JPH0661874B2 - Rubber pipe structure - Google Patents
Rubber pipe structureInfo
- Publication number
- JPH0661874B2 JPH0661874B2 JP10671690A JP10671690A JPH0661874B2 JP H0661874 B2 JPH0661874 B2 JP H0661874B2 JP 10671690 A JP10671690 A JP 10671690A JP 10671690 A JP10671690 A JP 10671690A JP H0661874 B2 JPH0661874 B2 JP H0661874B2
- Authority
- JP
- Japan
- Prior art keywords
- pipe
- shaped structure
- rubber
- orientation direction
- main axis
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Classifications
-
- A—HUMAN NECESSITIES
- A63—SPORTS; GAMES; AMUSEMENTS
- A63B—APPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
- A63B2209/00—Characteristics of used materials
- A63B2209/02—Characteristics of used materials with reinforcing fibres, e.g. carbon, polyamide fibres
Landscapes
- Rigid Pipes And Flexible Pipes (AREA)
- Laminated Bodies (AREA)
Description
産業上の利用分野 本発明は、力学的異方性を有するゴムを少なくとも一部
分に有するゴム製パイプ状構造物に関し、詳しくは、曲
げるとねじれる一方、ねじると曲がるといった特異な変
形挙動を示すゴム製パイプ状構造物であって、上記特異
な変形挙動を利用して、機械産業分野における作動アー
ム、宇宙産業分野におけるパイプ状構造物、或いは特異
な挙動を示す玩具、日曜品等に利用され得るものであ
る。 従来の技術 従来、鉄、アルミ等の等方性材料からなるパイプ構造物
においては、その幾何学的主軸上の点に荷重をかけて曲
げのみを加えた場合はたわみのみを生じ、ねじれが生じ
ない。一方、幾何学的主軸上にない点に荷重をかけて曲
げねじりを加えると、たわみを生じると共にねじれが生
じる。 即ち、第25図及び第26図に示すように、上記等方性
材料からなるパイプ状構造物1の一端を固定端1a、他端
を自由端1bとして、該自由端1bに対して、図中矢印Aで
示すように、作用線がパイプ状構造物1の幾何学的主軸
Gと交わるように荷重を加えると、図中、破線で示すよ
うに、パイプ状構造物1は上記荷重によりたわみを生じ
るが、ねじれることはない。 一方、第27図及び第28図に示すように、上記のパイ
プ状構造物1の自由端1bの任意の一点に、矢印Bで示す
ように作用線がパイプ状構造物1の幾何学的主軸Gと交
わらないような荷重を加えると、パイプ状構造物1は破
線で示すように、たわみを生じると共にねじれが生じ
る。 発明が解決しようとする課題 等方性の材料からなるパイプ状構造物では、上記した変
形挙動を示すが、そのような挙動以外の特異な変形挙
動、例えば、曲げるとねじれる一方、ねじると曲がり、
また、曲げねじりを加えるとたわみはするがねじれない
ような変形挙動を生じさせることは出来ない。 ところで、上記のような鉄、アルミ等の等方性材料に対
して、異方性材料としてはFRP(繊維強化樹脂)が知
られており、該FRPをパイプ状構造物に用いることに
より等方性材料からなるパイプ状構造物では得られない
上記のような力学的特性を与えることが可能である。 しかしながら、FRPは一般に破壊延びが極めて小さい
ため、パイプ状構造物とした場合には小さい変形しか行
えない。また、FRPは弾性率及び剛性が高く変形に要
する力が大きい。 本発明は、上記したような特異な変形挙動、即ち、一端
を固定端、他端を自由端として、作用線が弾性主軸と交
