JPH06626Y2 - Concrete pump hydraulic switching device - Google Patents

Concrete pump hydraulic switching device

Info

Publication number
JPH06626Y2
JPH06626Y2 JP1985190983U JP19098385U JPH06626Y2 JP H06626 Y2 JPH06626 Y2 JP H06626Y2 JP 1985190983 U JP1985190983 U JP 1985190983U JP 19098385 U JP19098385 U JP 19098385U JP H06626 Y2 JPH06626 Y2 JP H06626Y2
Authority
JP
Japan
Prior art keywords
switching
valve
pressure
hydraulic cylinder
hydraulic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1985190983U
Other languages
Japanese (ja)
Other versions
JPS6298780U (en
Inventor
善明 稲田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP1985190983U priority Critical patent/JPH06626Y2/en
Publication of JPS6298780U publication Critical patent/JPS6298780U/ja
Application granted granted Critical
Publication of JPH06626Y2 publication Critical patent/JPH06626Y2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Reciprocating Pumps (AREA)

Description

【考案の詳細な説明】 〔産業上の利用分野〕 本考案は、ピストン式コンクリートポンプの油圧切換装
置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a hydraulic switching device for a piston type concrete pump.

〔従来の技術〕 (1)第4図に於いて、オイルポンプ01より得られた高圧
作動油は油圧切換弁ブロツク02の中に組込まれた切換弁
05,06を通り主油圧シリンダ03及びゲートバルブ駆動用
油圧シリンダ04に分配され、切換弁05は主油圧シリンダ
03への作動油の流れを制御し、切換弁06はゲートバルブ
駆動用油圧シリンダ04への作動油の流れを制御してい
る。
[Prior Art] (1) In FIG. 4, a high-pressure hydraulic oil obtained from an oil pump 01 is a switching valve incorporated in a hydraulic switching valve block 02.
It is distributed to the main hydraulic cylinder 03 and the gate valve driving hydraulic cylinder 04 through 05 and 06, and the switching valve 05 is the main hydraulic cylinder.
The switching valve 06 controls the flow of the hydraulic oil to the 03, and the switching valve 06 controls the flow of the hydraulic oil to the hydraulic cylinder 04 for driving the gate valve.

今、主油圧シリンダ03のピストンが第4図の矢印の方に
作動し、ストロークエンドとなると、主油圧シリンダ03
のパイロツト圧により切換弁06を反対に切替えゲートバ
ルブ駆動用油圧シリンダ04を反対に切替えゲートバルブ
08が反対に切替り、切換時のパイロツト圧により切換弁
07を介して切換弁05を反対に切替え、主油圧シリンダ03
を第4図の矢印と反対の方向へ作動させる。つまり第4
図の場合主油圧シリンダ03、及びゲートバルブ駆動用油
圧シリンダ04切替後のパイロツト圧により、油圧シリン
ダ03及び04を左右、交互に切換えている。
Now, when the piston of the main hydraulic cylinder 03 moves toward the arrow in FIG. 4 and reaches the stroke end, the main hydraulic cylinder 03
Switching the switching valve 06 in the opposite direction by the pilot pressure of the gate valve Switching the hydraulic cylinder 04 for driving the gate in the opposite direction
08 is switched in the opposite direction, and the switching valve is set by the pilot pressure at the time of switching.
The switching valve 05 is switched to the opposite side via 07, and the main hydraulic cylinder 03
Is operated in the direction opposite to the arrow in FIG. That is, the fourth
In the case of the figure, the hydraulic cylinders 03 and 04 are alternately switched right and left by the pilot pressure after switching the main hydraulic cylinder 03 and the gate valve driving hydraulic cylinder 04.

(2)第5図に於いてオイルポンプ1より得られた高圧作
動油は、油圧切換弁ブロツク2の中に組込まれた切換弁
6,7を通り主油圧シリンダ3及びスイングバルブ駆動用
油圧シリンダ4に分配され切換弁6は主油圧シリンダ3
への作動油の流れを制御し、切換弁7はスイングバルブ
駆動用油圧シリンダ4への作動油の流れを制御してい
る。
(2) In FIG. 5, the high-pressure hydraulic oil obtained from the oil pump 1 is the switching valve incorporated in the hydraulic switching valve block 2.
6 and 7 are distributed to the main hydraulic cylinder 3 and the swing valve driving hydraulic cylinder 4, and the switching valve 6 is the main hydraulic cylinder 3
To the swing valve driving hydraulic cylinder 4, and the switching valve 7 controls the flow of hydraulic oil to the swing valve driving hydraulic cylinder 4.

