JPH0662450A - Self-routing optical switch and optical switch array - Google Patents

Self-routing optical switch and optical switch array

Info

Publication number
JPH0662450A
JPH0662450A JP21121192A JP21121192A JPH0662450A JP H0662450 A JPH0662450 A JP H0662450A JP 21121192 A JP21121192 A JP 21121192A JP 21121192 A JP21121192 A JP 21121192A JP H0662450 A JPH0662450 A JP H0662450A
Authority
JP
Japan
Prior art keywords
signal light
optical switch
information signal
optical
wavelength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21121192A
Other languages
Japanese (ja)
Inventor
Hiroaki Inoue
宏明 井上
Hirohisa Sano
博久 佐野
Toshio Kirihara
俊夫 桐原
Shinji Nishimura
信治 西村
Mari Ogawa
真里 小川
Koji Ishida
宏司 石田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP21121192A priority Critical patent/JPH0662450A/en
Priority to US08/102,805 priority patent/US5422967A/en
Publication of JPH0662450A publication Critical patent/JPH0662450A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To acquire the information on an optical exchange which has a high function and large capacity by securing the connection of an optical path to which the information signal light is outputted in accordance with the presence or absence of the address signal light multiplexed with the information signal light in terms of the wavelength. CONSTITUTION:A switching area 3 and an optical waveguide 6 are formed on an InP substrate. The width of the waveguide 6 is set at 4mum with a Y-shaped optical waveguide branching angle set at 7 deg. respectively. The semiconductor laser light having the wavelength of 1.31mum is made incident on an input terminal 11 of an optical switch as an information signal. Then the semiconductor pulse light having the wavelength of 1.27mum is superposed on the semiconductor laser light as the address signal light. When the optical intensity of the address signal light is low, the information signal light is almost radiated through an output terminal 12. When the intensity of the address signal light is increased, the optical intensity of the information signal light received from the terminal 12 is reduced and radiated through an output terminal 13. The information signal light is completely switched to a radiation terminal 13 from the radiation terminal 12 with incidence of the address signal light of about 0dBm. Thus the inserting loss and the crosstalk value are set at 5dB and -25dB respectively to secure the performance almost equal to a conventional optical switch.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、光情報処理,光通信シ
ステムにおける光部品に係り、特に広帯域高速の光信号
を交換する大容量光交換機に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to optical components in optical information processing and optical communication systems, and more particularly to a large-capacity optical switch for exchanging broadband and high-speed optical signals.

【0002】[0002]

【従来の技術】従来の半導体導波路型光スイッチ及び光
スイッチアレイ、光交換機に用いられる集積された半導
体導波路型光スイッチについてはアイトリプルイー,ジ
ャーナル オン セレクティッド エリアズ イン コ
ミュニケーション 第6巻,第1262頁−第1266
頁,1988年[IEEE Journal on Selected Areasin C
ommunications,J−SAC−6,pp1262−126
6,1988]に記載されている。
2. Description of the Related Art Conventional semiconductor waveguide type optical switches and optical switch arrays, and integrated semiconductor waveguide type optical switches used in optical switches are described in Eye Triple E, Journal on Selected Areas in Communication Vol. 6, 1262. Pp-1266
Page, 1988 [IEEE Journal on Selected Areas in C
ommunications, J-SAC-6, pp1262-126
6, 1988].

【0003】[0003]

【発明が解決しようとする課題】上記従来技術は、導波
路型光スイッチの素子長を短くし、半導体基板上への大
規模な集積を可能とする手法としてキャリヤ注入方式及
び片渡り交差型又は両渡り交差型構造を提案し、大規模
集積化に適し、光交換機の大容量化に好適な小型の光ス
イッチアレイを実現している。しかし、情報信号の宛先
を識別し、光スイッチアレイの入出力端を接続する手法
に関しては、全く配慮がされておらず、通常情報信号内
に含まれている宛先を一旦電気信号に変換し、それを読
み取り、宛先にしたがって光スイッチアレイの駆動回路
を動作させる必要があった。このため信号速度が増大す
ると、大容量の情報を交換する交換機に適用する際、制
御駆動回路が複雑となるので、一層の大規模,高密度集
積化が困難であるといった問題があった。
The above-mentioned prior art is a method of shortening the element length of a waveguide type optical switch and enabling a large-scale integration on a semiconductor substrate. We have proposed a two-way crossing type structure, and have realized a compact optical switch array suitable for large-scale integration and suitable for large-capacity optical switching equipment. However, regarding the method of identifying the destination of the information signal and connecting the input and output ends of the optical switch array, no consideration is given, and the destination included in the normal information signal is once converted into an electric signal, It was necessary to read it and operate the drive circuit of the optical switch array according to the destination. For this reason, when the signal speed increases, the control drive circuit becomes complicated when applied to an exchange that exchanges a large amount of information, and there is a problem that it is difficult to achieve further large-scale and high-density integration.