わらないように荷重を加えると、たわみかつねじれる一
方、弾性主軸上にある点に荷重を加えて、曲げねじりす
ると、たわみが生じるのみでねじれが生じないような挙
動を示し、かつ、低弾性率、低剛性で小さい力で容易に
変形すると共に破壊延びが大きく、大きく変形をするこ
とができるパイプ状構造物を提供することを目的とする
ものである。 尚、上記弾性主軸とは、幾何学的主軸とは異なり、弾性
率を考慮した際の対称軸を指し、本発明の場合は、荷重
を加えても、たわみはするが、ねじれない点と、パイプ
の固定端とを結ぶ軸のことを指している。 課題を解決するための手段 従って、本発明は、パイプ状構造物の周方向の少なくと
も一部分で、該一部分の厚さ方向の少なくとも一部分が
異方性を有するゴムからなり、該ゴムの配向方向を他の
部分と異ならせることを特徴とするゴム製パイプ状構造
物を提供するものである。 また、本発明は、異方性を有するゴムからなるパイプ状
構造物であって、該パイプ状構造物の周方向の少なくと
も一部分で、該一部分の厚さ方向の少なくとも一部分の
配向方向と幾何学的主軸がなす角度が、他の部分と異な
る異方性を有するゴムからなるパイプ状構造物を提供す
るものである。 さらに、本発明は、異方性を有するゴムと異方性を有し
ないゴムとからなり、異方性を有するゴムをパイプ状構
造物の周方向の少なくとも一部分で、該一部分の厚さ方
向の少なくとも一部分に設け、該ゴムの配向方向と幾何
学的主軸がなす角度が、他の異方性を有しないゴムと異
ならせるゴム製パイプ状構造物を提供するものである。 本発明において、上記配向方向と幾何学的主軸がなす角
度が異なる部分は、例えば、パイプ状構造物の幾何学的
主軸に対して対称な部分であり、上記パイプ状構造物に
対して円柱座標をとった場合に、0°≦θ≦180°の
部分と、180°<θ≦360°の部分との、配向方向
と幾何学的主軸がなす角度が異ならせている。 更に具体的には、上記0°≦θ≦180°の部分の配向
方向と幾何学的主軸がなす角度を該幾何学的主軸に対し
て正の方向に配向させたとき、180°<θ≦360°
の部分の配向方向と幾何学的主軸がなす角度を該幾何学
的主軸に対して負となるようにした組合せが存在するよ
うにしている。 本発明では、上記のようにパイプ状構造物の周方向の少
なくとも一部で、かつ、該一部の厚さ方向の少なくとも
一部の配向方向を異ならせ、パイプ状構造物の弾性主軸
を所望の位置に設定している。 更に、上記力学的異方性を有するゴムは基材ゴム100
重量部、α,β−不飽和脂肪酸の金属塩3〜100重量
部、有機過酸化物0.5〜5.0重量部を含み、他の配向性付
与剤を含まないゴム組成物を一方向に剪断力をかけて混
練した後に、加硫して成型することを特徴とするもので
ある。 作用 本発明に係る力学的異方性を有するゴムからなるパイプ
状構造物では、周方向の少なくとも一部分(好ましく
は、幾何学的主軸に対して対称な部分)の、その厚さ方
向の全体あるいは厚さ方向の任意の一部において配向方
向の当該パイプ状構造物の幾何学的主軸に対する角度を
異ならせているため、上記ゴムの力学的異方性の特性を
積極的に利用することが出来る。該構成とすることによ
り、幾何学的主軸に対して弾性主軸にずれを生じさせ、
一端を固定端、他端を自由端とした場合に、弾性主軸上
の点を通らないように荷重をかけた場合にはたわむと共
にねじれる一方、弾性主軸上の点を通るように任意の荷
重をかけた場合にはたわむのみでねじれない特有の変形
挙動を生じることが出来る。さらに、本発明に係るパイ
プ状構造物はゴムからなるため、低剛性、低弾性率で小
さい力で容易に変形させることができ、かつ、破壊延び
が大きいため、大きく変形させることができる。 実施例 次に、図面に示す実施例に基づき、本発明を詳細に説明
する。 第1図乃至第3図に示す本発明に係る力学的異方性を有
するゴムからなるパイプ状構造物の第1実施例では、パ
イプ状構造物11は断面形状において内周と外周とが2
つの同心な円からなる円筒パイプである。 上記のパイプ状構造物11は、力学的異方性を有するゴ
ムから成形され、該ゴムは下記の方法により製造され
る。 まず、基材ゴムのブタジエンゴム80重量部及び天然ゴ
ム20重量部に、α,β−不飽和脂肪酸の金属塩として
塩基性メタクリル酸亜鉛65重量部、老化防止剤0.7重
量部および有機過酸化物としてジクミルパーオキシド1.
