JPH0662296B2 - Reclaimed metal oxide treatment method - Google Patents

Reclaimed metal oxide treatment method

Info

Publication number
JPH0662296B2
JPH0662296B2 JP4791687A JP4791687A JPH0662296B2 JP H0662296 B2 JPH0662296 B2 JP H0662296B2 JP 4791687 A JP4791687 A JP 4791687A JP 4791687 A JP4791687 A JP 4791687A JP H0662296 B2 JPH0662296 B2 JP H0662296B2
Authority
JP
Japan
Prior art keywords
metal oxide
fluidized bed
waste liquid
caustic
regenerated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP4791687A
Other languages
Japanese (ja)
Other versions
JPS63215508A (en
Inventor
勇吉 竹下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawasaki Motors Ltd
Original Assignee
Kawasaki Jukogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Jukogyo KK filed Critical Kawasaki Jukogyo KK
Priority to JP4791687A priority Critical patent/JPH0662296B2/en
Publication of JPS63215508A publication Critical patent/JPS63215508A/en
Publication of JPH0662296B2 publication Critical patent/JPH0662296B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Water, Waste Water Or Sewage (AREA)
  • Paper (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、流動床炉により直接苛性化を行うアルカリ回
収プラントにおいて、酸化鉄、鉄鉱石、アルミナ、ボー
キサイトなどの金属酸化物を効率よく回収し、かつ反応
上および操作上効果的に循環使用する再生金属酸化物の
処理方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial field of application] The present invention efficiently recovers metal oxides such as iron oxide, iron ore, alumina, and bauxite in an alkali recovery plant that performs causticization directly in a fluidized bed furnace. In addition, the present invention relates to a method for treating recycled metal oxides which is effectively and circulated for reaction and operation.

〔従来の技術〕[Conventional technology]

従来の技術を、一例としてソーダパルプ製造の場合につ
いて説明する。第3図に示すように、蒸解設備1に供給
されたパルプ原料チップは、蒸解薬品である 200〜 300
g/(Na2O換算)の苛性ソーダおよび炭酸ソーダの水
溶液(白液と称する)および自己循環する廃液と混合加
熱され蒸解し、パルプと蒸解廃液とに分離される。この
蒸解廃液は15〜20%程度の固形分(リグニンなどの
有機分、NaOH、Na2CO3などの無機物)を含む希廃液であ
り、希廃液貯槽2に貯留される。つぎに希廃液を蒸発缶
3に導く。
A conventional technique will be described by way of example for soda pulp production. As shown in FIG. 3, the pulp raw material chips supplied to the cooking facility 1 are 200 to 300 which are cooking chemicals.
It is mixed and heated with an aqueous solution (referred to as white liquor) of caustic soda and sodium carbonate (converted to Na 2 O) and a self-circulating waste liquid to be cooked and separated into pulp and cooking waste liquid. The cooking waste liquor is a dilute waste liquor containing about 15 to 20% solid content (organic content such as lignin, inorganic matter such as NaOH and Na 2 CO 3 ) and is stored in the dilute waste solution storage tank 2. Next, the diluted waste liquid is guided to the evaporator 3.

蒸発缶3は5〜6重効用缶となっており、最終段では6
0〜70%濃度の廃液とする。これは流動床回収ボイラ
4に供給され、酸化鉄とともに流動床へ投入される。流
動床においてリグニンなど有機成分は燃焼し高温ガスと
なり、ボイラで蒸気として熱が回収される。一方、Na化
合物を主成分とする灰分は、Fe2O3 と反応して鉄酸ソー
ダ(Na2Fe2O4 )を生成する。この燃焼反応ゾーンは流
動床を形成させるために、Fe2O3 は流動媒体として機能
する必要もある。この場合、流動に適切な粒径および粒
径分布が要求される。鉄鉱石をそれに使用した場合、粒
径は0.2〜2.0mmであり粉状酸化鉄を造粒した場合
は0.2〜5.0mmの粒径が適当である。有機物の燃
焼、無機物の鉄酸ソーダ生成反応などにより、この流動
媒体は20〜40%が粉化した粉状鉄酸ソーダとなり、
燃焼ガスとともに流動床より排出される。これは集じん
器等で回収される。粉化されずに流動床へ残った粒状鉄
酸ソーダは、流動床より直接取り出される。
The evaporating can 3 is a 5-6 heavy-effect can, with 6 in the final stage.
Waste liquid with a concentration of 0 to 70%. This is supplied to the fluidized bed recovery boiler 4, and is put into the fluidized bed together with iron oxide. In the fluidized bed, organic components such as lignin are burned into high temperature gas, and heat is recovered as steam in the boiler. On the other hand, the ash containing Na compound as a main component reacts with Fe 2 O 3 to generate sodium ferrate (Na 2 Fe 2 O 4 ). This combustion reaction zone also needs to function as a fluid medium for Fe 2 O 3 to form a fluidized bed. In this case, a particle size and particle size distribution suitable for flow are required. When iron ore is used in it, the particle size is 0.2-2.0 mm, and when powdered iron oxide is granulated, a particle size of 0.2-5.0 mm is suitable. Due to the combustion of organic substances, the reaction of forming inorganic substances such as sodium ferrate, the fluidized medium becomes powdered sodium ferrate in which 20 to 40% is powdered,
It is discharged from the fluidized bed together with combustion gas. This is collected by a dust collector or the like. The granular sodium ferrate remaining in the fluidized bed without being pulverized is directly taken out from the fluidized bed.