【0004】本発明の目的は、上記課題を解決し、情報
信号内に含まれる宛先情報をもとに情報信号自身を宛先
出力端へ自動的に出力する新規な機能(セルフルーティ
ング機能)を有する光交換機用光スイッチ及び光スイッ
チアレイを提供することにある。
An object of the present invention is to solve the above problems and to have a novel function (self-routing function) of automatically outputting the information signal itself to the destination output end based on the destination information included in the information signal. An object is to provide an optical switch and an optical switch array for an optical switch.

【0005】[0005]

【課題を解決するための手段】上記目的は、少なくとも
情報信号光に重畳された宛先信号光を用いて、光スイッ
チの接続を制御することにより達成される。
The above object is achieved by controlling the connection of an optical switch using at least a destination signal light superimposed on an information signal light.

【0006】[0006]

【作用】化合物半導体材料にキャリヤ(電子及びまたは
正孔)を注入すると、半導体内のキャリヤ密度が注入さ
れた領域で変化し、このキャリヤ密度変化に応じた屈折
率変化が生じる。従来例にあるキャリヤ注入型光スイッ
チではスイッチングを行う領域にpn接合を形成し、電
流を流すことにより該スイッチング領域のキャリヤ密度
即ち屈折率を変化させている。本発明では該スイッチン
グ領域に情報信号光に多重化された情報信号光とは異な
る波長の宛先信号光のみを吸収させ、該領域のキャリヤ
密度(屈折率)を情報信号光が通過するのに充分な時間
だけ変化させる。即ち、接続したい情報信号光の持続時
間と同じかそれを含むより長い時間だけ変化させる。こ
れにより、スイッチ部に外部印加信号で特別な宛先制御
をすることなく光スイッチを動作させることができるの
で、情報信号光のセルフルーティングが可能となる。さ
らにこの光スイッチを多段に接続し、光スイッチアレイ
を構成するためには次段の光スイッチのスイッチング領
域の光吸収端波長が前段の光スイッチのスイッチング領
域における光吸収端波長より長く情報信号光の波長より
短くなるように設定すれば、多段構成が可能となりセル
フルーティング光スイッチアレイが容易に実現できる。
即ち、情報信号光の波長をλs とし、多段(仮りにm段
とする)構成された光スイッチアレイのn段目のスイッ
チング領域の吸収端波長をλn 、n段目の光スイッチで
用いる情報信号光に多重化される宛先信号光の波長をλ
anとすると、 λa1<λ1<λa2<λ2< … <λan<λn< … <λam
<λm<λs の関係が成り立つように設定すれば良い。ここで、スイ
ッチング領域の吸収スペクトル特性を急峻にするため、
少なくとも該領域に多重量子井戸,量子細線,量子箱等
量子サイズ効果を持つ構造を導入すれば、波長間隔が密
にできるので本光スイッチアレイの一層の大容量化が可
能となる。また上記量子サイズ効果は、キャリヤ密度変
化に対してバルク材料に比べて大きな屈折率変化を生じ
させるので高効率化も達成できる。
When carriers (electrons and / or holes) are injected into the compound semiconductor material, the carrier density in the semiconductor is changed in the injected region, and the refractive index is changed according to the change in the carrier density. In the carrier injection type optical switch in the conventional example, a pn junction is formed in a switching region, and a current is passed to change the carrier density, that is, the refractive index of the switching region. In the present invention, the switching area is made to absorb only the destination signal light having a wavelength different from that of the information signal light multiplexed with the information signal light, and the carrier density (refractive index) of the area is sufficient for the information signal light to pass through. Change only for a certain time. That is, the information signal light to be connected is changed for the same duration or longer time including it. As a result, the optical switch can be operated without specially controlling the destination with an externally applied signal to the switch section, so that the self-routing of the information signal light becomes possible. Furthermore, in order to construct an optical switch array by connecting this optical switch in multiple stages, the optical absorption edge wavelength in the switching area of the next optical switch is longer than the optical absorption edge wavelength in the switching area of the previous optical switch. If it is set to be shorter than the wavelength, a multi-stage configuration becomes possible and a self-routing optical switch array can be easily realized.
That is, the wavelength of the information signal light is λ s , the absorption edge wavelength of the n- th switching region of the multi-stage (provisionally m-stage) optical switch array is used as λ n , and the n-th optical switch is used. Let λ be the wavelength of the destination signal light multiplexed with the information signal light.
Let an be λ a11a22 <... <λ ann <… <λ am
It may be set so that the relationship of <λ ms holds. Here, in order to make the absorption spectrum characteristic of the switching region steep,
If a structure having a quantum size effect, such as a multiple quantum well, a quantum wire, and a quantum box, is introduced into at least this region, the wavelength intervals can be made narrower, so that the capacity of the present optical switch array can be further increased. Further, the quantum size effect causes a large change in the refractive index as compared with the bulk material with respect to the change in the carrier density, so that high efficiency can also be achieved.