0重量部を配合したゴム組成物を、第4図で示すように
ロール5で周方向Rに剪断力を加えつつ混練する。一般
に、α,β−不飽和脂肪酸の金属塩はゴムと共架橋して
高硬度や高耐久性を与えることが知られているが、上記
のようなゴム組成物6を剪断力を加えつつ混練すると、
α,β−不飽和脂肪酸の金属塩である塩基性メタクリル
酸亜鉛の結晶が、上記ロールの周方向Rと同じ配向方向
Fで配向(本発明者らはX線照射により確認してい
る。)する。 次に、上記ゴム組成物6をそのまま型内で加硫して成形
すると、上記塩基性メタクリル酸亜鉛の配向方向Fには
極めて強度が強く、かつ、伸びが小さく(高剛性、高弾
性率、破壊延び小)、それとは異なる方向、特に、該配
向方向と90°をなす方向には強度がそれほど高くな
く、かつ、伸びが大きい(低剛性、低弾性率、破壊延び
大)力学的異方性を有するゴムが得られる。 尚、上記ゴム組成物の混練はロールによる方法に限定さ
れず、例えば、押出機により行うことも可能であり、こ
の場合には、配向方向は押出方向と一致する。 本実施例のパイプ状構造物11は、該パイプ状構造物を
周方向で二分して、夫々第5図に示すように、上記した
ゴム組成物のシート12をマンドレル13により、金形
14に仕込み、その後、それらを160℃、30分の条
件で加硫、成形してパイプ状としたものである。或い
は、第6図に示すように、小さい幅のシート12′から
順次幅の大きいものを載置した状態でマンドレル13に
より、金型14に仕込むようにしてもよい。 第2図および第3図に示すように、パイプ状構造物11
を構成する力学的異方性を有するゴムの配向方向Fは、
パイプ状構造物11の幾何学的主軸GがZ軸となるよう
に円柱座標BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a rubber pipe-shaped structure having a rubber having mechanical anisotropy in at least a part thereof, and more specifically, a rubber pipe-shaped structure which exhibits a peculiar deformation behavior such as twisting when bent and bending when twisted. A pipe-shaped structure, which can be used for an operating arm in the mechanical industry field, a pipe-shaped structure in the space industry field, a toy that exhibits a peculiar behavior, a sunday article, etc. by utilizing the above-mentioned peculiar deformation behavior Is. Conventional technology Conventionally, in pipe structures made of isotropic materials such as iron and aluminum, when a load is applied to a point on the geometric main axis and only bending is applied, only bending occurs and twisting occurs. Absent. On the other hand, when a load is applied to a point that is not on the geometrical principal axis and bending and twisting is applied, bending and twisting occur. That is, as shown in FIGS. 25 and 26, one end of the pipe-shaped structure 1 made of the above isotropic material is a fixed end 1a and the other end is a free end 1b. When a load is applied so that the line of action intersects with the geometric main axis G of the pipe-shaped structure 1 as indicated by the middle arrow A, the pipe-shaped structure 1 is deflected by the above-mentioned load, as indicated by the broken line in the figure. But it is not twisted. On the other hand, as shown in FIG. 27 and FIG. 28, the line of action is indicated by an arrow B at an arbitrary point on the free end 1b of the pipe-shaped structure 1 as shown in FIG. When a load that does not intersect with G is applied, the pipe-shaped structure 1 is bent and twisted as shown by a broken line. DISCLOSURE OF THE INVENTION Problems to be Solved by the Invention In a pipe-shaped structure made of an isotropic material, the above-described deformation behavior is exhibited, but peculiar deformation behaviors other than such behavior, for example, bending when twisting, bending when twisting,
In addition, when bending and twisting is applied, it is not possible to cause a deformation behavior such that it bends but does not twist. By the way, FRP (fiber reinforced resin) is known as an anisotropic material as opposed to isotropic materials such as iron and aluminum as described above, and isotropic by using the FRP in a pipe-shaped structure. It is possible to provide the above-mentioned mechanical properties which cannot be obtained by the pipe-shaped structure made of a flexible material. However, since the FRP generally has a very small breaking elongation, only a small deformation can be performed in the case of a pipe-shaped structure. Further, FRP has a high elastic modulus and rigidity, and a large force is required for deformation. The present invention has a peculiar deformation behavior as described above, that is, when one end is a fixed end and the other end is a free end, a load is applied so that the line of action does not intersect with the elastic main shaft, while bending and twisting, on the elastic main shaft. When a load is applied to a point at and bending and twisting, it behaves as if only bending occurs and no twisting occurs, and it has a low elastic modulus, low rigidity, is easily deformed with a small force, and has a large fracture extension. It is an object of the present invention to provide a pipe-shaped structure that can be largely deformed. Incidentally, the elastic main axis, unlike the geometrical main axis, refers to the axis of symmetry when considering the elastic modulus, in the case of the present invention, even if a load is applied, it bends, but does not twist, It refers to the axis that connects the fixed end of the pipe. Therefore, according to the