ニ)検知方法 最終処分場の中央から電流を流し、両電位電極4、5間
の電位差を順次測定する。
(D) Detection method An electric current is applied from the center of the final disposal site, and the potential difference between the potential electrodes 4 and 5 is sequentially measured.

測定した各地点の測定地を基に電位分布図を作成し、作
成した電位分布図から漏水の有無や漏水位置を検知す
る。
A potential distribution map is created based on the measured locations at each measured point, and the presence or absence of water leakage and the position of water leakage are detected from the created potential distribution map.

遮水シート1に損傷がなく漏水がない場合は通電位置を
中心とする同心円状の電位分布が得られる。
When the water shield sheet 1 is not damaged and has no water leakage, a concentric potential distribution centered on the energized position is obtained.

また、遮水シート1の一部が破損して漏水している場合
は、第2図に示すようにこの破損部から電流が非常に良
く流れるから電位分布は遮水シート1の破損部7を中心
としたものとなる。
In addition, when a part of the water-blocking sheet 1 is damaged and leaks water, as shown in FIG. It will be central.

〈その他の実施例〉 前記実施例は遮水シート1を二重に敷設した場合につい
て説明したが、一枚ものであっても良い。
<Other Examples> In the above-described examples, the case where the water-blocking sheet 1 is double-laid has been described, but the number may be one.

遮水シート1を単層で用いる場合、この遮水シート1の
下面側或いは上面側に多数の電極4を網目状に埋設す
る。
When the waterproof sheet 1 is used as a single layer, a large number of electrodes 4 are embedded in a mesh shape on the lower surface side or the upper surface side of the waterproof sheet 1.

〈本発明の効果〉 本発明は以上説明したようになることから次のような効
果を期待することができる。
<Effects of the Present Invention> Since the present invention is as described above, the following effects can be expected.

(イ)計測用の電極を地中に設置して電位差を求める方
式であるから、計測用電位電極を移動させる必要がな
く、遮水構造物の近距離でしかも一定距離に埋設でき、
正確に電位差を測定できる。
(B) Because the measurement electrode is installed in the ground to obtain the potential difference, it is not necessary to move the measurement potential electrode, and it can be buried in a short distance of the water-impervious structure and at a certain distance.
The potential difference can be measured accurately.

(ロ)上記したように計測用電極を設置するので、漏水
箇所が米国技術では検知不可能な大きさでも正確に検知
できる。
(B) Since the measurement electrodes are installed as described above, the leak location can be accurately detected even if it has a size that cannot be detected by US technology.

(ハ)廃棄物の最終処分場や各種の有害物を貯蔵する施
設に採用すると、有害物質の漏出位置を正確に検知でき
るので、対策も早期に行える。
(C) If it is adopted in the final disposal site of waste and the facility that stores various harmful substances, the leak position of the harmful substances can be accurately detected, and the countermeasures can be taken early.

従って、環境汚染を最小に抑えることができる。Therefore, environmental pollution can be minimized.

(ニ)ビルの屋上防水箇所における漏水位置検知等多く
の分野に利用でき、その利用範囲が広範である。
(D) It can be used in many fields such as water leak detection at the roof waterproof part of the building, and its application range is wide.

【図面の簡単な説明】[Brief description of drawings]

第1図:廃棄物の最終処分場の断面図 第2図:漏水発生時の電位分布図 第3図:電気探査の概念図 第4図:従来の漏水検知技術の説明図 第5図:従来の漏水検知技術による漏水のない時の電位
分布図 第6図:従来の漏水検知技術による漏水時の電位分布図
Fig. 1: Cross-sectional view of the final disposal site of waste Fig. 2: Potential distribution diagram when water leakage occurs Fig. 3: Conceptual diagram of electric exploration Fig. 4: Explanatory diagram of conventional leak detection technology Fig. 5: Conventional Potential distribution diagram when there is no water leakage by the conventional water leakage detection technology Fig. 6: Electric potential distribution diagram when water leakage occurs by the conventional water leakage detection technology

フロントページの続き (56)参考文献 特開 昭55−107947(JP,A) 米国特許4543525(US,A) 米国特許3526831(US,A)Continuation of the front page (56) Reference JP-A-55-107947 (JP, A) US Patent 4435525 (US, A) US Patent 3526831 (US, A)

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】電気的に高抵抗の遮水層と、該遮水層で包
囲され、固体の貯蔵物を有する内部領域と、該遮水層の
外側の外部領域とを備えた遮水構造物の漏水検知方法に
おいて、 該内部領域と該外部領域間に電界を発生させるための給
電用電極を該内部領域と外部領域に各々配置し、該給電
用電極間に電圧を印加し、 該遮水層の近傍に網目状に計測用電位電極を多数埋設
し、 該給電用電極とは別の電極として基準用電位電極を該内
部領域又は該外部領域に埋設し、 該基準用電極と各々の該計測用電位電極間の電位差を順
次計測して、該遮水層付近の電位分布を求めて、該電位
分布の歪みから該遮水層の漏水位置を求めること、 を特徴とする遮水構造物の漏水検知方法。
1. A water-impervious structure having an electrically high-impervious water-impervious layer, an inner region surrounded by the water-impermeable layer, having a solid storage, and an outer region outside the water-impervious layer. In the method for detecting water leakage of an object, power feeding electrodes for generating an electric field between the inner region and the outer region are arranged in the inner region and the outer region, respectively, and a voltage is applied between the power feeding electrodes to interrupt the shielding. A large number of measuring potential electrodes are embedded in a mesh shape in the vicinity of the water layer, and a reference potential electrode is embedded in the internal region or the external region as an electrode separate from the power feeding electrode, and the reference electrode and each of the reference electrodes are embedded. A water-impervious structure characterized in that the potential difference between the measurement potential electrodes is sequentially measured, the potential distribution near the water-impervious layer is obtained, and the leak position of the water-impermeable layer is obtained from the distortion of the potential distribution. Leakage detection method for objects.
JP63000758A 1988-01-07 1988-01-07 Leakage detection method for impermeable structures Expired - Lifetime JPH0663901B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63000758A JPH0663901B2 (en) 1988-01-07 1988-01-07 Leakage detection method for impermeable structures

