JPH0663284B2 - Steel construction method - Google Patents
Steel construction methodInfo
- Publication number
- JPH0663284B2 JPH0663284B2 JP59221491A JP22149184A JPH0663284B2 JP H0663284 B2 JPH0663284 B2 JP H0663284B2 JP 59221491 A JP59221491 A JP 59221491A JP 22149184 A JP22149184 A JP 22149184A JP H0663284 B2 JPH0663284 B2 JP H0663284B2
- Authority
- JP
- Japan
- Prior art keywords
- coating
- weight
- steel frame
- fire
- construction
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Building Environments (AREA)
- Porous Artificial Stone Or Porous Ceramic Products (AREA)
Description
【発明の詳細な説明】 〔産業上の利用分野〕 この発明は鉄骨構造建築物などの建設における鉄骨構築
法に関する。Description: TECHNICAL FIELD The present invention relates to a method for constructing a steel frame in the construction of a steel structure building or the like.
従来の鉄骨構造建築物などにおける鉄骨の構築は次のよ
うに行われている。まず、鉄骨工場にて所定形状および
所定寸法に加工された柱、梁等の鉄骨を工事現場に搬入
し、現場にてこれを組み立ててゆく。ついで、組み立て
られた鉄骨表面に湿式吹付岩綿あるいは半湿式吹付岩綿
などの耐火被覆材を吹き付けて耐火被覆を設けることに
よつて行われている。Construction of a steel frame in a conventional steel frame structure building or the like is performed as follows. First, a steel frame such as a pillar or a beam processed into a predetermined shape and a predetermined size at a steel frame factory is brought into a construction site and assembled at the site. Then, a fireproof coating material such as wet sprayed rock wool or semi-wet sprayed rock wool is sprayed onto the assembled steel frame surface to form a fire resistant coating.
しかしながら、従来の吹付岩綿による耐火被覆施工にあ
つては、施工時大量の岩綿の粉塵が発生し、その作業環
境が劣悪であり、その改善が切実に望まれている。However, in the conventional fireproof coating construction using sprayed rock wool, a large amount of dust of rock wool is generated during construction, and the working environment is poor, and improvement thereof is urgently desired.
このための改善策の1つに、組立前の鉄骨に対して工場
等において予め耐火被覆を施し、これを現場に搬入して
組み立てるいわゆる耐火被覆先付け工法が考えられる。
この方法は工場内や工事現場の仮設作業場内で機械を使
用して吹き付けを行うことができるので作業環境を改善
でき、しかも現場作業が軽減されて施工能率が上がり、
施工安全性も高いものである。しかし、この方法は吹付
岩綿による耐火被覆の機械的強度が非常に低く、鉄骨の
搬入時や組立時に耐火被覆が欠落したり、損傷したりし
て目的の耐火性能が得られない欠点があり、実用化され
ていないのが実情である。As one of the improvement measures for this, a so-called fireproof coating pre-attachment construction method in which a steel frame before assembly is previously provided with a fireproof coating in a factory or the like, and the steel frame is carried to the site and assembled is considered.
This method can improve the working environment because the spraying can be done by using the machine in the factory or the temporary work place at the construction site, and the work on the site is reduced and the construction efficiency is increased.
Construction safety is also high. However, this method has the drawback that the mechanical strength of the fireproof coating made from sprayed rock wool is very low, and the fireproof coating is missing or damaged when the steel frame is carried in or assembled, and the desired fireproof performance cannot be obtained. The reality is that it has not been put to practical use.
そこで、この発明にはあつては機械的強度の非常に高い
耐火被覆を形成しうる耐火被覆材を用いることにより、
上記問題点を解決し、高効率の先付け工法が採用できる
ようにした。Therefore, in the present invention, by using a fireproof coating material capable of forming a fireproof coating having a very high mechanical strength,
The above problems have been solved and a highly efficient pre-attachment construction method can be adopted.