present invention, at least a part in the circumferential direction of a pipe-shaped structure, at least a part of which in the thickness direction of the part is made of rubber having anisotropy, the orientation direction of the rubber is The present invention provides a rubber pipe-shaped structure characterized by being different from other portions. Further, the present invention relates to a pipe-shaped structure made of rubber having anisotropy, wherein at least a part of the pipe-shaped structure in the circumferential direction and at least a part of the thickness direction of the part of the pipe-shaped structure and the geometrical direction. An object of the present invention is to provide a pipe-shaped structure made of rubber having an anisotropy different from other portions in the angle formed by the target principal axis. Further, the present invention comprises a rubber having anisotropy and a rubber having no anisotropy, wherein the rubber having anisotropy is used in at least a part of the pipe-shaped structure in the circumferential direction and in the thickness direction of the part. Provided is a rubber pipe-shaped structure which is provided in at least a part and whose angle formed by the orientation direction of the rubber and the geometric main axis is different from that of other rubber having no anisotropy. In the present invention, the portion in which the angle formed by the orientation direction and the geometrical principal axis is different is, for example, a portion which is symmetrical with respect to the geometrical principal axis of the pipe-shaped structure, and has a cylindrical coordinate with respect to the pipe-shaped structure. In the case of, the angle between the orientation direction and the geometrical principal axis is different between the 0 ° ≦ θ ≦ 180 ° portion and the 180 ° <θ ≦ 360 ° portion. More specifically, when the angle between the orientation direction of the above 0 ° ≦ θ ≦ 180 ° and the geometric main axis is oriented in a positive direction with respect to the geometric main axis, 180 ° <θ ≦ 360 °
There is a combination in which the angle formed by the orientation direction of the part and the geometric main axis is made negative with respect to the geometric main axis. In the present invention, as described above, at least part of the pipe-shaped structure in the circumferential direction and at least part of the thickness direction of the part are made different in orientation direction, and the elastic main axis of the pipe-shaped structure is desired. Is set to. Further, the rubber having the above mechanical anisotropy is a base rubber 100.
A rubber composition containing 3 to 100 parts by weight of an α, β-unsaturated fatty acid metal salt and 0.5 to 5.0 parts by weight of an organic peroxide, and containing no other orientation-imparting agent, is subjected to a unidirectional shearing force. After kneading and kneading, it is vulcanized and molded. Action In the pipe-shaped structure made of rubber having mechanical anisotropy according to the present invention, at least a part in the circumferential direction (preferably, a part symmetrical with respect to the geometrical principal axis) or the whole in the thickness direction, or Since the angle with respect to the geometric main axis of the pipe-shaped structure in the orientation direction is different in any part of the thickness direction, it is possible to positively utilize the characteristics of the mechanical anisotropy of the rubber. . With this configuration, the elastic main axis is displaced from the geometrical main axis,
When one end is a fixed end and the other end is a free end, it bends and twists when a load is applied so that it does not pass through the point on the elastic spindle, while an arbitrary load is passed through the point on the elastic spindle. When applied, it is possible to produce a unique deformation behavior that only bends and does not twist. Further, since the pipe-shaped structure according to the present invention is made of rubber, it can be easily deformed with a low rigidity and a low elastic modulus and a small force, and can be largely deformed because of its large breaking extension. EXAMPLES Next, the present invention will be described in detail based on the examples shown in the drawings. In the first embodiment of the pipe-shaped structure made of rubber having mechanical anisotropy according to the present invention shown in FIGS. 1 to 3, the pipe-shaped structure 11 has two inner and outer peripheries in sectional shape.