回収された鉄酸ソーダは、白液を再生する抽出装置5へ
導く。ここで白液と抽出残渣とを分離する。抽出残渣中
の再生した酸化鉄に多量の白液が混合されているので、
これを連続洗滌脱水装置6へ導く。この洗滌脱水は数回
繰り返えされるが、図示のように、洗滌液と抽出残渣は
対向流となるのが望ましい。どの段階で得られたろ液も
弱液と称せられ、NaOH、Na2CO3などの成分を含む。最終
段階で洗滌脱水された再生酸化鉄は、20〜35%の水
分を含むケーキとして乾燥装置7に導かれ、加熱乾燥さ
れる。水分が多い場合には、団子状の不完全乾燥物がで
き易いので、それを粉砕し再乾燥させるため、固形物は
乾燥物を乾燥装置内で循環(図示せず)する必要があ
る。乾燥は5%水分程度まで行い、粉状再生酸化鉄と粉
状再生酸化鉄とに分級装置8で分級する。これらの再生
酸化鉄はバインダーが入っていないので、乾燥するとほ
とんど元の粒子径、すなわち流動床回収ボイラで粒状物
と粉状物とに分かれた状態と同じようになる。粒状再生
酸化鉄はそのまま粒動床回収ボイラ4へ戻される。
The recovered sodium ferrate is guided to the extraction device 5 that regenerates the white liquor. Here, the white liquor and the extraction residue are separated. Since a large amount of white liquor is mixed with the regenerated iron oxide in the extraction residue,
This is led to the continuous washing and dehydrating device 6. This washing and dewatering is repeated several times, but as shown in the figure, it is desirable that the washing liquid and the extraction residue be in counterflow. The filtrate obtained at any stage is called weak liquid and contains components such as NaOH and Na 2 CO 3 . The regenerated iron oxide that has been washed and dehydrated in the final stage is introduced into the drying device 7 as a cake containing 20 to 35% of water and heated and dried. If the water content is high, an incomplete dried product in the form of dumplings is likely to be formed, and therefore in order to pulverize and dry it again, it is necessary to circulate the dried product in the drying device (not shown). Drying is performed up to about 5% water, and the regenerated iron oxide powder and the regenerated iron oxide powder are classified by the classifier 8. Since these regenerated iron oxides do not contain a binder, when they are dried, they almost have the original particle diameter, that is, the same as a state in which they are separated into a granular material and a powdery material in a fluidized bed recovery boiler. The granular regenerated iron oxide is directly returned to the granular moving bed recovery boiler 4.

粉状再生酸化鉄は造粒装置9により造粒される。この場
合、バインダーとして一般に蒸発缶3から得られる濃廃
液を数%添加する。
The regenerated iron oxide powder is granulated by the granulating device 9. In this case, the concentrated waste liquid obtained from the evaporator 3 is generally added as a binder in several%.

〔発明の解決しようとする問題点〕[Problems to be Solved by the Invention]

しかしながら、上記従来の方法では、つぎのような問題
点がある。
However, the above conventional method has the following problems.

(1) 加水分解後の再生酸化鉄を、ベルトフィルターな
どの洗滌脱水装置で洗滌するが、白液の濃度を高く保つ
ためには洗滌水量にの制限があり、洗滌が不充分であ
り、ケーキ中の残留Na成分が多く、それがそのまま流動
床回収ボイラへ戻されるので、効率が悪くなる。
(1) The regenerated iron oxide after hydrolysis is washed with a washing and dewatering device such as a belt filter, but in order to keep the concentration of white liquor high, there is a limit to the amount of washing water, and the washing is insufficient, so that the cake There is a large amount of residual Na component in it, which is returned to the fluidized bed recovery boiler as it is, resulting in poor efficiency.

(2) 造粒工程でバインダーとして供給される廃液は、
混練時にバインダーの拡散をよくするため、50%濃度
の比較的薄い廃液を5〜10%添加しなければならな
い。
(2) The waste liquid supplied as a binder in the granulation process is
In order to improve the diffusion of the binder during kneading, it is necessary to add 5 to 10% of a relatively thin waste liquid having a concentration of 50%.

(3) 造粒工程に入る粉状酸化鉄は、表面水分約5%以
下に乾燥しなければならない。
(3) Powdered iron oxide that enters the granulation process must be dried to a surface water content of approximately 5% or less.

(4) 水洗さただけの酸化鉄は、乾燥しても造粒装置に
入れなければ、ほとんど自己造粒はしない。
(4) Iron oxide that has just been washed with water will hardly undergo self-granulation even if it is dried and not put into the granulating device.

(5) ベルトフィルターのみではケーキ中に多量の水分
が残り、乾燥熱量が多く必要であり、またこの水分中の
Na分も多い(1)項の同じく循環Na分が多くなる。
(5) With a belt filter alone, a large amount of water remains in the cake, which requires a large amount of heat for drying.
There is also a large amount of Na, which is the same as in item (1).