この発明の鉄骨構築法は、他の鉄骨との接合部を除いて
耐火被覆材で予め被覆した鉄骨を組み立て、未被覆部を
上記耐火被覆材で被覆するものである。そして、この耐
火被覆材は、 低温度伝導性無機材料 10〜20重量% 高吸熱性無機材料 10〜30重量% 膨張性無機材料 5〜25重量% 耐熱向上無機材料 5〜15重量% 常温粘結材料 5〜20重量% 高温粘結材料 15〜40重量% の組成を有し、さらにこの高温粘結材には耐水性向上含
浸被覆および耐炭酸化被覆が形成された粒状水ガラスが
望ましく使用される。According to the steel frame construction method of the present invention, a steel frame pre-coated with a fire-resistant coating material is assembled except for a joint portion with another steel frame, and an uncoated portion is coated with the fire-resistant coating material. And this fireproof coating material is a low temperature conductive inorganic material 10 to 20% by weight, a high endothermic inorganic material 10 to 30% by weight, an expansive inorganic material 5 to 25% by weight, a heat resistance improving inorganic material 5 to 15% by weight, and room temperature binding. Material 5 to 20% by weight High-temperature binding material 15 to 40% by weight, and for this high-temperature binding material, granular water glass having a water resistance improving impregnation coating and a carbonation-resistant coating is preferably used. It
この発明に好適に使用される耐火被覆材を構成する低温
度伝導性無機材料としては、次式で定義される温度伝導
率(a)が小さい種々の無機材料が用いられる。As the low temperature conductive inorganic material constituting the fireproof coating material suitably used in the present invention, various inorganic materials having a small thermal conductivity (a) defined by the following formula are used.
a:温度伝導率(m2/hr) λ:熱伝導率(kcal/m・hr・℃) ρ:密度(kg/m2 c:比熱(kcal/kg・℃) 具体的には、粘土、石膏、膨張真珠岩、膨張ひる石、岩
綿、石綿、ケイソウ土などの温度伝導率が0.001m2/
hr以下のものが好ましい。この材料は熱伝導量が小さく
火炎で加熱されたとき、鉄骨等に熱が伝わる時間を引き
延ばし、結果的に耐火性を発揮する。この材料の配合量
は耐火被覆材に対して10〜20重量%とされる。10
重量%未満では遮熱性が不十分で鉄骨の温度上昇が大と
なつて不都合であり、20重量%を越えると造粒形状の
ものが多いためボソボソ状になりモルタルの圧送性や塗
付け性が悪くなつて不都合である。 a: Thermal conductivity (m 2 / hr) λ: Thermal conductivity (kcal / m · hr · ° C) ρ: Density (kg / m 2 c: Specific heat (kcal / kg · ° C) Specifically, clay, Thermal conductivity of gypsum, expanded pearlite, expanded vermiculite, rock wool, asbestos, diatomaceous earth, etc. is 0.001 m 2 /
Those of hr or less are preferable. This material has a small amount of heat conduction, and when heated by a flame, it prolongs the time during which heat is transmitted to a steel frame or the like, and consequently exhibits fire resistance. The blending amount of this material is 10 to 20% by weight based on the fireproof coating material. 10
If it is less than 20% by weight, the heat shield property is insufficient and the temperature rise of the steel frame is large, which is inconvenient. It is bad and inconvenient.
また、高吸熱性無機材料としては、主に結合水や吸蔵水
を多く含むグラフアイト、ハイジライト、塩化マグネシ
ウム、硼砂、ひる石原鉱石などが用いられる。この材料
は、熱を受けた際、これら結合水、吸蔵水が蒸発し、こ
の蒸発潜熱によつて熱を奪い、結果的に耐火性を示すも
のであり、好ましくは吸熱量が50cal/g以上の材料
を使用することが望ましい。この高吸熱性無機材料の配
合量は10〜30重量%とされる。10重量%未満で
は、吸熱量が小となり温度上昇が大となつて不都合であ
り、30重量%を越えるとこの成分は以下に述べる膨張
成分と重なる所があり、膨張量が過大となり安定した形
状を保つことが難しくなりやはり不都合である。Further, as the high endothermic inorganic material, graphite, which contains a large amount of bound water and stored water, hydrite, magnesium chloride, borax, hiruishibara ore, etc. are mainly used. When this material receives heat, these bound water and occluded water evaporate, and the latent heat of vaporization absorbs heat, resulting in fire resistance. Preferably, the endothermic amount is 50 cal / g or more. It is desirable to use the above materials. The compounding amount of this highly endothermic inorganic material is 10 to 30% by weight. If it is less than 10% by weight, the endothermic amount is small and the temperature rise is large, which is disadvantageous. It becomes difficult to maintain the value, which is also inconvenient.