今、主油圧シリンダ3のピストンが第5図の矢印の方に
作動し、ストロークエンドまで動くとピストン位置検出
スイツチ10の電気信号により切換弁9を切替え、切換弁
7が反対に切替わり、スイングバルブ駆動用油圧シリン
ダ4のピストンを反対に切替える。スイングバルブ駆動
用油圧シリンダ4のピストンがストロークエンドまで動
くとピストン位置検出スイツチ11の電気信号により切換
弁8を切替え切換弁6が反対に切替り、主油圧シリンダ
3のピストンが矢印と反対の方向に作動する。つまり第
5図の場合は油圧シリンダのピストン位置検出による電
気信号により主油圧シリンダ3、及びスイングバルブ駆
動用油圧シリンダ4を左右交互に切替える。
Now, when the piston of the main hydraulic cylinder 3 operates in the direction of the arrow in FIG. 5 and moves to the stroke end, the switching valve 9 is switched by the electric signal of the piston position detection switch 10, the switching valve 7 is switched in the opposite direction, and the swing The piston of the valve driving hydraulic cylinder 4 is switched to the opposite. When the piston of the swing valve driving hydraulic cylinder 4 moves to the stroke end, the switching valve 8 is switched by the electric signal of the piston position detection switch 11 and the switching valve 6 is switched to the opposite direction, and the piston of the main hydraulic cylinder 3 is moved in the direction opposite to the arrow. Works. That is, in the case of FIG. 5, the main hydraulic cylinder 3 and the swing valve driving hydraulic cylinder 4 are alternately switched to the left and right by an electric signal obtained by detecting the piston position of the hydraulic cylinder.

〔考案が解決しようとする問題点〕[Problems to be solved by the invention]

第4図及び第5図に示した従来の油圧回路には下記の通
り問題点がある。
The conventional hydraulic circuits shown in FIGS. 4 and 5 have the following problems.

(1)第4図装置の場合、ゲートバルブ駆動用油圧シリン
ダ04を切替える駆動圧力をパイロツト圧として主油圧シ
リンダ03を切替える切換弁06を切換える為ゲートバルブ
08が大きな切替力を必要とする場合、ゲートバルブ08が
切換り途中であるにもかかわらず大きなパイロツト圧が
発生することにより、切換弁06が早く切換ってしまう
為、次工程である主油圧シリンダ03が作動し始め、ゲー
トバルブ08が半開き状態のままとなりコンクリート圧送
がスムースに行なわれない。又ゲートバルブの切換工程
途中で運転を停止するとゲートバルブが半開き状態のま
ま停止し、コンクリート配管に立上がり部分があるとそ
のヘツド圧によりコンクリートが逆流する。その他に油
圧パイロツト圧による制御は、作動油の油温変化、油
圧、切換弁の内部リーク及びコンタミ等に影響されて誤
作動し易い。よって、運転条件に応じて絞り弁を調整す
る必要があるが、最適状態とするには熟練が必要であ
る。
(1) In the case of the device shown in FIG. 4, the gate valve for switching the switching valve 06 for switching the main hydraulic cylinder 03 with the driving pressure for switching the gate valve driving hydraulic cylinder 04 as the pilot pressure.
If 08 requires a large switching force, switching valve 06 will switch quickly because a large pilot pressure is generated even though gate valve 08 is in the process of switching, so the main hydraulic pressure in the next step Cylinder 03 starts to operate, gate valve 08 remains in a half-opened state, and concrete is not pumped smoothly. Further, if the operation is stopped during the switching process of the gate valve, the gate valve will stop in a half-open state, and if there is a rising portion in the concrete pipe, the head pressure will cause the concrete to flow back. Besides, the control by the hydraulic pilot pressure is apt to malfunction due to the influence of the oil temperature change of the working oil, the oil pressure, the internal leak of the switching valve, the contamination and the like. Therefore, it is necessary to adjust the throttle valve according to the operating conditions, but skill is required to achieve the optimum state.