本発明は上記の諸点に鑑みなされたもので、流動床炉に
より直接苛性化を行うアルカリ回収プラントにおいて、
酸化鉄、鉄鉱石、アルミナ、ボーキサイトなどの再生金
属酸化物を効率よく処理する方法の提供を目的とするも
のである。
The present invention has been made in view of the above points, in an alkali recovery plant for directly causticizing with a fluidized bed furnace,
An object of the present invention is to provide a method for efficiently treating regenerated metal oxides such as iron oxide, iron ore, alumina and bauxite.

〔問題点を解決するための手段および作用〕[Means and Actions for Solving Problems]

本願の第1の発明の再生金属酸化物の処理方法は、パル
プ廃液、カプロラクタム(アミノカプロン酸のラクタ
ム)廃液、廃糖密など有機ソーダ、有機カリ、炭酸ソー
ダまたは炭酸カリなどのアルカリ金属の含む廃液を濃縮
し、流動床炉で燃焼させ直接に苛性ソーダまたは苛性カ
リなどの苛性物を回収し、流動床炉の流動媒体および反
応媒体として、酸化鉄、鉄鉱石、アルミナ、ボーキサイ
トなどの金属酸化物を用い、この金属酸化物を繰り返し
使用する方法において、苛性ソーダまたは苛性カリなど
の苛性物を加水分解によって抽出した後の再生金属酸化
物を、10〜20%の濃度の濃縮前の希廃液と混合する
ことにより、再生金属酸化物中の残留付着水分と廃液と
を置換し、しかる後に脱水し、ついで乾燥するとともに
一部自己造粒させ後、分級して粒状再生金属酸化物を流
動床炉へ供給し、未造粒粉状再生金属酸化物に濃廃液を
加えて造粒した後、流動床炉へ供給することを特徴とし
ている。
A method for treating a regenerated metal oxide according to the first invention of the present application is a waste liquid containing pulp, caprolactam (lactam of aminocaproic acid) waste liquid, waste liquid containing alkali metal such as organic soda, organic potassium, sodium carbonate or potassium carbonate. Is concentrated and burned in a fluidized bed furnace to directly recover caustic soda or caustic potash and the like, and metal oxides such as iron oxide, iron ore, alumina and bauxite are used as the fluidizing medium and reaction medium in the fluidized bed furnace. In the method of repeatedly using this metal oxide, by mixing the regenerated metal oxide after extracting caustic substances such as caustic soda or potassium hydroxide by hydrolysis with a dilute waste liquid having a concentration of 10 to 20%, After replacing the residual adhered water in the regenerated metal oxide with the waste liquid, and then dehydrating, then drying and partially self-granulating And classified to provide a particulate regeneration metal oxide to the fluidized bed furnace was granulated by the addition of concentrated waste liquid ungranulated powdery play metal oxides, it is characterized by feeding into the fluidized bed furnace.

また本願の第2の発明の再生金属酸化物の処理方法は、
パルプ廃液、カプロラクタム廃液、廃糖密など有機ソー
ダ、有機カリ、炭酸ソーダまたは炭酸カリなどのアルカ
リ金属を含む廃液を濃縮し、流動床炉で燃焼させ直接に
苛性ソーダまたは苛性カリなどの苛性物を回収し、流動
床炉の流動媒体および反応媒体として、酸化鉄、鉄鉱
石、アルミナ、ボーキサイトなどの金属酸化物を用い、
この金属酸化物を繰り返し使用する方法において、苛性
ソーダまたは苛性カリなどの苛性物を加水分解によって
抽出した後の再生金属酸化物のうち粒状金属酸化物を流
動床炉へ供給し、粉状金属酸化物を、10〜20%の濃
度の濃縮前の希廃液と混合することにより、粉状金属酸
化物中の水分と廃液とを置換し、しかる後に脱水し、つ
いで乾燥するとともに一部自己造粒させた後、分級して
粒状再生金属酸化物を流動床炉へ供給し、未造粒粉状再
生金属酸化物に濃廃液を加えて造粒した後、流動床炉へ
供給することを特徴としている。
The method for treating regenerated metal oxide according to the second invention of the present application is
Pulp waste liquor, caprolactam waste liquor, waste sugar condensate and other waste fluids containing alkali metals such as organic soda, organic potassium, sodium carbonate or potassium carbonate are concentrated and directly burned in a fluidized bed furnace to recover caustic soda or caustic potash. As the fluidized medium and reaction medium of the fluidized bed furnace, metal oxides such as iron oxide, iron ore, alumina and bauxite are used.
In the method of repeatedly using this metal oxide, granular metal oxides among regenerated metal oxides after extraction of caustic substances such as caustic soda or caustic potash by hydrolysis are supplied to a fluidized bed furnace to obtain powder metal oxides. , 10 to 20% of the unconcentrated dilute waste liquid was mixed to replace the water in the powdery metal oxide with the waste liquid, which was then dehydrated, then dried and partially self-granulated. After that, it is characterized in that the granular regenerated metal oxide is classified and supplied to the fluidized bed furnace, the concentrated waste liquid is added to the ungranulated powdery regenerated metal oxide to granulate, and then the granular regenerated metal oxide is supplied to the fluidized bed furnace.

〔実施例〕〔Example〕

以下、図面を参照して本発明の好適な実施例を詳細に説
明する。ただしこの実施例に記載されている構成機器の
名称、形式、形状、その相対配置などは、とくに特定的
な記載がない限りは、本発明の範囲をそれらのみに限定
する趣旨のものではなく、単なる説明例にすぎない。
Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the drawings. However, the names, formats, shapes, relative positions, etc. of the constituent devices described in this embodiment are not intended to limit the scope of the present invention to only those unless particularly specified. It is just an example of explanation.