It is a cylindrical pipe consisting of two concentric circles. The pipe-shaped structure 11 is molded from rubber having mechanical anisotropy, and the rubber is manufactured by the following method. First, 80 parts by weight of butadiene rubber as a base rubber and 20 parts by weight of natural rubber, 65 parts by weight of basic zinc methacrylate as a metal salt of α, β-unsaturated fatty acid, 0.7 parts by weight of an antioxidant and an organic peroxide. As dicumyl peroxide 1.
A rubber composition containing 0 parts by weight is kneaded by a roll 5 while applying a shearing force in the circumferential direction R as shown in FIG. It is generally known that a metal salt of an α, β-unsaturated fatty acid is co-crosslinked with rubber to give high hardness and high durability. However, the rubber composition 6 as described above is kneaded while applying shearing force. Then,
Crystals of basic zinc methacrylate, which is a metal salt of an α, β-unsaturated fatty acid, are oriented in the same orientation direction F as the circumferential direction R of the roll (the inventors have confirmed by X-ray irradiation). To do. Next, when the rubber composition 6 is vulcanized and molded in the mold as it is, the strength is extremely strong in the orientation direction F of the basic zinc methacrylate and the elongation is small (high rigidity, high elastic modulus, Small elongation at break), different direction, especially strength is not so high in the direction forming 90 ° with the orientation direction, and elongation is large (low rigidity, low elastic modulus, large elongation at break) A rubber having properties is obtained. The kneading of the rubber composition is not limited to the method using rolls, and can be performed using, for example, an extruder. In this case, the orientation direction matches the extrusion direction. The pipe-shaped structure 11 of this example is divided into two parts in the circumferential direction, and the rubber composition sheet 12 is formed into a mold 14 by a mandrel 13 as shown in FIG. After being charged, they were vulcanized and molded under the conditions of 160 ° C. for 30 minutes to form a pipe shape. Alternatively, as shown in FIG. 6, the mandrel 13 may be used to charge the metal mold 14 in a state in which sheets having a larger width are sequentially placed from a sheet 12 'having a smaller width. As shown in FIGS. 2 and 3, the pipe-shaped structure 11