また、膨張性無機材料としては、加熱されると、それ自
体が膨張して多孔質化し、高い断熱性を発揮して耐火性
を示すもので、例えばグラフアイト、ひる石原鉱石、水
ガラスなどの膨張率が50%以上のものが好ましい。こ
の材料の配合量は全体5〜25重量%とされる。5重量
%未満では膨張量が不足し耐火性がえられず不都合であ
り、25重量を越えると、膨張量が過大となり安定した
形状を保つことが難しくなり不都合である。Further, as the expansive inorganic material, when heated, it expands itself to become porous and exhibits high heat insulating properties and exhibits fire resistance. For example, graphite, hiruishihara ore, water glass, etc. It is preferable that the expansion coefficient is 50% or more. The total compounding amount of this material is 5 to 25% by weight. If it is less than 5% by weight, the amount of expansion is insufficient and fire resistance cannot be obtained, which is inconvenient. If it exceeds 25% by weight, the amount of expansion is excessive and it becomes difficult to maintain a stable shape.
耐熱向上無機材料は、上記種々の材料が長く高温に曝さ
れると、徐々に劣化して保形性を失い、崩壊するのを防
止し、より高度の耐火性を確保するためのもので、例え
ばアモルフアスシリカや消石灰などが使用できる。この
材料の配合量は5〜15重量%とされる。5重量%未満
では耐火安定性が劣り不都合であり、15重量%を越え
ると耐火断熱性が低下し不都合である。Heat-resistant improved inorganic materials, when the above various materials are exposed to high temperatures for a long time, gradually deteriorate to lose their shape retention properties, prevent their collapse, and ensure a higher degree of fire resistance. For example, amorphous silica or slaked lime can be used. The compounding amount of this material is 5 to 15% by weight. If it is less than 5% by weight, the fire resistance is inferior, which is inconvenient, and if it exceeds 15% by weight, the fire insulation properties are inferior.
また、常温粘結材料は、上記各材料を相互に固結して耐
火被覆材として一体に固めるもので、特に被覆施工時お
よび被覆施工後の平常時に固結作用を発現するもので、
石膏や各種セメントなどの水硬性材料が使用される。こ
の常温粘結材の配合量は全体の5〜20重量%とされ
る。5重量%未満では強度的に不足し、欠けやいたみが
生じ易く不都合であり、20重量%を越えると強度が大
きくなり過ぎ膨張反応が抑制されてしまうこととなつて
不都合である。Further, the room-temperature caking material is a material that solidifies the above materials together to solidify them as a fireproof coating material, and in particular, a material that exhibits a solidification effect during the coating operation and at normal times after the coating operation,
Hydraulic materials such as gypsum and various cements are used. The blending amount of the room temperature binder is 5 to 20% by weight of the whole. If the amount is less than 5% by weight, the strength is insufficient and chipping or damage is likely to occur, which is inconvenient. If the amount exceeds 20% by weight, the strength is too large and the expansion reaction is suppressed, which is inconvenient.