実施例1 第1図は実施例1におけるフローを示している。番号1
〜6で示す装置まわりのフローは前述の第3図の場合と
同様であるので、説明を省略する。
Example 1 FIG. 1 shows a flow in Example 1. Number 1
Since the flow around the device shown in to 6 is the same as that in the case of FIG. 3 described above, the description thereof will be omitted.

第1図において、連続洗滌装置6からの水分を20〜3
0%含む再生酸化鉄ケーキは、スラリー化装置10へ導
かれ、ここで希廃液貯槽2より希廃液を、固形物重量と
同等ないしはそれ以上の重量分となるようにスラリー化
装置10に導入、混合し、スラリーポンプ11で移送で
きるようにする。この混合の際に酸性酸化鉄ケーキ中の
水分または弱液成分はほとんど希黒液と置き換えられた
状態になりスラリー状となる。このスラリーをスラリー
ポンプ11で圧搾ろ過脱水機12へ圧送する。圧力は3
〜7kg/cm2gが望ましい。圧搾ろ過脱水機12ではポ
ンプの圧力、ろ布外部よりの圧搾力、さらに必要な場合
は圧縮空気または蒸気などを貫通させ脱水(脱液)を図
る。圧搾ろ過脱水機12として、プレスフィルターのよ
うな脱水性の良いものを使用することにより、脱水性を
高め、乾燥機の負担を軽くすることができる。
In FIG. 1, the moisture from the continuous washing device 6 is 20 to 3
The regenerated iron oxide cake containing 0% is guided to the slurry forming device 10, where the diluted waste liquid is introduced from the dilute waste liquid storage tank 2 into the slurry forming device 10 so as to have a weight equivalent to or greater than the weight of the solid matter. The mixture is mixed so that it can be transferred by the slurry pump 11. During this mixing, most of the water or weak liquid component in the acidic iron oxide cake is replaced with the dilute black liquor to form a slurry. This slurry is pressure-fed to the press filtration dehydrator 12 by the slurry pump 11. Pressure is 3
~ 7 kg / cm 2 g is desirable. In the squeeze filter dehydrator 12, the pressure of the pump, the squeezing force from the outside of the filter cloth, and if necessary, compressed air or steam is passed through to dehydrate (deliver). By using a press filter dehydrator having a good dehydration property such as a press filter, it is possible to enhance the dehydration property and reduce the load on the dryer.

上記の脱水により残水分15〜18%まで脱水できる。
スラリー化装置10へ含水再生酸化鉄ケーキの水分に対
し十分に多量の希廃液を導入することにより、含液再生
酸化鉄ケーキ中の液中固形分は廃液のそれとはほぼ同等
になるようにする。したがって、このケーキ中の廃液固
形分は約2.0〜3.5%となり、造粒に必要なバイン
ダー量が与えられたことになる。圧縮ろ過脱水機12よ
り排出されたろ液は希廃液と同等のものであり、希廃液
貯槽2に戻される。したがってろ液は蒸発缶3で有効に
濃縮されるか、あるいは蒸解設備1で希釈液として有効
に働く。
By the above dehydration, the residual water content can be dehydrated to 15 to 18%.
By introducing a sufficiently large amount of dilute waste liquid into the slurry-forming device 10 with respect to the water content of the water-containing regenerated iron oxide cake, the liquid solid content in the liquid-containing regenerated iron oxide cake is made substantially equal to that of the waste liquid. . Therefore, the waste liquid solid content in this cake is about 2.0 to 3.5%, which means that the binder amount necessary for granulation is provided. The filtrate discharged from the compression filtration dehydrator 12 is the same as the dilute waste liquid and is returned to the dilute waste liquid storage tank 2. Therefore, the filtrate is effectively concentrated in the evaporator 3 or works effectively as a diluent in the digestion equipment 1.

含廃液再生酸化鉄ケーキは乾燥装置7に送られ、次の分
級工程で支障のない程度に乾燥される。この場合、表面
水分が5%内外となるようにすれば良い。分級装置8で
0.5mm、5mmの網目のスクリーンで篩分けし、0.5
mmを通って落ちたものは造粒装置9で所定の粒径にし、
流動床回収ボイラ4に供給する。バインダーは蒸発缶か
ら得られる濃廃液を数%入れるのみでよい。なお分級装
置8において、所定の粒径を超える造粒物は、分級装置
8または乾燥装置7に付設される解砕機(図示せず)で
粉砕される。
The waste liquid regenerated iron oxide cake is sent to the drying device 7 and dried to the extent that it does not interfere with the subsequent classification step. In this case, the surface water content may be 5% or less. Screen with a classifier 8 of 0.5 mm and 5 mm mesh screen to 0.5
What has fallen through mm is made into a predetermined particle size by the granulating device 9,
It is supplied to the fluidized bed recovery boiler 4. The binder need only contain a few percent of the concentrated waste liquid obtained from the evaporator. In the classifying device 8, granules having a particle size exceeding a predetermined size are crushed by a crusher (not shown) attached to the classifying device 8 or the drying device 7.