(2)第5図装置の場合、スイングバルブ駆動用油圧シリ
ンダ4のピストン位置を検出し、スイツチ11の電気信号
により主油圧シリンダ3を切替える為、スイングバルブ
16が骨材等のかみ込みにより完全に切替らない場合この
状態でコンクリートポンプは停止し次の工程に移らず一
旦ポンプを止めてスイングバルブ16を完全に切替わる様
にする処置が必要である。
(2) In the case of the device shown in FIG. 5, since the piston position of the swing valve driving hydraulic cylinder 4 is detected and the main hydraulic cylinder 3 is switched by the electric signal of the switch 11, the swing valve
When 16 does not completely switch due to the inclusion of aggregates, etc., the concrete pump stops in this state and it is necessary to take measures to stop the pump once and switch the swing valve 16 completely without moving to the next process. .

又、ピストン位置検出である為切換力は常に安全弁5で
設定された圧力による最大押力となり、コンクリート圧
送負荷とは無関係に常に最大のサージ圧が発生し作動油
温上昇に影響があるとともに、常に最大の切換力で切換
る為切換時の衝撃音による振動、騒音の要因となってい
る。
Further, since the piston position is detected, the switching force is always the maximum pressing force due to the pressure set by the safety valve 5, and the maximum surge pressure is always generated regardless of the concrete pumping load, which affects the temperature rise of the hydraulic oil. Since switching is always performed with the maximum switching force, it causes vibration and noise due to impact noise during switching.

その他、位置検出制御では外部で動くものを検出する必
要があり、構造が複雑となり、又、安全上にも多少問題
がある。
In addition, in the position detection control, it is necessary to detect an externally moving object, which complicates the structure and has some safety problems.

〔問題点を解決するための手段〕[Means for solving problems]

吸入・吐出切換弁の切換わりが完了すると、吸入・吐出
弁駆動油圧が上昇することを利用し、その圧力上昇を圧
力スイツチにより検出して主油圧シリンダ回路の切換信
号とする。
When the switching of the intake / discharge switching valve is completed, the hydraulic pressure for driving the intake / discharge valve rises, and the rise in pressure is detected by the pressure switch and used as the switching signal for the main hydraulic cylinder circuit.

回路内圧が設定して圧力まで上昇すると次工程にすす
み、回路内の負荷に応じて圧力をセツトすることによっ
て切換力を最適にコントロールする。
When the circuit internal pressure is set and rises to the pressure, the process proceeds to the next step, and the switching force is optimally controlled by setting the pressure according to the load in the circuit.

〔作用〕[Action]

(イ)吸入・吐出弁切換完了し、回路圧が任意の圧力セツ
ト圧まで上昇すると、圧力スイツチが作動して電気信号
が出され主油圧シリンダを切換える。
(B) When the intake / discharge valve switching is completed and the circuit pressure rises to an arbitrary pressure set pressure, the pressure switch operates and an electric signal is output to switch the main hydraulic cylinder.

(ロ)圧力スイツチの設定圧を適当に選定することによ
り、バルブ切換力を自由にコントロールすることが可能
となる。
(B) By properly selecting the set pressure of the pressure switch, the valve switching force can be freely controlled.

(ハ)圧力スイツチによる電気信号で切換弁を切換える
為、切換途中で運転を停止してもバルブが完全に切換後
停止させることが可能となる。
(C) Since the switching valve is switched by the electric signal from the pressure switch, even if the operation is stopped during the switching, the valve can be stopped after the switching completely.