さらに、高温粘結材料は、特に加熱された際に固結作用
を発揮し、高温下での保形性を確保し、耐火性を向上せ
しめるものである。この高温粘結材料には耐水性向上含
浸被覆および耐炭酸化被覆が形成された粒径2〜5mmの
粒状水ガラスが用いられる。この粒状水ガラスは常温で
は何んら固結作用を示さないが、加熱されると、約20
0〜300℃で溶融しはじめるとともに発泡し、各材料
を固結するもので、約800℃まで固結作用が維持され
る。特に、ここでは耐水性向上含浸被覆と耐炭酸化被覆
とで被覆された粒状水ガラスを用いているので、施工中
での水かかりによつて水ガラスが溶解することが防止さ
れ、かつ施工後の空気中の炭酸ガスによる水ガラスの炭
酸化が防止され、これにより、長期にわたつて粒状水ガ
ラスの発泡性が保たれ、結果的に高温粘結材料としての
耐久性が向上する。Furthermore, the high-temperature caking material exhibits a consolidation effect especially when heated, and secures shape retention at high temperatures and improves fire resistance. As the high-temperature binding material, granular water glass having a particle size of 2 to 5 mm and having a water resistance improving impregnation coating and a carbonation resistance coating formed thereon is used. This granular water glass does not show any consolidating action at room temperature, but when heated, it will be about 20
It begins to melt at 0 to 300 ° C and foams to solidify each material, and the solidifying action is maintained up to about 800 ° C. In particular, since the granular water glass coated with the water-resistant improved impregnation coating and the carbonation-resistant coating is used here, the water glass is prevented from being melted due to water splash during the construction, and after the construction. Carbonation of the water glass by carbon dioxide gas in the air is prevented, whereby the foamability of the granular water glass is maintained for a long period of time, and as a result, the durability as a high temperature binding material is improved.
上記耐水被覆としては、ステアリン酸、ステアリン酸カ
ルシウムなどの撥水剤を浸透させたものが、また耐炭酸
化被覆としてはクロロプレンなどのゴムやアクリル樹脂
などの樹脂等の高分子材を厚さ0.5〜1mmに被覆したも
のが使用される。被覆構成は、粒状水ガラス表面にまず
耐水性向上含浸被覆が設けられ、この上に耐炭酸化被覆
が設けられる。As the water-resistant coating, those that have been impregnated with a water repellent such as stearic acid and calcium stearate, and as the carbonation-resistant coating are polymer materials such as rubber such as chloroprene and resins such as acrylic resin having a thickness of 0. A coating of 5 to 1 mm is used. The coating composition is such that the water resistant enhanced impregnation coating is first provided on the surface of the particulate water glass and then the carbonation resistant coating is provided thereon.
この高温粘結材料の配合量は、全体の15〜40重量%
とされる。15重量%未満であれば膨張層をうまく保持
できなくなり不都合であり、また40重量%を越えると
コスト面で採算が合わなくなるなどの不都合を来す。The compounding amount of this high-temperature binding material is 15 to 40% by weight of the whole.
It is said that If the amount is less than 15% by weight, the expanded layer cannot be held well, and if the amount exceeds 40% by weight, the cost is unprofitable.
このような配合の耐火被覆材は水と混練されてモルタル
状の混練物とされる。水の配合量は耐火被覆材100重
量部に対して40〜50重量部とされる。混練には通常
のモルタルミキサーなどが使用される。The refractory coating material having such a composition is kneaded with water to obtain a mortar-like kneaded product. The blending amount of water is 40 to 50 parts by weight with respect to 100 parts by weight of the fireproof coating material. A normal mortar mixer or the like is used for kneading.
つぎに、このモルタル状の混練物は、第1図に示すよう
に所定形状および所定寸法に加工された鉄骨1(図面で
はH型鋼よりなる梁)に吹き付けられて耐火被覆2とさ
れる。吹き付けには通常のモルタル吹付機などの吹付装
置が使用できる。また、コテ塗りも採用できる。吹き付
けられた混練物は通常1日で硬化し、強固な耐火被覆2
となる。吹き付けにあつては、第1図に示すように当然
鉄骨1のジヨイント部1aは除かれる。また、梁となる
H形鋼では、上側の床が載るフランジ面も除かれる。さ
らに、第2図に示すような柱梁合成部分3に対しても梁
とのジヨイント部分3a…を除いて予め耐火被覆2を形
成しておくことができる。このような耐火被覆2の施工
は鉄骨加工工場で行つてもよいし、工事現場内に仮設作
業場を設けて一旦搬入した鉄骨に耐火被覆を施してもよ
い。Next, as shown in FIG. 1, this mortar-like kneaded product is sprayed onto a steel frame 1 (a beam made of H-shaped steel in the drawing) processed into a predetermined shape and a predetermined size to form a fireproof coating 2. For spraying, a spraying device such as an ordinary mortar spraying machine can be used. Iron coating can also be used. The sprayed kneaded product usually hardens in one day, and a strong fireproof coating 2
Becomes In spraying, the joint portion 1a of the steel frame 1 is naturally removed as shown in FIG. Further, in the H-shaped steel that becomes the beam, the flange surface on which the upper floor rests is also excluded. Further, the fireproof coating 2 can be formed in advance also on the beam-column composite portion 3 as shown in FIG. 2 except for the joint portions 3a with the beam. Such construction of the fireproof coating 2 may be carried out in a steel frame processing factory, or a temporary work place may be provided in the construction site to apply the fireproof coating to the steel frame once loaded.