実施例2 第2図は実施例2におけるフローを示している。蒸解設
備1、希廃液貯槽2、蒸発缶3および流動床回収ボイラ
4までは実施例1と同じである。流動床回収ボイラ4以
降は、粉状鉄酸ソーダ(40〜20重量%でそのほとん
どが 200μm以下の粒径)と粒状鉄酸ソーダ(60〜8
0重量%でそのほとんどが 200μm以上の粒径)と粒径
が2種類に分かれて回収される。これらは、それぞれ抽
出工程、脱水工程を経てもその粒径にほとんど変化はな
い。したがって粒状物から得られた粒状再生酸化鉄はそ
のままの粒径で流動床回収ボイラ4へ戻すことができ
る。しかもこの粒状再生酸化鉄は洗滌脱水性が良く、単
純なベルトフィルターのような連続洗滌脱水装置でも1
8〜22%程度の脱水ケーキが得られる。これは容易に
乾燥できるし、また場合によっては、破線で示したバイ
パスライン13により、ケーキのまま流動床回収ボイラ
4へ戻すことができる。ボイラ4から排出されら粒状物
は、粒状鉄酸ソーダ用抽出装置5a 、粒状再生酸化鉄用
連続洗滌脱水装置6a および粒状再生酸化鉄用乾燥装置
7a を通り、流動床回収ボイラ4へもどすことができ
る。
Embodiment 2 FIG. 2 shows a flow in Embodiment 2. The cooking equipment 1, the dilute waste liquid storage tank 2, the evaporator 3, and the fluidized bed recovery boiler 4 are the same as in the first embodiment. After the fluidized bed recovery boiler 4, powdered sodium ferrate (40 to 20% by weight, most of which has a particle size of 200 μm or less) and granular sodium ferrate (60 to 8) are used.
At 0% by weight, most of the particles have a particle size of 200 μm or more) and the particle size is separated into two types. The particle diameters of these particles hardly change even after the extraction step and the dehydration step. Therefore, the granular regenerated iron oxide obtained from the granular material can be returned to the fluidized bed recovery boiler 4 with the same particle size. Moreover, this granular regenerated iron oxide has good washing and dewatering properties, and even with a continuous washing and dewatering device such as a simple belt filter,
About 8 to 22% of dehydrated cake is obtained. This can be easily dried, and in some cases, can be returned to the fluidized bed recovery boiler 4 as a cake by the bypass line 13 shown by a broken line. The particulate matter discharged from the boiler 4 can be returned to the fluidized bed recovery boiler 4 through the granular sodium ferrate extractor 5a, the granular reclaimed iron oxide continuous washing and dehydration apparatus 6a and the granular regenerated iron oxide dryer 7a. it can.

一方、粉状再生酸化鉄はそのままの粒径では流動床回収
ポイラ4での性能が落ち、またケーキ中の水分も28〜
35%程度となるので、実施例1に示したと同様な工程
を経て流動床回収ボイラへ戻す必要がある。すなわち粉
状鉄酸ソーダ用抽出装置5b 、粉状再生酸化鉄連続洗滌
脱水装置6b 、スラリー化装置10b 、スラリーポンプ
11b 、圧搾ろ過脱水機12b 、粉状再生酸化鉄用乾燥
装置7b を通り、乾燥装置7b で自己造粒しているのを
分級装置8b で選択し、所定の粒径の再生酸化鉄を流動
床回収ボイラ4へ戻す。粉状再生酸化鉄のみを造粒装置
9b へ導き、濃廃液をバインダーとして造粒し、しかる
後に流動床回収ボイラ4へ戻す。
On the other hand, if the particle size of the regenerated iron oxide powder remains as it is, the performance of the fluidized bed recovery boiler 4 deteriorates, and the water content in the cake is 28
Since it becomes about 35%, it is necessary to return to the fluidized bed recovery boiler through the same steps as those shown in the first embodiment. That is, the powdery sodium ferrate extractor 5b, the powdery regenerated iron oxide continuous washing and dehydration device 6b, the slurrying device 10b, the slurry pump 11b, the squeezing filter dehydrator 12b, and the powdery regenerated iron oxide drying device 7b are dried. Self-granulating by the device 7b is selected by the classifying device 8b, and regenerated iron oxide having a predetermined particle size is returned to the fluidized bed recovery boiler 4. Only the powdered regenerated iron oxide is introduced to the granulating device 9b, the concentrated waste liquid is used as a binder for granulation, and then returned to the fluidized bed recovery boiler 4.

実施例2における方法では、連続洗滌脱水装置を通った
後工程の処理量を軽減するとともに、圧縮ろ過脱水機1
2b 以後の設備容量を半減するとともに、さらに微粉の
みでスラリーが作られるために、圧縮ろ過脱水機12b
の性能が向上し、かつ操作・保守が非常に容易になる。
上記の性能の向上により、さらに造粒設備の容量は小さ
いものでよくなる。このことは動力の節約に大きに役立
つ優れたシステムを提供することができる。実施例1を
選択するか、実施例2を選択するかは、全体の設備規模
によりされるべきものである。なお第2図一点鎖線で囲
んだ抽出装置および連続洗滌脱水装置は、粒状物と粉状
物を2系列となっているが、これは粉状物と粒状物とが
別かて処理されるように設備になっておればよく、白液
や弱液は共通の設備で処理してもよい。したがってこの
部分は、それぞれの系が一体となった機械構成でよい。
In the method according to the second embodiment, the processing amount of the subsequent process after passing through the continuous washing and dehydrating device is reduced, and the compression filtration dehydrator 1 is used.
Since the installed capacity after 2b is halved and the slurry is made with only fine powder, the compression filtration dehydrator 12b
Performance is improved, and operation and maintenance are very easy.
Due to the above-mentioned improvement in performance, a smaller capacity of the granulation equipment is sufficient. This can provide an excellent system that can greatly help save power. Whether to select the first embodiment or the second embodiment depends on the overall equipment scale. Note that the extraction device and the continuous washing / dehydration device surrounded by the one-dot chain line in FIG. 2 have two series of the granular material and the granular material, but this is such that the granular material and the granular material are treated separately. As long as it is equipped with the same equipment, white liquor and weak liquid may be treated with common equipment. Therefore, this part may have a mechanical structure in which the respective systems are integrated.