〔実施例〕〔Example〕

第1図に実施例の油圧回路図を示す。オイルポンプ1に
より得られた高圧作動油は油圧切換弁ブロツク2の中に
組込まれた切換弁6,7を通り、主油圧シリンダ3及びス
イングバルブ駆動用油圧シリンダ4に分配され切換弁6
は主油圧シリンダ3への作動油の流れを制御し、切換弁
7はスイングバルブ駆動用油圧シリンダ4への作動油の
流れを制御している。今主油圧シリンダ3のピストンが
第1図の矢印の方向に作動し、ストロークエンドまで動
くとピストン位置検出スイツチ10又は11の電気信号によ
り切換弁9は切替えられ、切換弁7が反対に切替わり、
スイングバルブ駆動用油圧シリンダ4のピストンは反対
に切換えられる。スイングバルブ駆動用油圧シリンダ4
のピストン切換完了後回路圧が圧力スイツチ21又は22の
圧力セツト値まで上昇すると圧力スイツチ21又は22の電
気信号により切換弁8は切替えられ切換弁6が反対に切
替わり主油圧シリンダ3のピストンは反対に切換えられ
る。
FIG. 1 shows a hydraulic circuit diagram of the embodiment. The high-pressure hydraulic oil obtained by the oil pump 1 passes through the switching valves 6 and 7 incorporated in the hydraulic switching valve block 2, is distributed to the main hydraulic cylinder 3 and the swing valve driving hydraulic cylinder 4, and is switched to the switching valve 6.
Controls the flow of hydraulic oil to the main hydraulic cylinder 3, and the switching valve 7 controls the flow of hydraulic oil to the swing valve driving hydraulic cylinder 4. Now, when the piston of the main hydraulic cylinder 3 operates in the direction of the arrow in FIG. 1 and moves to the stroke end, the switching valve 9 is switched by the electric signal of the piston position detection switch 10 or 11, and the switching valve 7 is switched in the opposite direction. ,
The piston of the swing valve driving hydraulic cylinder 4 is switched in the opposite direction. Swing valve drive hydraulic cylinder 4
When the circuit pressure rises to the pressure set value of the pressure switch 21 or 22 after the completion of the piston switching, the switching valve 8 is switched by the electric signal of the pressure switch 21 or 22 and the switching valve 6 is switched in the opposite direction, and the piston of the main hydraulic cylinder 3 The opposite can be switched.

ここで主油圧シリンダ切換用切換弁8のソレノイドバル
ブ13へ信号を送る条件としては、第2図に示す様に、ス
イングバルブ駆動用油圧シリンダ切換用切換弁9のソレ
ノイドバルブ14への電気信号と、圧力スイツチ21の電気
信号の両方が“ON”になった時であり、ソレノイドバル
ブ12へ信号を送る条件は、切換弁9のソレノイドバルブ
15への電気信号と、圧力スイツチ22の電気信号の両方が
“ON”になった時とし、スイングバルブ切換用の電気信
号(ソレノイドバルブ14又は15への電気信号)を受けて
スイングバルブ16を作動完了後、スイングバルブ駆動用
油圧シリンダ4の油圧回路の圧力上昇を、圧力スイツチ
21又は22で検出し、主油圧シリンダ3を第1図の矢印の
方向へ作動させるか又は矢印とは逆の方向へ作動させる
シーケンスを構成している。
Here, as a condition for sending a signal to the solenoid valve 13 of the main hydraulic cylinder switching switching valve 8, as shown in FIG. 2, an electric signal to the solenoid valve 14 of the swing valve driving hydraulic cylinder switching switching valve 9 is used. , When both of the electric signals of the pressure switch 21 are turned on, the condition for sending a signal to the solenoid valve 12 is that the solenoid valve of the switching valve 9
When both the electric signal to 15 and the electric signal of the pressure switch 22 are turned on, the swing valve 16 is received by receiving the electric signal for switching the swing valve (the electric signal to the solenoid valve 14 or 15). After the operation is completed, increase the pressure in the hydraulic circuit of the swing valve driving hydraulic cylinder 4 by changing the pressure.
The sequence is detected by 21 or 22, and the main hydraulic cylinder 3 is operated in the direction of the arrow in FIG. 1 or in the direction opposite to the arrow.

圧力スイツチ21又は22は任意に圧力を設定できる構造の
ものを使用し、コンクリートの配合及び配管状態(貧配
合コンクリートや高所圧送時には切換力をUPする必要
あり、逆に圧送負荷が小さい場合は切換力を下げて作動
油温上昇、騒音、振動を少なくすることが可能)により
自由に圧力スイツチセツト圧を変えられるものである。
Use a pressure switch 21 or 22 with a structure that can set the pressure arbitrarily. Mixing ratio of concrete and pipe condition (it is necessary to increase the switching force when poorly mixed concrete or high-pressure pumping, conversely when the pumping load is small. It is possible to freely change the pressure switch set pressure by lowering the switching force to increase the temperature of hydraulic oil, noise and vibration.