このようにして、予め耐火被覆2が形成された鉄骨1,
3は常法によつて組み立てられる。ついで、耐火被覆2
が施されずにそのまま残つているジヨイント部分等に現
場で上記混練物を吹き付け、組み立てた鉄骨の所要面全
体に耐火被覆2を形成する。In this way, the steel frame 1, on which the fireproof coating 2 is previously formed,
3 is assembled by a conventional method. Then, fireproof coating 2
The above-mentioned kneaded material is sprayed on site to the joint portion or the like that has not been subjected to the above treatment, and the fire-resistant coating 2 is formed on the entire required surface of the assembled steel frame.
このような鉄骨構築法にあつては、耐火被覆に上記配合
組成の耐火被覆材を用いているので、機械的強度が著る
しく高く、付着力もよいため、鉄骨搬入時や鉄骨組立時
においても耐火被覆が欠落したり、損傷したりすること
がない。第1表は、この発明で用いられる耐火被覆と従
来の湿式、半湿式岩綿との曲げ強度および圧縮強度を示
したものである。In such a steel-frame building method, since the fire-resistant coating material of the above-mentioned composition is used for the fire-resistant coating, the mechanical strength is remarkably high and the adhesive force is also good, so that the steel frame can be carried in or when the steel frame is assembled. The fireproof coating will not be lost or damaged. Table 1 shows bending strength and compressive strength of the fire resistant coating used in the present invention and conventional wet and semi-wet rock wool.
この第1表のデータよりこの耐火被覆は、従来の吹付け
岩綿に比して格段に機械的強度が高く、耐火被覆の先付
け工法が何んら問題なく実施できることが理解できる。 From the data in Table 1, it can be understood that this fireproof coating has a markedly higher mechanical strength than conventional blown rock wool, and that the fireproof coating can be implemented without any problem.
また、この発明に用いられる耐火被覆材は、前記各種の
材料をバランスよく配合しているので耐火被覆の厚さを
従来の吹付け岩綿によるものに比べて約1/2とするこ
とができる。従来の岩綿耐火被覆の場合は1時間耐火で
30mm、2時間耐火で45mm、3時間耐火で60mm程度
であるのに対し、この耐火被覆材にあつては実験の結
果、1時間耐火で15mm、2時間耐火で25mm、3時間
耐火で30mmでよく、約半分でよい。このため、建物全
体としての耐火被覆材量が半減し、施工時間の短縮等が
図られる。また、被覆厚さが薄いので、柱や梁の仕上り
寸法が小さくて済み、内装仕上材の下地が耐火被覆に当
り、これを削り落すなどの施工上の欠陥が防止できる。Further, since the fire-resistant coating material used in the present invention contains the above-mentioned various materials in a well-balanced composition, the thickness of the fire-resistant coating can be reduced to about 1/2 of that of the conventional sprayed rock wool. . In the case of the conventional rock wool refractory coating, 1 hour fire resistance is 30 mm, 2 hours fire resistance is 45 mm, 3 hours fire resistance is about 60 mm, while this fire resistance coating material is an experimental result of 15 mm The fire resistance for 2 hours is 25 mm, the fire resistance for 3 hours is 30 mm, and about half. Therefore, the amount of fireproof coating material for the entire building is halved, and the construction time can be shortened. Further, since the coating thickness is thin, the finished dimensions of the pillars and beams can be small, and the base of the interior finishing material hits the fireproof coating, which can prevent construction defects such as scraping off.