The orientation direction F of the rubber having mechanical anisotropy that constitutes
Cylindrical coordinates so that the geometric main axis G of the pipe-shaped structure 11 becomes the Z axis
【(r,θ,Z)】を取ると、第2図に示す
0°≦θ≦180°の部分11aでは、r及びZに関係
なくZ軸に対して、正方向のα=30°なる角度として
いる。しかし、αの大きさは上記に限定されず、α>0
°かつα≠180°なる関係を満たせばよい。 一方、第3図に示す180°<θ≦360°の部分11
bでは、配向方向FはZ軸に対して、負の方向であるβ
=−30°なる角度としている。即ち、βはβ=−αと
なるように定めている。 上記ゴムシート12の配向方向が幾何学的主軸に対して
なす角度α、βの設定の仕方は、第7図(A)(B)に示すよ
うに、成形されたゴムシートの切断方法により、ゴムシ
ート12の配向方向Fがマンドレル13の軸芯(幾何学
的主軸G)に対して、α(30°)あるいはβ(−30
°)となるようにしている。 上記のようにパイプ状構造物11の周方向の少なくとも
一部分の力学的異方性を有するゴムの配向方向Fの幾何
学的主軸Gに対する角度を、該幾何学的主軸Gに対して
対称な部分と異ならせることにより、上記した力学的異
方性を有するゴムの特性を利用して、本実施例のパイプ
状構造物11では、幾何学的主軸Gと弾性主軸Eの間に
ずれを生じさせている。 尚、本実施例において、力学的異方性を有するゴムの基
材ゴム、配合物及びそれらの組成は上記のものに限定さ
れず、基材ゴム100重量部、α−β−不飽和脂肪酸の
金属塩3〜100重量部、有機化酸化物0.5〜5.0重量部
を含むものであればよい。 例えば、上記基材ゴムとしては従来ゴム組成物に用いら
れるすべてのゴム成分を用いることができるが、上記し
たブタジエンゴムの他に、スチレンブタジエンゴム、E
PDM、天然ゴム等が一般的に用いられる。特に好まし
い基材ゴムはcis−1,4−ポリブタンジエンであっ
て、cis構造が90%以上のものである。 また、ゴム組成物の混練の際にゴムの列理方向に配向す
るα,β−不飽和脂肪酸の金属塩としては炭素数3〜8
を有するα,β−不飽和カルボン酸の金属塩が好適であ
り、例えば、上記メタクリル酸の他に、アクリル酸、イ
タコン酸、クロトン酸などの金属塩が挙げられる。金属
は二価の金属、好ましくは亜鉛、マグネシウム等が一般
的であるが、その他の金属、例えば、ナトリウム、リチ
ウム等を用いてもよい。上記α,β−不飽和脂肪酸の金
属塩の配合量は基材ゴム100重量部に対し、3〜10
0重量部、好ましくは10〜70重量部である。3重量
部以下では強度に異方性が得られず、所定の効果が達成
されない。100重量部を越えると配合物が硬くなり、
作業性が悪くなり、成形性も劣る。 有機過酸化物としては上記ジクミルパーオキシドの他
に、過安息香酸、過酸化ベンゾイル、クメンパーオキシ
ド等が挙げられるが、好ましくはジクミルパーオキシド
である。有機過酸化物の配合量は基材ゴム100重量部
に対し0.5〜5.0重量部である。0.5重量部より少ないと
α,β−不飽和脂肪酸の金属塩の架橋が起こりにくく、
5.0重量部を越えると成形物が脆くなり実用的でない。
有機過酸化物の配合量は基材ゴム100重量部に対し1.
0〜3.0重量部が好ましい。 次に、上記構成からなるパイプ状構造物の作用的特性に
ついて説明する。 まず、第8図に示すように本実施例の長さL′のパイプ
状構造物11の一端を固定端11c、他端を自由端11
dとする。 上記の状態で、第9図に示すように治具15をパイプ状
構造物11の先端にはめ込み、該治具15に重り16を
垂らし、第10図及び第11図に示すように弾性主軸E
上にある点を通らない矢印Cで示す荷重を下方に加える
と、該第10図及び第11図において鎖線で示すよう
に、パイプ状構造物11はたわみを生じると共にねじれ
が生じる。 一方、第12図で示すように、治具18をパイプ状構造
物11の先端にはめ込み、該治具18の突出した棒状部
分18aに重り19を垂らすことにより、第13図及び
第14図の矢印Dに示すように上記した弾性主軸E上に
ある点を通るように下方に荷重を加えると、該第13図
及び第14図において鎖線で示すように、たわみを生じ
るが、ねじれが生じることがない。 即ち本実施例のパイプ状構造物11は、弾性主軸上にな
い点を通るように荷重をかけて曲げのみを加えた場合に
はたわみ且つねじれ、一方、弾性主軸E上の点に荷重を
かけることにより、曲げねじりを加えても、たわみが生
じるがねじれることはない。 尚、本実施例では上記αとβの関係をβ=−αとした
が、αとβの関係はこの関係に限定されるものではな
く、α≠βなる関係を満たしていれば良い。 第15図に示す第2実施例では、パイプ状構造物21は
第1実施例と同一の形状であり、幾何学的主軸GがZ軸
となるように円柱座標を取ると、10°≦θ≦150°
の部分21aでは、第16図に示すように、配向方向F
が幾何学的主軸Gとなす角度をα′=60°とし、それ