【0007】[0007]

【実施例】実施例1 本実施例では、図1に示したY型光スイッチを構成し
た。図2,図3に図1の破線1で示した部分の断面図の
例を示している。本実施例ではInP基板2上に、MO
CVD法を用い、スイッチング領域3となるInGaA
sP光吸収層31(吸収端波長λo=1.29μm)を成
長した後、スイッチング領域3部分のみを残して他のI
nGaAsP光吸収層31を除去した。この後、MOC
VD法の選択成長技術を用いて上記光吸収層31を取り
除いた部分に選択的にInGaAsP光導波層4(吸収端
波長λg=1.15μm)を形成した。次に、通常のリソ
グラフィ技術とエッチング技術により図1に示した形状
の光導波路6を形成した。形成した光導波路6の幅は4
μmであり、Y字型の光導波路分岐角は7°である。最
後に、InPクラッド層5による埋込成長を行った。
EXAMPLES Example 1 In this example, the Y-type optical switch shown in FIG. 1 was constructed. 2 and 3 show examples of sectional views of the portion indicated by the broken line 1 in FIG. In this embodiment, MO is formed on the InP substrate 2.
InGaA that becomes the switching region 3 by using the CVD method
After growing the sP light absorption layer 31 (absorption edge wavelength λo = 1.29 μm), only the switching region 3 is left and other I
The nGaAsP light absorption layer 31 was removed. After this, MOC
An InGaAsP optical waveguide layer 4 (absorption edge wavelength λg = 1.15 μm) was selectively formed in the portion where the light absorption layer 31 was removed by using the selective growth technique of the VD method. Next, the optical waveguide 6 having the shape shown in FIG. 1 was formed by the usual lithography technique and etching technique. The width of the formed optical waveguide 6 is 4
μm, and the branch angle of the Y-shaped optical waveguide is 7 °. Finally, buried growth with the InP clad layer 5 was performed.