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63000758A JPH0663901B2 (en) 1988-01-07 1988-01-07 Leakage detection method for impermeable structures

Publications (2)

Publication Number Publication Date
JPH01178843A JPH01178843A (en) 1989-07-17
JPH0663901B2 true JPH0663901B2 (en) 1994-08-22

Family

ID=11482592

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63000758A Expired - Lifetime JPH0663901B2 (en) 1988-01-07 1988-01-07 Leakage detection method for impermeable structures

Country Status (1)

Country Link
JP (1) JPH0663901B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011247678A (en) * 2010-05-25 2011-12-08 Railway Technical Research Institute Groundwater level observation system and groundwater level observation method

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IL99506A0 (en) * 1990-09-17 1992-08-18 Proterra Umwelttechnik Method and arrangement for the monitoring of premises
JP3268010B2 (en) * 1992-06-15 2002-03-25 博明 柳田 Water leakage, strain / stress detection method and device
JP2782399B2 (en) * 1992-06-22 1998-07-30 大成建設株式会社 Impermeable structure
DE10116353B4 (en) * 2000-04-03 2006-03-30 Aisin Seiki K.K., Kariya Brake force distribution control device
DE10116356B4 (en) * 2000-04-03 2007-04-12 Aisin Seiki K.K., Kariya Braking force control device
JP2001287632A (en) * 2000-04-05 2001-10-16 Toyota Central Res & Dev Lab Inc Braking force controller
JP4331881B2 (en) * 2000-10-16 2009-09-16 トヨタ自動車株式会社 Road surface condition estimation device
CN116499661B (en) * 2023-04-23 2024-01-26 华北有色工程勘察院有限公司 Device and method for detecting leakage points of vertically paved high-resistance impermeable film

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3526831A (en) 1968-11-21 1970-09-01 North American Rockwell Method for tracking underwater pipelines and detecting flaws in the coating thereof
US4543525A (en) 1983-05-09 1985-09-24 Foote Mineral Company Method for determining a leak in a pond liner of electrically insulating sheet material

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55107947A (en) * 1979-02-14 1980-08-19 Asahi Giken Kk Method of detecting flaw of subaqueous tube or coating of subaqueous tube

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3526831A (en) 1968-11-21 1970-09-01 North American Rockwell Method for tracking underwater pipelines and detecting flaws in the coating thereof
US4543525A (en) 1983-05-09 1985-09-24 Foote Mineral Company Method for determining a leak in a pond liner of electrically insulating sheet material

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011247678A (en) * 2010-05-25 2011-12-08 Railway Technical Research Institute Groundwater level observation system and groundwater level observation method

Also Published As

Publication number Publication date
JPH01178843A (en) 1989-07-17

Similar Documents

Publication Publication Date Title
White et al. Electrical leak detection system for landfill liners: a case history
JPH0663901B2 (en) Leakage detection method for impermeable structures
Xi et al. Technology of detecting deep underground metal pipeline by magnetic gradient method
JP3174679B2 (en) Electrical leak detection method
JP3452908B2 (en) Water leak detection system and water leak detection method
Martorana et al. Electrical resistivity and induced polarization tomographies to test the efficiency and safety of the new landfill of Bellolampo (Palermo, Italy)
JP3899257B2 (en) Water leakage detection method and water leakage detection system
JP3419621B2 (en) Method of detecting sheet breakage in a deposition site
JP3657931B2 (en) Impermeable structure and water leakage detection method
JP3212294B2 (en) Water leak detection device and water leak detection method by potential method
JPH0933382A (en) Method for detecting leakage position
JP4442993B2 (en) Leakage detection / identification method for water-impervious structures and leak detection / identification device therefor
JP3068666B2 (en) Water leak position detection method based on current ratio
JP3716250B2 (en) Water leakage detection device and water leakage detection method
KR100319646B1 (en) Device and method for inspection of status of insulating layer or water-preventing layer
Jiang et al. Accurate detection method of high-density polyethylene film leakage location based on secondary electric potential difference
JP4660720B2 (en) Water leakage detection method and water leakage detection device
JP3941895B2 (en) Device for detecting leakage of water shielding material
JP3024505B2 (en) Water leakage sheet leak detection device at waste disposal site
JP4053864B2 (en) Water leakage detection system and water leakage detection method
JP3160733B2 (en) Water leak detection method for impermeable structures
JP2985571B2 (en) Contaminated water leak detection method at waste disposal sites
JP2000352541A (en) System for detecting water leak of impervious sheet
JP3380386B2 (en) Water leakage detection method and water leakage detection laminated sheet
JP4092216B2 (en) Water leakage detection device and water leakage detection method

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080822

Year of fee payment: 14