上記の実施例では流動媒体および反応媒体として、酸化
鉄を用いる場合について説明したが、鉄鉱石、アルミ
ナ、ボーキサイトなどの金属酸化物または金属酸化物を
主成分とするものを用いることができる。
In the above examples, the case where iron oxide is used as the fluid medium and the reaction medium has been described, but metal oxides such as iron ore, alumina, and bauxite or those containing metal oxide as the main component can be used.

またパルプ廃液の代りに、カプロラクタム(アミノカプ
ロン酸のラクタム)廃液、廃糖密などアルカリ土類金属
含有有機物廃液を用いることも可能である。
Further, instead of the pulp waste liquid, it is possible to use a caprolactam (lactam of aminocaproic acid) waste liquid, an organic waste liquid containing an alkaline earth metal such as waste sugar concentrate.

〔発明の効果〕〔The invention's effect〕

本発明は上記のように構成されているので、つぎのよう
な効果を有している。
Since the present invention is configured as described above, it has the following effects.

(1) 廃液とケーキのスラリー化混合によって、連続洗
滌脱水装置より排出されたケーキ中の残水分が完全に廃
液と置換され、かつ圧搾ろ過により効果的にケーキより
水分を分離除去できる。
(1) The residual liquid in the cake discharged from the continuous washing and dehydrating device is completely replaced by the waste liquid by the slurry mixing of the waste liquid and the cake, and the water can be effectively separated and removed from the cake by squeezing filtration.

(2) 廃液とケーキ中残水分との置換により、ろ液とし
て排出された水分は希廃液貯槽2側に戻し、多重効用の
蒸発缶3にて効率的に水分を分離することができる。ま
た一部は蒸解用希釈液として使用できる。
(2) By replacing the waste liquid with the residual water content in the cake, the water discharged as the filtrate is returned to the dilute waste liquid storage tank 2 side, and the water can be efficiently separated in the multiple-effect evaporator 3. Further, some of them can be used as a diluent for cooking.

(3) ろ過後のケーキ中廃液は後工程の造粒に寄与する
もので、これがケーキ中均一に分散するので、上質の造
粒物が容易にできる。
(3) The waste liquid in the cake after filtration contributes to the granulation in the subsequent step, and since it is uniformly dispersed in the cake, a high-quality granulated product can be easily formed.

(4) ろ過後のケーキ中廃液の固形分は流動床回収ボイ
ラ4の燃料および薬品原料そのものとすることができ
る。
(4) The solid content of the waste liquid in the cake after filtration can be used as the fuel and the chemical raw material itself of the fluidized bed recovery boiler 4.

(5) ろ過工程で圧搾脱水するので、この圧搾により、
ケーキ中廃液が作用して再生酸化鉄の一部が造粒し、こ
れを乾燥工程で乾燥すると、流動床に最適な強度の造粒
物ができる。分級により造粒、乾燥されたものは直接流
動床炉へ供給できる。このことにより、造粒工程の設備
を小規模にすることができ、かつ造粒動力が節約でき
る。
(5) Since it is squeezed and dehydrated in the filtration process, this squeezing
The waste liquid in the cake acts to granulate a part of the regenerated iron oxide, and when this is dried in the drying step, a granulated product having the optimum strength for the fluidized bed is formed. The granulated and dried product by classification can be directly supplied to the fluidized bed furnace. As a result, the equipment for the granulation process can be downsized and the granulation power can be saved.

(6) 希廃液は水またはケーキ中の水分よりも多少粘性
が高いが、希廃液は蒸解における熱を保有しており、実
際上50〜80℃の温度をもっている。これは液の粘性
を適度に低下させ圧搾脱水する場合に効果的に作用す
る。また温度は脱水後残水分の蒸発に寄与する。
(6) Although the dilute waste liquid is slightly more viscous than the water or the water in the cake, the dilute waste liquid retains the heat of cooking and actually has a temperature of 50 to 80 ° C. This works effectively in the case of squeezing and dehydrating by appropriately lowering the viscosity of the liquid. The temperature also contributes to the evaporation of residual water after dehydration.

(7) 希廃液の適度の粘性と希廃液中のアルカリ成分、
有機成分とは金属酸化物と非常によくなじむ性質があ
り、スラリー化工程でよく混り合う。このため圧搾ろ過
脱水機12への搬送が極めて良好となり、固液分離によ
る搬送管の詰りおよび摩耗などのトラブルが解消され
る。
(7) Moderate viscosity of dilute waste liquid and alkali components in dilute waste liquid,
The organic component has a property of being well compatible with the metal oxide and is well mixed in the slurry forming step. Therefore, the conveyance to the squeezing filtration dehydrator 12 becomes extremely good, and troubles such as clogging and abrasion of the conveyance pipe due to solid-liquid separation are eliminated.