【0008】作製した光スイッチの入力端11に波長
1.31μm の半導体レーザ光を情報信号として入射し
た。この入射光に宛先信号光として波長1.27μm の
半導体レーザパルス光を重畳し、出力端12,13から
出射される光を測定した。宛先信号光の光強度が弱いと
き、情報信号光はほとんど出力端12から出射されてい
たが、宛先信号光の光強度を増していくと、次第に出力
端12から出射される情報信号光の光強度が減少し、出
力端13から出射されるようになった。約0dBmの宛先
信号光を入射させたとき情報信号光の出射端12は出射
端13にほぼ完全に切り換わり、挿入損失及び漏話量は
各々5dB,−25dBであった。この値は電流注入に
よって駆動される従来例にある光スイッチに比べて遜色
なく本発明の原理である情報信号光と宛先信号光の波長
多重による光スイッチのセルフルーティング機能が確認
できた。
A semiconductor laser beam having a wavelength of 1.31 μm was incident on the input end 11 of the manufactured optical switch as an information signal. Semiconductor laser pulse light having a wavelength of 1.27 μm was superimposed on this incident light as destination signal light, and the light emitted from the output ends 12 and 13 was measured. When the light intensity of the destination signal light was weak, most of the information signal light was emitted from the output end 12, but as the light intensity of the destination signal light was increased, the light of the information signal light emitted from the output end 12 gradually increased. The intensity was reduced and the light was emitted from the output end 13. When the destination signal light of about 0 dBm was made incident, the emission end 12 of the information signal light was almost completely switched to the emission end 13, and the insertion loss and the crosstalk amount were 5 dB and -25 dB, respectively. This value was comparable to the conventional optical switch driven by current injection, and the self-routing function of the optical switch by wavelength multiplexing of the information signal light and the destination signal light, which is the principle of the present invention, was confirmed.

【0009】本実施例では光導波路の断面構造として図
2に示した埋込型光導波路構造を用いたが、図3に示し
たようにInGaAsP光吸収層32がInGaAsP
光導波層4内に埋め込まれた形状を用いてもよい。この
とき、導波光が感じる等価的な屈折率がInGaAsP
光吸収層32が部分的にInGaAsP光導波層4内に
存在しても、ほぼ等しくなるように寸法を設定すれば、
宛先信号光が入射していないときの情報信号光の出力端
13への漏れが少なくなるので、光スイッチの特性が向
上する。また、図2,図3では埋込型光導波路構造を用
いているが、通常よく用いられる光導波路の構造である
リッジ型,装荷型,BH型,CSP型等の屈折率導波型
光導波路構造を用いても同様の効果が得られることは言
うまでもない。又、半導体材料としてInGaAsP系
を用いているが、他の半導体材料系たとえばGaAlA
s系,InGaAlAs系等のIII−V 族系やII−VI族
系を用いても同様の効果が得られる。
In this embodiment, the buried type optical waveguide structure shown in FIG. 2 is used as the cross-sectional structure of the optical waveguide, but as shown in FIG. 3, the InGaAsP light absorption layer 32 is made of InGaAsP.
A shape embedded in the optical waveguide layer 4 may be used. At this time, the equivalent refractive index felt by the guided light is InGaAsP.
Even if the light absorption layer 32 is partially present in the InGaAsP optical waveguide layer 4, if the dimensions are set to be almost equal,
Since the leakage of the information signal light to the output end 13 when the destination signal light is not incident is reduced, the characteristics of the optical switch are improved. Further, although the buried type optical waveguide structure is used in FIGS. 2 and 3, a refractive index guided type optical waveguide such as a ridge type, a loading type, a BH type and a CSP type which is a structure of an optical waveguide which is usually used. It goes without saying that the same effect can be obtained by using the structure. Although InGaAsP is used as the semiconductor material, other semiconductor material such as GaAlA is used.
The same effect can be obtained by using a III-V group system or a II-VI group system such as an s-based or InGaAlAs-based system.

【0010】実施例2 本実施例では実施例1のY型光スイッチに換えて、図
4,図5に示したX型及び片渡り交差型の光スイッチを
構成した。光導波路の構造は実施例1と同様である。作
製した図4のX型光スイッチの入力端41,42に実施
例1と同様に情報信号光及び宛先信号光を入射させて出
力端43,44から出射される光の特性を調べた。ま
た、図5の片渡り交差型の光スイッチにおいても入力端
51に情報信号光及び宛先信号光を入射させて出力端5
2,53から出射される光の特性を調べた。その結果、
実施例1と同様の結果が得られ、本発明が光スイッチの
構成法に依存せず、有効であることが確認できた。
Example 2 In this example, the Y-type optical switch of Example 1 was replaced with the X-type and single-sided crossing type optical switches shown in FIGS. The structure of the optical waveguide is similar to that of the first embodiment. The information signal light and the destination signal light were made incident on the input ends 41, 42 of the manufactured X-type optical switch of FIG. 4 in the same manner as in Example 1, and the characteristics of the light emitted at the output ends 43, 44 were examined. Also, in the one-way crossing type optical switch shown in FIG. 5, the information signal light and the destination signal light are made incident on the input end 51 to output the output end 5.
The characteristics of the light emitted from 2, 53 were examined. as a result,
The same results as in Example 1 were obtained, and it was confirmed that the present invention is effective without depending on the construction method of the optical switch.