さらに、耐火被覆材を構成する高温粘結材料に耐水性向
上含浸被覆と耐炭酸化被覆とを有する粒状水ガラスを用
いているので、水ガラスの高温での固結作用が長期(1
0年以上)にわたつて保持される。すなわち、通常の水
ガラスでは施工中の水かかりによつて水ガラスが溶解流
出したり、あるいは施工後空気中の炭酸ガスと反応して
次式のように水ガラスが炭酸化して発泡性が低下したり
するが、 Na2SiO3+CO2→Na2CO3+SiO2 この発明において用いられる粒状水ガラスは耐水性向上
含浸被覆と耐炭酸化被覆が施されているので、このよう
な不都合を来すことがない。Further, since granular water glass having a water resistance improving impregnation coating and a carbonation resistant coating is used as the high temperature caking material constituting the fire resistant coating material, the consolidating action of the water glass at a high temperature is long-term (1
Retained for over 0 years). That is, in normal water glass, water glass is dissolved and flows out due to water splashing during construction, or after the construction reacts with carbon dioxide gas in the air and water glass is carbonized as shown in the following formula, and foaming property is reduced. However, Na 2 SiO 3 + CO 2 → Na 2 CO 3 + SiO 2 The granular water glass used in the present invention has a water resistance improving impregnation coating and a carbonation resistance coating. There is nothing to do.
また、吹き付けに際しては、混練物がモルタル状である
ので吹付け岩綿のように粉塵が飛散することが少なく、
良好な作業環境で作業を実施することができる。Also, when spraying, since the kneaded product is mortar-like, less dust is scattered like sprayed rock wool,
Work can be performed in a good working environment.
以上説明したように、この発明の鉄骨構築法によれば、
高能率で施工安全性も確保できる先付け工法が採用でき
る。また、耐火被覆材に特定の配合組成の高強度のもの
を用いるので、作業中の耐火被覆の脱落、損傷などがな
くなり、作業も容易となる。よつて、現場作業量が軽減
でき、工期の短縮化が図れ、コアまわりや外周まわりな
どの施工に危険性を伴う現場作業を避けることもでき
る。また、特定の配合材料をバランスよく配合したの
で、耐火被覆としての耐火性がよくその被覆厚さを従来
の吹付け岩綿の約1/2にすることができる。さらに、
耐火被覆材の高温粘結材に耐水性向上含浸被覆と耐炭酸
化被覆とを有する粒状水ガラスを用い高温粘結材料の固
結作用が長期にわたつて保存され、信頼性の高い耐火被
覆を有する鉄骨構造物が得られる。またさらに、耐火被
覆材混練物の吹き付けの際に、粉塵の発生がなく、作業
環境も良好であるなどの利点を得ることができる。As described above, according to the steel construction method of the present invention,
A prefabricated construction method that can ensure construction safety with high efficiency can be adopted. Further, since the fire-resistant coating material having a specific composition and high strength is used, the fire-resistant coating does not fall off, is not damaged during the work, and the work is easy. Therefore, the amount of on-site work can be reduced, the construction period can be shortened, and it is possible to avoid on-site work that involves a risk of construction around the core and the outer circumference. Further, since the specific compounding materials are compounded in a well-balanced manner, the fire resistance as a fire resistant coating is good and the coating thickness can be made about 1/2 that of the conventional sprayed rock wool. further,
A granular water glass having a water-resistant improved impregnation coating and a carbonation-resistant coating is used as the high-temperature binding material of the fire-resistant coating material, and the solidifying action of the high-temperature binding material is preserved for a long period of time to provide a highly reliable fire-resistant coating material. A steel structure having is obtained. Furthermore, when spraying the kneaded material of the fire-resistant coating material, it is possible to obtain the advantages that no dust is generated and the working environment is good.
第1図および第2図は、いずれもこの発明の鉄骨構築法
による耐火被覆を施した鉄骨の例を示す概略斜視図であ
る。 1……鉄骨、2……耐火被覆。1 and 2 are each a schematic perspective view showing an example of a steel frame coated with a fireproof coating by the steel frame building method of the present invention. 1 ... Steel frame, 2 ... Fireproof coating.