(8) 上記7項記述の性質は、圧搾ろ過機脱水機内で、
固形分が均一にろ布に対し配分され、圧搾力の分布およ
び蒸気、圧縮空気等での圧搾ブローを実施する場合の吹
き抜けを防ぎ、効果的なろ過脱水が行われ、蒸気、圧縮
空気などの消費を極端に低下させるとともに、効果的な
ろ過脱水に寄与する。
(8) The properties described in the above item 7 are as follows in the press filter dehydrator.
The solid content is evenly distributed to the filter cloth, prevents the blow-through when compressing blows with steam, compressed air, etc., and effectively filters and dehydrates the steam, compressed air, etc. It significantly reduces consumption and contributes to effective filter dehydration.

(9) 圧搾ろ過脱水機12におけるろ布の洗滌(逆洗洗
滌)は、スラリー化に使用する希廃液そのものを使用す
ることができる。このことは本発明にかかわるシステム
全体に対して、いかなる過剰な水分も加えることなく効
果的に圧搾ろ過脱水することが可能となる。
(9) For washing the filter cloth (back washing) in the squeezing filtration dehydrator 12, the dilute waste liquid itself used for slurrying can be used. This allows the entire system according to the invention to be effectively squeezed and dehydrated without adding any excess water.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の再生金属酸化物の処理方法を実施する
装置の一例を示すフローシート、第2図は本発明の方法
を使用する装置の他の例を示すフローシート、第3図は
従来のアルカリパルプの直接苛性化法における再生金属
酸化物の処理方法を実施する装置の一例を示すフローシ
ートである。 1……蒸解設備、2……希廃液貯槽、3……蒸発缶、4
……流動床回収ボイラ、5、5a 、5b ……抽出装置、
6、6a 、6b ……連続洗滌脱水装置、7、7a 、7b
……乾燥装置、8、8b ……分級装置、9、9b ……造
粒装置、10、10b ……スラリー化装置、11、11
b ……スラリーポンプ、12、12b ……圧搾ろ過脱水
機、13……バイパスライン
FIG. 1 is a flow sheet showing an example of an apparatus for carrying out the method for treating a regenerated metal oxide of the present invention, FIG. 2 is a flow sheet showing another example of an apparatus using the method of the present invention, and FIG. It is a flow sheet which shows an example of the apparatus which implements the processing method of the regenerated metal oxide in the conventional direct causticizing method of alkali pulp. 1 ... Cooking equipment, 2 ... Diluted liquid storage tank, 3 ... Evaporator, 4
...... Fluidized bed recovery boiler, 5, 5a, 5b …… Extractor,
6, 6a, 6b ... Continuous washing and dehydrating device, 7, 7a, 7b
... Drying device, 8, 8b ... Classifying device, 9, 9b ... Granulating device, 10, 10b ... Slurrying device, 11, 11
b …… Slurry pump, 12, 12b …… Squeeze filter dehydrator, 13 …… Bypass line