【0011】実施例3 本実施例では実施例1及び実施例2で述べた光スイッチ
を図7の形状に配置し、光スイッチアレイを構成し、セ
ルフルーティングの基本機能確認を行った。構成を簡単
に説明するため実施例1及び実施例2で詳述した本発明
の光スイッチ100を模式的に図6のように書き表わ
す。入力端60から入射した情報信号光は宛先信号光が
存在するとき出力端61から出射され、宛先信号光が無
いとき出力端62から出射される。この光スイッチを図
7の3段構成でアレイ配置し、入力端70から情報信号
光と宛先信号光を波長多重した光波を入射した。本実施
例では多段構成を用いているため、1段目の光スイッチ
111のスイッチング領域にある光吸収層の吸収端波長
λ1 ,2段目の光スイッチ121,122のスイッチン
グ領域にある光吸収層の吸収端波長λ2 及び3段目の光
スイッチ131,132,133,134のスイッチン
グ領域にある光吸収層の吸収端波長λ3 は、 λ1<λ2<λ3 の関係になっている。ここで宛先信号光として出力端7
1から78の適当な出力端へ情報信号光を出射するた
め、図8に示した関係にある波長多重化された光を用い
た。ここで図8中の[0]は対応する波長の光が多重さ
れていないことを示し、[1]は多重されていることを
示している。即ち、3波の有無のbit構成による宛先
コードが出力端の対応する宛先bit番号(出力端コー
ド)と対応するようになっている。この結果、宛先信号
光が多重化された情報信号光はセルフルーティングされ
対応する宛先出力端へ自動的に導かれ、出射される。こ
のときの情報信号光の波長λs ,各段での光スイッチで
用いる情報信号光に多重化される宛先信号光の波長をλ
a1,λa2,λa3とすると、 λa1<λ1<λa2<λ2<λa3<λ3<λs の関係が成り立っている。
Example 3 In this example, the optical switches described in Examples 1 and 2 were arranged in the shape shown in FIG. 7 to form an optical switch array, and the basic function of self-routing was confirmed. The optical switch 100 of the present invention, which has been described in detail in the first and second embodiments, is schematically written as shown in FIG. 6 in order to briefly describe the configuration. The information signal light incident from the input end 60 is emitted from the output end 61 when the destination signal light is present, and is emitted from the output end 62 when the destination signal light is absent. The optical switches were arranged in an array with the three-stage configuration of FIG. 7, and a light wave obtained by wavelength-multiplexing the information signal light and the destination signal light was made incident from the input end 70. Since the multistage configuration is used in this embodiment, the absorption edge wavelength λ 1 of the light absorption layer in the switching region of the first-stage optical switch 111 and the light absorption in the switching region of the second-stage optical switches 121 and 122. The absorption edge wavelength λ 2 of the layer and the absorption edge wavelength λ 3 of the light absorption layer in the switching region of the third-stage optical switch 131, 132, 133, 134 have a relationship of λ 123. There is. Here, the output end 7 is used as the destination signal light.
In order to emit the information signal light to the appropriate output terminals 1 to 78, the wavelength-multiplexed light having the relationship shown in FIG. 8 was used. Here, [0] in FIG. 8 indicates that lights of corresponding wavelengths are not multiplexed, and [1] indicates that they are multiplexed. That is, the destination code according to the bit configuration with or without three waves corresponds to the destination bit number (output end code) corresponding to the output end. As a result, the information signal light in which the destination signal light is multiplexed is self-routed and automatically guided to the corresponding destination output end and emitted. The wavelength of the information signal light at this time is λ s , and the wavelength of the destination signal light multiplexed with the information signal light used in the optical switch at each stage is λ s .
If a1 , λ a2 , and λ a3 are satisfied, the relationship of λ a11a22a33s holds.