Claims (2)
予め被覆した鉄骨を組み立て、未被覆部を上記耐火被覆
材で被覆することを特徴とする鉄骨構築法。 但し、上記耐火被覆材は以下の組成を有する。 低温度伝導性無機材料 10〜20重量% 高吸熱性無機材料 10〜30重量% 膨張性無機材料 5〜25重量% 耐熱向上無機材料 5〜15重量% 常温粘結材料 5〜20重量% 高温粘結材料 15〜40重量%1. A method for constructing a steel frame, comprising assembling a steel frame pre-coated with a refractory coating material, excluding a joint with another steel frame, and coating an uncoated portion with the refractory coating material. However, the refractory coating material has the following composition. Low temperature conductive inorganic material 10 to 20% by weight High endothermic inorganic material 10 to 30% by weight Expandable inorganic material 5 to 25% by weight Heat resistance improving inorganic material 5 to 15% by weight Room temperature binding material 5 to 20% by weight High temperature viscosity Binder 15-40% by weight
び耐炭酸化被覆が形成された粒状水ガラスであることを
特徴とする特許請求の範囲第1項記載の鉄骨構築法。2. The method for constructing a steel frame according to claim 1, wherein the high-temperature caking material is a granular water glass on which a water resistance improving coating and a carbonation resistant coating are formed.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59221491A JPH0663284B2 (en) | 1984-10-22 | 1984-10-22 | Steel construction method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59221491A JPH0663284B2 (en) | 1984-10-22 | 1984-10-22 | Steel construction method |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6198841A JPS6198841A (en) | 1986-05-17 |
JPH0663284B2 true JPH0663284B2 (en) | 1994-08-22 |
Family
ID=16767543
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP59221491A Expired - Lifetime JPH0663284B2 (en) | 1984-10-22 | 1984-10-22 | Steel construction method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0663284B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62258032A (en) * | 1986-04-28 | 1987-11-10 | 株式会社竹中工務店 | Reinforcement refractory coating prefabricated construction method |
JPH0723634B2 (en) * | 1988-02-16 | 1995-03-15 | 鹿島建設株式会社 | Fireproof coating method |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS56153512U (en) * | 1980-04-17 | 1981-11-17 |
-
1984
- 1984-10-22 JP JP59221491A patent/JPH0663284B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPS6198841A (en) | 1986-05-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2000001380A (en) | Coating composition for fire protection and sound absorption | |
JP2004510673A (en) | Fire protection material | |
CN101734938A (en) | Fireproof and waterproof coating for tunnel | |
US2713787A (en) | Refractory wall section and method of making the same | |
JP4230725B2 (en) | Insulating refractory material composition and insulating refractory material using the same | |
JPH0663284B2 (en) | Steel construction method | |
JP2000143328A (en) | Heat insulating coating composition | |
US3375628A (en) | Insulated wall construction for heated surfaces | |
KR100199103B1 (en) | Insulating concrete of composition | |
JP3703359B2 (en) | Non-burning cement and underfloor structure of buildings using it | |
JPH0632667A (en) | Refractory coating material with hydrogencarbonic acid compound | |
JP3181152B2 (en) | Composition for fireproof coating | |
JPH0480173B2 (en) | ||
JPS611754A (en) | Formation of refractory coating layer in iron skeletal beam | |
JP2004035378A (en) | Heat expandable refractory material composition | |
JP4814154B2 (en) | Refractory composition using waste gypsum, refractory molded body, refractory coating structure, and method for forming refractory coating layer | |
JPH0713380B2 (en) | Steel frame fireproof coating method and fireproof coating material for construction | |
JP2022543088A (en) | Refractory insulation material and manufacturing method thereof | |
EA047264B1 (en) | FIRE-RESISTANT INSULATING MATERIAL AND METHOD FOR ITS PRODUCTION | |
JP2018043909A (en) | Geopolymer composition, and geopolymer cured body | |
JPH03242357A (en) | Expandable inorganic material | |
JPS62123082A (en) | Door wall | |
WO2021004555A1 (en) | Insulating material and method for its production | |
EP3994107A1 (en) | Insulating material and method for its production | |
JP2009002021A (en) | Compound fire-resistant building material |