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】パルプ廃液、カプロラクタム廃液、廃糖密
など有機ソーダ、有機カリ、炭酸ソーダまたは炭酸カリ
などのアルカリ金属を含む廃液を濃縮し、流動床炉で燃
焼させ直接に苛性ソーダまたは苛性カリなどの苛性物を
回収し、流動床炉の流動媒体および反応媒体として、酸
化鉄、鉄鉱石、アルミナ、ボーキサイトなどの金属酸化
物を用い、この金属酸化物を繰り返し使用する方法にお
いて、苛性ソーダまたは苛性カリなどの苛性物を加水分
解によって抽出した後の再生金属酸化物を、10〜20
%の濃度の濃縮前の希廃液と混合することにより、再生
金属酸化物中の残留付着水分と廃液とを置換し、しかる
後に脱水し、ついで乾燥するとともに一部自己造粒させ
た後、分級して粒状再生金属酸化物を流動床炉へ供給
し、未造粒粉状再生金属酸化物に濃廃液を加えて造粒し
た後、流動床炉へ供給することを特徴とする再生金属酸
化物の処理方法。
1. A waste liquor containing an alkali metal such as pulp waste liquor, caprolactam waste liquor, waste sugar-tightened organic soda, organic potassium, sodium carbonate or potassium carbonate is concentrated and directly burned in a fluidized bed furnace to directly remove caustic soda or caustic potassium. A metal oxide such as iron oxide, iron ore, alumina, and bauxite is used as a fluid medium and a reaction medium of a fluidized bed furnace for recovering caustic substances, and in the method of repeatedly using this metal oxide, caustic soda or caustic potash is used. The regenerated metal oxide after extraction of the caustic substance by hydrolysis is
The residual adhering water content in the regenerated metal oxide is replaced with the waste liquid by mixing with the dilute waste liquid before concentration at a concentration of 10%, and then dehydration is performed, followed by drying and partial self-granulation, followed by classification. And then supplying the granular regenerated metal oxide to the fluidized bed furnace, adding the concentrated waste liquid to the ungranulated powdered regenerated metal oxide to granulate, and then supplying the regenerated metal oxide to the fluidized bed furnace. Processing method.
【請求項2】パルプ廃液、カプロラクタム廃液、廃糖密
など有機ソーダ、有機カリ、炭酸ソーダまたは炭酸カリ
などのアルカリ金属を含む廃液を濃縮し、流動床炉で燃
焼させ直接に苛性ソーダまたは苛性カリなどの苛性物を
回収し、流動床炉の流動媒体および反応媒体として、酸
化鉄、鉄鉱石、アルミナ、ボーキサイトなどの金属酸化
物を用い、この金属酸化物を繰り返し使用する方法にお
いて、苛性ソーダまたは苛性カリなどの苛性物を加水分
解によって抽出した後の再生金属酸化物のうち粒状金属
酸化物を流動床炉へ供給し、粉状金属酸化物を、10〜
20%の濃度の濃縮前の希廃液と混合することにより、
粉状金属酸化物中の水分と廃液とを置換し、しかる後に
脱水し、ついで乾燥するとともに一部自己造粒させた
後、分級して粒状再生金属酸化物を流動床炉へ供給し、
未造粒粉状再生金属酸化物に濃廃液を加えて造粒した
後、流動床炉へ供給することを特徴とする再生金属酸化
物の処理方法。
2. A waste liquid containing an alkali metal such as pulp waste liquid, caprolactam waste liquid, waste sugar-tightened organic soda, organic potassium, sodium carbonate or potassium carbonate is concentrated and directly burned in a fluidized bed furnace to directly remove caustic soda or caustic potassium. A metal oxide such as iron oxide, iron ore, alumina, and bauxite is used as a fluid medium and a reaction medium of a fluidized bed furnace for recovering caustic substances, and in the method of repeatedly using this metal oxide, caustic soda or caustic potash is used. Among the regenerated metal oxides after extraction of the caustic substance by hydrolysis, granular metal oxides are supplied to the fluidized bed furnace, and powdered metal oxides
By mixing with the undiluted dilute waste solution at a concentration of 20%,
Substituting the waste water with the water content in the powdery metal oxide, and then dehydrating, then after drying and partially self-granulating, classify and supply the granular regenerated metal oxide to the fluidized bed furnace,
A method for treating a regenerated metal oxide, which comprises adding a concentrated waste liquid to an ungranulated powdered regenerated metal oxide, granulating the mixture, and then supplying the mixture to a fluidized bed furnace.
JP4791687A 1987-03-03 1987-03-03 Reclaimed metal oxide treatment method Expired - Lifetime JPH0662296B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4791687A JPH0662296B2 (en) 1987-03-03 1987-03-03 Reclaimed metal oxide treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4791687A JPH0662296B2 (en) 1987-03-03 1987-03-03 Reclaimed metal oxide treatment method

Publications (2)

Publication Number Publication Date
JPS63215508A JPS63215508A (en) 1988-09-08
JPH0662296B2 true JPH0662296B2 (en) 1994-08-17

Family

ID=12788688

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4791687A Expired - Lifetime JPH0662296B2 (en) 1987-03-03 1987-03-03 Reclaimed metal oxide treatment method

Country Status (1)

Country Link
JP (1) JPH0662296B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4322953A1 (en) * 1993-07-09 1995-01-12 Basf Ag Process for the production of caprolactam and an alkali metal carbonate from distillation residues which are obtained in the purification of caprolactam
CN1064930C (en) * 1997-10-23 2001-04-25 巴陵石油化工公司鹰山石油化工厂 Method and equipment for recovering sodium carbonate by incineration treatment of caprolactam saponification waste alkali liquor

Also Published As

Publication number Publication date
JPS63215508A (en) 1988-09-08

Similar Documents

Publication Publication Date Title
CN111717929A (en) Carbide slag comprehensive utilization device and method
CN1128027C (en) Process for treating silicon slag
JPH0662296B2 (en) Reclaimed metal oxide treatment method
US4486394A (en) Alkali regeneration process
US3948638A (en) Method for the press granulation of industrial dusts separated in dust removal systems
CN116371875A (en) System and method for treating waste incineration fly ash
JPS62276095A (en) Recovery of caustic soda from alkali pulp waste liquid
CN110055405A (en) A kind of preparation method of laterite nickel ore pellets
US5552099A (en) Process for pelletising particles of alkali metal ferrite
CN212334612U (en) Carbide slag comprehensive utilization device
CA3055235A1 (en) Process and apparatus for roasting of gold bearing sulfide concentrate
AU623821B2 (en) Method for removal of carbon compounds from circulating liquor of bayer process
JP4480317B2 (en) Aluminosilicate soda treatment method
US4035228A (en) Recovery process and apparatus for alkali metal-containing waste liquor
CN219279774U (en) Copper oxalate production system
CN211419588U (en) Waste recycling system in caustic soda production process
JP4855645B2 (en) Method for producing zeolite
JPS62268882A (en) Treatment of iron acid soda
JPS60181392A (en) Direct causticizing method using fluidized bed
JPS62224641A (en) Treatment of dust and sludge
JPH0665796B2 (en) Treatment method of soda ferrate
JPS6059190A (en) Recovery of caustic soda from pulp waste liquid
JP2001271289A (en) Method for manufacturing papermaking pitch-controlling agent
CA1327105C (en) Process for disposal of pulp and paper mill sludges containing chlorinated organic compounds
JPS62268888A (en) Supply of iron oxide granule