【0012】本実施例では、光スイッチアレイとして3
段構成のトリー構造について述べたが、4段以上の構成
でも、またトリー構造以外のクロスバー,簡略型トリ
ー,バッチャ,バンヤン等のアレイ構造でも同様に効果
があることは言うまでもない。
In this embodiment, three optical switch arrays are used.
Although the tree structure having a step structure has been described, it is needless to say that the same effect can be obtained with a structure having four or more steps and also with an array structure other than the tree structure, such as a crossbar, a simplified tree, a batcher, or a banyan.

【0013】[0013]

【発明の効果】本発明によれば、小型で、自分自身の持
つ宛先信号に従って該出力端に情報信号光が出力すると
いう新しい機能(セルフルーティング機能)を持った光
スイッチ及び光スイッチアレイが提供できるので、新た
な光情報処理及び通信システムにおける高機能,大容量
な光交換機の構築を可能とする。
According to the present invention, there is provided an optical switch and an optical switch array which are small in size and have a new function (self-routing function) of outputting an information signal light to the output terminal according to a destination signal of its own. Therefore, it is possible to construct a high-performance, large-capacity optical switch in a new optical information processing and communication system.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例1の導波路構造図。FIG. 1 is a waveguide structure diagram of a first embodiment of the present invention.

【図2】実施例1の導波路構造断面の一例を示す図。FIG. 2 is a diagram showing an example of a waveguide structure cross section in Example 1;

【図3】実施例1の導波路構造断面の他の一例を示す
図。
FIG. 3 is a diagram showing another example of the cross section of the waveguide structure according to the first embodiment.

【図4】実施例2の導波路構造の一例を示す図。FIG. 4 is a diagram showing an example of a waveguide structure of Example 2;

【図5】実施例2の導波路構造の他の一例を示す図。FIG. 5 is a diagram showing another example of the waveguide structure according to the second embodiment.

【図6】本発明の光スイッチを模式的に示す図。FIG. 6 is a diagram schematically showing the optical switch of the present invention.

【図7】実施例3の光スイッチアレイ構成の一例を示す
図。
FIG. 7 is a diagram showing an example of an optical switch array configuration according to a third embodiment.

【図8】実施例3セルフルーティング機能の動作を説明
する図。
FIG. 8 is a diagram illustrating an operation of a self-routing function according to a third embodiment.

【符号の説明】[Explanation of symbols]

1…断面構造図の位置を示す破線、2…InP基板、3
…スイッチング領域、4…InGaAsP光導波層、5
…InPクラッド層、6…光導波路、11…実施例1の
入力端、12,13…実施例1の出力端、31,32…
InGaAsP吸収層、41…実施例2のX交差型光ス
イッチの入力端、42,43…実施例2のX交差型光ス
イッチの出力端、51…実施例2の片渡り交差型光スイ
ッチの入力端、52,53…実施例2の片渡り交差型光
スイッチの出力端、60…実施例3の模式的に示した光
スイッチの入力端、61,62…実施例3の模式的に示
した光スイッチの出力端、70…実施例3の模式的に示
した光スイッチの入力端、71,72,73,74,7
5,76,77,78…実施例3の模式的に示した光ス
イッチの出力端、100…実施例3の模式的に示した光
スイッチ、111…実施例3の光スイッチアレイの1段
目の光スイッチ、121,122…実施例3の光スイッ
チアレイの2段目の光スイッチ、131,132,13
3,134…実施例3の光スイッチアレイの3段目の光
スイッチ。
1 ... Dashed line showing position of cross-sectional structure diagram, 2 ... InP substrate, 3
... switching region, 4 ... InGaAsP optical waveguide layer, 5
... InP clad layer, 6 ... Optical waveguide, 11 ... Input end of Example 1, 12, 13 ... Output end of Example 1, 31, 32 ...
InGaAsP absorption layer, 41 ... Input end of X-crossing optical switch of the second embodiment, 42, 43 ... Output end of X-crossing optical switch of the second embodiment, 51 ... Input of crossover optical switch of the second embodiment Ends, 52, 53 ... Output ends of the one-way crossover type optical switch of the second embodiment, 60 ... Input ends of the optical switch schematically shown in the third embodiment, 61, 62 ... schematically shown in the third embodiment. Output end of optical switch, 70 ... Input end of optical switch schematically shown in the third embodiment, 71, 72, 73, 74, 7
5, 76, 77, 78 ... Output end of optical switch schematically shown in Example 3, 100 ... Optical switch schematically shown in Example 3, 111 ... First stage of optical switch array of Example 3 Optical switches 121, 122 ... Second-stage optical switches of the optical switch array of Example 3, 131, 132, 13
3,134 ... The third stage optical switch of the optical switch array of the third embodiment.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 西村 信治 東京都国分寺市東恋ケ窪1丁目280番地 株式会社日立製作所中央研究所内 (72)発明者 小川 真里 東京都国分寺市東恋ケ窪1丁目280番地 株式会社日立製作所中央研究所内 (72)発明者 石田 宏司 東京都国分寺市東恋ケ窪1丁目280番地 株式会社日立製作所中央研究所内 ─────────────────────────────────────────────────── ─── Continuation of front page (72) Shinji Nishimura 1-280 Higashi Koikeku, Kokubunji, Tokyo Metropolitan Institute of Hitachi, Ltd. (72) Inventor Mari Ogawa 1-280 Higashi Koikeku, Kokubunji, Tokyo Hitachi Ltd. Central Research Laboratory (72) Inventor Koji Ishida 1-280, Higashi Koikekubo, Kokubunji, Tokyo Hitachi Research Center, Hitachi Ltd.