以外の部分、即ち、0°≦θ<10°及び150°<θ
<360°の部分21bでは、第17図に示すように、
配向方向Fが幾何学的主軸Gとなす角度をβ′=20°
としている。上記α′とβ′との関係は上記の値に限定
されるものではなく、α′≠β′なる関係をみたしてい
ればよい。また、上記部分21a、21bの分けかたも
上記の角度に限定されない。 上記第2実施例においても、上記のようにパイプ状構造
物21の周方向の少なくとも一部分の配向方向Fの幾何
学的主軸Gに対する角度が、該幾何学的主軸Gに対して
対称な部分と異なるため幾何学的主軸Gと弾性主軸Eに
ずれが生じている。そのため、第1実施例と同様の作用
効果を生じる。 次に、第18図に示す第3実施例では、異方性を有する
ゴムシートと異方性を有しない通常のゴムシートを組み
合わせて構成したものである。即ち、該パイプ状構造物
31の形状は第1実施例と同一であるが、幾何学的主軸
GがZ軸となるように円柱座標をとると、60°≦θ≦
120°の部分31aでは異方性を有するゴムシートを
用い、第19図に示すように、配向方向Fが幾何学的主
軸Gに対してα″=60°としている。また、240°
≦θ≦300°の部分31bでも異方性を有するゴムシ
ートを用い、第20図に示すように、配向方向Fの幾何
学的主軸に対してβ″=−60°としているα″とβ″
の値は上記のものに限定されず、α″≠β″なる関係を
満たしていればよい。 上記部分31a、31b以外の部分、即ち、 0°<θ<60°及び120°<θ<300°の部分31
cには、異方性を有しない通常のゴムシートを用いてい
る。 第3実施例においても、上記のようにパイプ状構造物3
1の周方向の少なくとも一部分の配向方向Fの幾何学的
主軸Gに対する角度を他の部分と異ならせているため幾
何学的主軸Gと弾性主軸Eにずれが生じている。そのた
め、第1実施例及び第2実施例と同様の作用効果を生じ
る。 第21図に示す第4図実施例のパイプ状構造物41は異
方性を有するゴムシートのみを積層して構成するもの
で、第1実施例と同一の形状で、上記した力学的異方性
を有するゴムのシートを5層積層している。該パイプ状
構造物41の幾何学的主軸GがZ軸となるように円柱座
標をとると、30°≦θ<360°の部分41aでは、
厚さ方向(r方向)に積層する全ての層の配向方向Fを
Z軸に対して30°としている。一方、0°≦θ<30
°の部分41bではパイプ状構造物41の厚さ方向(r
方向)で配向方向を異ならせている。即ち、ゴムシート
のパイプ内側の第1層目から第2層目まででは、配向方
向をZ軸に対して30°とし、ゴムシートの内側から第
3層目から第5層目では−30°としている。 上記第4実施例においても、上記のようにパイプ状構造
物41の周方向の少なくとも一部分で、かつその厚さ方
向の一部分の配向方向Fを他の部分と異なるため、幾何
学的主軸Gと弾性主軸Eとの間にはずれが生じており、
第1実施例と同様の作用効果を生じる。 第22図に示す第5実施例ではパイプ状構造物51は力
学的異方性を有するゴムからなるシートを5層積層して
なり、第1実施例と同一の形状である。該パイプ状構造
物51の幾何学的主軸GをZ軸として円柱座標を取る
と、パイプ状構造物51の厚さ方向(r方向)で配向方
向を異ならせている。即ち、ゴムシートの内側の第1層
目から第2層目までの範囲ではθに関係なく配向方向は
弾性主軸に対して30°であり、一方、ゴムシートの第
3層目から第5層目の範囲では周方向により配向方向を
異ならせ、0°≦θ<180°の部分51aでは配向方
向をZ軸に対して−30°で、180°≦θ<360°
の部分51bでは配向方向を60°としている。 上記第5実施例においても、上記したように、パイプ状
構造物51の少なくとも周方向の一部分で、その厚さ方
向の一部分の配向方向を、他の部分と異ならせているた
め、弾性主軸Eと幾何学的主軸Gとの間にはずれが生じ
第1実施例と同様の作用効果を生じる。 尚、上記第4実施例および5実施例において、配向方向
と幾何学的主軸のなす角度は限定されず、互いに異なっ
ていればよく、また、何層目において配向方向を異なら
せるかも限定されるものではない。 上記のように、本発明に係る力学的異方性を有するゴム
からなるパイプ状構造物は、一端を固定端、他端を固定
端とした場合に、弾性主軸上の点を通らないような荷重
を加えるとたわむと共にねじれる一方、弾性主軸上の点
を通るように任意の荷重をかねた場合にはたわむのみで
ねじれないという力学的特性し、従来の等方性材料から
なるパイプ状構造物では得られない特異な変形挙動を有
するものである。Taking [(r, θ, Z)], in the portion 11a where 0 ° ≦ θ ≦ 180 ° shown in FIG. 2, α = 30 ° in the positive direction with respect to the Z axis regardless of r and Z. It has an angle. However, the size of α is not limited to the above, and α> 0
It suffices if the relationship of α and α ≠ 180 ° is satisfied. On the other hand, the part 11 of 180 ° <θ ≦ 360 ° shown in FIG.