第3図に示す電気回路で、今、コンクリートポンプ運転
スイツチSWがONとなり運転が開始されると保持回路
の入力信号(A)がhighとなり、出力信号(B)がhighとなり
運転中の信号を出力するが、ここで(B)の出力信号をO
R回路の入力側へももどし出力信号(B)が一端highとな
るとOR回路の入力信号(C)もhighとなり、コンクリー
トポンプ運転スイツチSWをOFFとし、運転を停止し
ても入力振動(C)がLowとならない限りソレノイドバルブ
14又は15を切替える為の入力信号を出し続け14又は15を
切替えスイングバルブ16が完全に切換わるまで運転を継
続する。スイングバルブ16が完全に切換わるとスイング
バルブ切替完了信号(D)がhighとなり、OR回路の入力
信号(C)がLowとなり、コンクリートポンプ運転スイツチ
SWを停止にしてもスイングバルブ16が完全に切替って
停止させることができる。
In the electric circuit shown in Fig. 3, when the concrete pump operation switch SW is turned on and the operation is started, the input signal (A) of the holding circuit becomes high and the output signal (B) becomes high and the signal during operation is changed. The output signal of (B) is output here.
When the output signal (B) returned to the input side of the R circuit becomes high once, the input signal (C) of the OR circuit also becomes high, turning off the concrete pump operation switch SW, and input vibration (C) even when the operation is stopped. Solenoid valve unless is low
The input signal for switching 14 or 15 is continuously output, and switching of 14 or 15 is continued until the swing valve 16 is completely switched. When the swing valve 16 is completely switched, the swing valve switching completion signal (D) becomes high, the input signal (C) of the OR circuit becomes low, and the swing valve 16 is completely switched even if the concrete pump operation switch SW is stopped. Can be stopped.

上記実施例はコンクリート吸入・吐出切換バルブとし
て、スイングバルブ16を使用した例について説明した
が、スイング駆動式に限らず、第4図に示したゲートバ
ルブ式(板バルブ)など、他のどの様なバルブ形式でも
よい。
In the above-mentioned embodiment, the swing valve 16 is used as the concrete intake / discharge switching valve, but the swing valve is not limited to the swing valve type, and any other type such as the gate valve type (plate valve) shown in FIG. Any valve type may be used.

〔考案の効果〕[Effect of device]

(1)ゲートバルブの切換力を自由にコントロールするこ
とが可能となる。従って無駄なエネルギーを使わずエネ
ルギーを節約できる。
(1) It becomes possible to freely control the switching force of the gate valve. Therefore, it is possible to save energy without wasting energy.

(2)ゲートバルブの半開き防止等の制御を高度化出来
る。
(2) The control such as half-opening prevention of the gate valve can be advanced.

(3)外部で作動するものがなく安全でかつシンプルであ
る。
(3) It is safe and simple because there is nothing that operates externally.

(4)ゲートバルブに骨材がかみ込んでも停止することな
く、連続運転が可能となる。
(4) Continuous operation is possible without stopping even if the aggregate gets caught in the gate valve.

(5)圧力スイツチ設定圧を自由にコントロールすること
が可能であり、バルブの切換力を自由に選択できる。
(5) Pressure switch The set pressure can be freely controlled, and the valve switching force can be freely selected.

(6)無駄なエネルギーを使わずに最適なエネルギー(切
換力)で作動させることができ、同時に油温上昇及び切
換時に発生する衝撃音等を防止することが可能である。
(6) It is possible to operate with the optimum energy (switching force) without wasting energy, and at the same time it is possible to prevent the rise of oil temperature and the impact noise generated during switching.

【図面の簡単な説明】[Brief description of drawings]

第1図は本考案コンクリートポンプ油圧切換装置の実施
例における油圧回路図、第2図は第1図装置の電気系統
ブロツク図、第3図は第1図装置の保持回路の電気系統
ブロツク図である。第4図及び第5図は夫々従来装置の
油圧回路図である。 1…オイルポンプ 2…油圧切換弁ブロツク 3…主油圧シリンダ 4…コンクリート吸入・吐出切換バルブ駆動用油圧シリ
ンダ 10,11…ピストン位置検出スイツチ 16…コンクリート吸入・吐出切換バルブ 21,22…圧力スイツチ
FIG. 1 is a hydraulic circuit diagram of an embodiment of a concrete pump hydraulic switching device of the present invention, FIG. 2 is an electrical system block diagram of the device of FIG. 1, and FIG. 3 is an electrical system block diagram of a holding circuit of the device of FIG. is there. 4 and 5 are hydraulic circuit diagrams of a conventional device, respectively. 1 ... Oil pump 2 ... Hydraulic switching valve block 3 ... Main hydraulic cylinder 4 ... Concrete suction / discharge switching valve drive hydraulic cylinder 10,11 ... Piston position detection switch 16 ... Concrete suction / discharge switching valve 21,22 ... Pressure switch