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】化合物半導体を用いた導波路型光スイッチ
において、情報を持つ情報信号光に波長多重して重畳さ
れた宛先情報を持つ宛先信号光の有無に応じ、前記情報
信号光が出力されるべき光路の接続を行うことを特徴と
するセルフルーティング光スイッチ。
1. A waveguide type optical switch using a compound semiconductor, wherein the information signal light is output depending on the presence or absence of destination signal light having destination information which is wavelength-multiplexed and superposed on information signal light having information. A self-routing optical switch characterized by connecting optical paths that should be used.
【請求項2】前記情報信号光の波長が多重された宛先信
号光の波長より長波長であることを特徴とする請求項1
記載のセルフルーティング光スイッチ。
2. The wavelength of the information signal light is longer than the wavelength of the multiplexed destination signal light.
Self-routing optical switch described.
【請求項3】前記光スイッチ及び光スイッチアレイにお
いて、光路の接続を一定時間維持して上記情報信号光の
接続を完了する時間幅より長い時間幅の前記宛先信号光
が上記情報信号光に波長多重されていることを特徴とす
る請求項2記載のセルフルーティング光スイッチ。
3. In the optical switch and the optical switch array, the destination signal light having a time width longer than a time width for maintaining connection of optical paths for a certain time and completing connection of the information signal light is wavelength-converted to the information signal light. The self-routing optical switch according to claim 2, wherein the self-routing optical switch is multiplexed.
【請求項4】前記宛先信号光の一部または全部が光路の
切り替えを行う領域の一部において吸収され該部分の屈
折率変化を誘起することにより実現されることを特徴と
する請求項2又は3記載のセルフルーティング光スイッ
チ。
4. The method according to claim 2, wherein a part or all of the destination signal light is absorbed in a part of a region for switching an optical path, and a change in the refractive index of the part is induced. 3. The self-routing optical switch described in 3.
【請求項5】前記多重化された宛先信号光が少なくとも
2以上であることを特徴とする請求項2,3又は4記載
のセルフルーティング光スイッチ。
5. The self-routing optical switch according to claim 2, wherein the multiplexed destination signal light is at least two or more.
【請求項6】前記光スイッチの屈折率変化が誘起される
部分の少なくとも一部に多重量子井戸構造を持つことを
特徴とする請求項2,3,4又は5記載のセルフルーテ
ィング光スイッチ。
6. A self-routing optical switch according to claim 2, 3, 4 or 5, wherein at least a part of a portion of the optical switch where a change in refractive index is induced has a multiple quantum well structure.
【請求項7】化合物半導体を用いた導波路型光スイッチ
において、情報を持つ情報信号光に波長多重して重畳さ
れた宛先情報を持つ宛先信号光の有無に応じ、上記情報
信号光が出力されるべき光路の接続を行う光スイッチを
多段接続して構成したセルフルーティング光スイッチア
レイ。
7. A waveguide type optical switch using a compound semiconductor, wherein the information signal light is output according to the presence or absence of destination signal light having destination information which is wavelength-multiplexed and superposed on information signal light having information. A self-routing optical switch array composed of multiple stages of optical switches that connect the appropriate optical paths.
【請求項8】光スイッチをm段接続して構成された前記
光スイッチアレイのn段目の光スイッチのスイッチング
領域の吸収端波長をλn ,n段目の光スイッチで用いる
情報信号光に多重化される宛先信号光の波長をλan,情
報信号光の波長をλs とすると、これらの波長が λa1<λ1<λa2<λ2< … <λan<λn< … <λam
<λm<λs の関係が成り立つように設定されていることを特徴とす
るセルフルーティング光スイッチアレイ。
8. The absorption edge wavelength of the switching region of the n-th optical switch of the optical switch array constructed by connecting m-stage optical switches to λ n , and the information signal light used in the n-th optical switch. When the wavelength of the destination signal light to be multiplexed is λ an and the wavelength of the information signal light is λ s , these wavelengths are λ a11a22 <... <λ ann <… < λ am
A self-routing optical switch array, characterized in that the relationship <λ ms is established.
【請求項9】請求項1記載のセルフルーティング光スイ
ッチを用いて構成した光交換機。
9. An optical switch formed by using the self-routing optical switch according to claim 1.
JP21121192A 1989-01-30 1992-08-07 Self-routing optical switch and optical switch array Pending JPH0662450A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP21121192A JPH0662450A (en) 1992-08-07 1992-08-07 Self-routing optical switch and optical switch array
US08/102,805 US5422967A (en) 1989-01-30 1993-08-06 Self-routing optical switch and optical switch array

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21121192A JPH0662450A (en) 1992-08-07 1992-08-07 Self-routing optical switch and optical switch array

Publications (1)

Publication Number Publication Date
JPH0662450A true JPH0662450A (en) 1994-03-04

Family

ID=16602162

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21121192A Pending JPH0662450A (en) 1989-01-30 1992-08-07 Self-routing optical switch and optical switch array

Country Status (1)

Country Link
JP (1) JPH0662450A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6891986B2 (en) 2003-03-18 2005-05-10 Yokogawa Electric Corp. Optical switch

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6891986B2 (en) 2003-03-18 2005-05-10 Yokogawa Electric Corp. Optical switch

Similar Documents

Publication Publication Date Title
JP2656598B2 (en) Semiconductor optical switch and semiconductor optical switch array
JP3459259B2 (en) Waveguide type optical crosspoint switch
US5255332A (en) NxN Optical crossbar switch matrix
JP4436451B2 (en) Optical signal amplification 3-terminal device
CN102023455B (en) N-InP-based monolithic integrated optical logic gate and manufacturing method thereof
US20230228938A1 (en) Optical isolator and photonic integrated circuit including the same
JPH06186598A (en) Optical exchanger
US20020154849A1 (en) Broadband wavelength-division multiplexer/demultiplexer
GB2210198A (en) An optical semiconductor device for demultiplexing wavelength multiplexed light
JPH0662450A (en) Self-routing optical switch and optical switch array
Fish et al. Suppressed modal interference switches with integrated curved amplifiers for scaleable photonic crossconnects
CN104297853B (en) Modular wavelength and space All-optical routing device
US5422967A (en) Self-routing optical switch and optical switch array
Dorgeuille et al. Fast optical amplifier gate array for WDM routing and switching applications
Tucker Petabit-per-second routers: optical vs. electronic implementations
JPS59135441A (en) Optical waveguide switch
JPH0230491B2 (en)
JP3804316B2 (en) Semiconductor optical amplifier array
JPS6191623A (en) Optical switch element
JPH0721593B2 (en) Optical matrix switch
Kikuchi et al. Monolithically integrated 64-channel WDM channel selector on InP substrate
JP2630052B2 (en) Matrix optical switch
Komatsu et al. 4× 4 GaAs/AlGaAs Optical Matrix Switches with Electro-Optic Guided-Wave Directional Couplers
JPH0394236A (en) Semiconductor optical switch and semiconductor optical matrix switch
Van Thourhout et al. Elimination of crosstalk in the common output amplifier of a multi-wavelength source by gain clamping