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 【請求項1】コンクリートポンプ駆動用の1対の主油圧
シリンダとコンクリート吸入・吐出切換バルブ駆動用油
圧シリンダと之等の油圧シリンダに供給する圧力油を切
換える複数個の切換弁とを具えたピストン式コンクリー
トポンプにおいて、油圧回路中に設けられるとともに前
記切換弁の切換圧力が設定され前記駆動用油圧シリンダ
の回路圧力が前記設定圧力に達したとき主油圧シリンダ
の切換弁に切り換え信号を出力する圧力スイツチを具え
たことを特徴とするコンクリートポンプ油圧切換装置。
1. A piston having a pair of main hydraulic cylinders for driving a concrete pump, a hydraulic cylinder for driving a concrete suction / discharge switching valve, and a plurality of switching valves for switching pressure oil supplied to the hydraulic cylinders. In a hydraulic concrete pump, a pressure that is provided in a hydraulic circuit and that outputs a switching signal to the switching valve of the main hydraulic cylinder when the switching pressure of the switching valve is set and the circuit pressure of the drive hydraulic cylinder reaches the set pressure. Concrete pump hydraulic switching device characterized by having a switch.
JP1985190983U 1985-12-13 1985-12-13 Concrete pump hydraulic switching device Expired - Lifetime JPH06626Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1985190983U JPH06626Y2 (en) 1985-12-13 1985-12-13 Concrete pump hydraulic switching device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1985190983U JPH06626Y2 (en) 1985-12-13 1985-12-13 Concrete pump hydraulic switching device

Publications (2)

Publication Number Publication Date
JPS6298780U JPS6298780U (en) 1987-06-23
JPH06626Y2 true JPH06626Y2 (en) 1994-01-05

Family

ID=31144703

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1985190983U Expired - Lifetime JPH06626Y2 (en) 1985-12-13 1985-12-13 Concrete pump hydraulic switching device

Country Status (1)

Country Link
JP (1) JPH06626Y2 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5320081Y2 (en) * 1973-08-04 1978-05-27
JPS6131193Y2 (en) * 1981-05-18 1986-09-10

Also Published As

Publication number Publication date
JPS6298780U (en) 1987-06-23

Similar Documents

Publication Publication Date Title
JPH06626Y2 (en) Concrete pump hydraulic switching device
JP2844476B2 (en) Control method of hydraulic actuator
JPH063195Y2 (en) Concrete pump hydraulic switching device
JP2004263645A (en) Hydraulic device
JP2002089504A (en) Hydraulic actiator pressure retaining method and device thereof
JP2001208004A (en) Hydraulic drive unit
JPH0621697Y2 (en) Hydraulic oil temperature raising device for injection molding machine
JP2575688B2 (en) Control device for concrete pump
JP2545028Y2 (en) Actuator drive hydraulic circuit
JP2593139Y2 (en) Hydraulic pump discharge rate control device
JPH0752390Y2 (en) Hydraulic supply device
JP2563848Y2 (en) Construction machine control circuit
JP2546242Y2 (en) Hydraulic circuit of construction machinery
JP2566615Y2 (en) Control device for double-acting hydraulic actuator
JP3099538B2 (en) Switching control device for directional control valve
JPS62159776A (en) Hydraulic circuit of concrete pump
JPH0365769U (en)
JPS5819603Y2 (en) Displacement control device
JP2560290Y2 (en) Displacement control device for variable displacement hydraulic pump
JP2511471Y2 (en) Switching device for concrete pump
SU1147857A1 (en) Hydraulic drive
JPH05214746A (en) Engine-hydraulic control device for hydraulic excavator
SU1154492A1 (en) Pneumatic drive
JP2567378B2 (en) Drive cylinder servo controller
JPS6339434Y2 (en)