In b, the orientation direction F is β, which is a negative direction with respect to the Z axis.
The angle is -30 °. That is, β is set so that β = −α. The angle α, β formed by the orientation direction of the rubber sheet 12 with respect to the geometrical principal axis is set by the cutting method of the molded rubber sheet as shown in FIGS. The orientation direction F of the rubber sheet 12 is α (30 °) or β (-30) with respect to the axial center (geometrical principal axis G) of the mandrel 13.
°). As described above, the angle of at least a part of the pipe-shaped structure 11 in the circumferential direction with respect to the geometric main axis G of the orientation direction F of the rubber having mechanical anisotropy is a portion symmetric with respect to the geometric main axis G. By using the characteristic of the rubber having the above-mentioned mechanical anisotropy, the pipe-shaped structure 11 of the present embodiment causes a deviation between the geometric main axis G and the elastic main axis E. ing. In this example, the base rubber of the rubber having mechanical anisotropy, the compound and the composition thereof are not limited to those described above, and 100 parts by weight of the base rubber and α-β-unsaturated fatty acid are used. Any material containing 3 to 100 parts by weight of metal salt and 0.5 to 5.0 parts by weight of organic oxide may be used. For example, as the base rubber, all rubber components conventionally used in rubber compositions can be used. In addition to the above-mentioned butadiene rubber, styrene-butadiene rubber, E
PDM, natural rubber and the like are generally used. A particularly preferred base rubber is cis-1,4-polybutanediene having a cis structure of 90% or more. The metal salt of α, β-unsaturated fatty acid oriented in the grain direction of the rubber when kneading the rubber composition has 3 to 8 carbon atoms.
A metal salt of an α, β-unsaturated carboxylic acid having is preferable, and examples thereof include metal salts of acrylic acid, itaconic acid, crotonic acid, and the like in addition to the above-mentioned methacrylic acid. The metal is generally a divalent metal, preferably zinc, magnesium or the like, but other metals such as sodium or lithium may be used. The blending amount of the metal salt of the α, β-unsaturated fatty acid is 3 to 10 relative to 100 parts by weight of the base rubber.
It is 0 part by weight, preferably 10 to 70 parts by weight. If it is less than 3 parts by weight, the strength will not be anisotropic and the desired effect will not be achieved. If the amount exceeds 100 parts by weight, the composition becomes hard,
Workability is poor and moldability is poor. Examples of the organic peroxide include perbenzoic acid, benzoyl peroxide, cumene peroxide and the like in addition to the above-mentioned dicumyl peroxide, and dicumyl peroxide is preferable. The compounding amount of the organic peroxide is 0.5 to 5.0 parts by weight based on 100 parts by weight of the base rubber. If it is less than 0.5 part by weight, it is difficult for the metal salt of α, β-unsaturated fatty acid to crosslink,
If it exceeds 5.0 parts by weight, the molded product becomes brittle, which is not practical.
The compounding amount of organic peroxide is 1.
0 to 3.0 parts by weight is preferable. Next, the operational characteristics of the pipe-shaped structure having the above structure will be described. First, as shown in FIG. 8, one end of the pipe-shaped structure 11 having a length L'of the present embodiment has a fixed end 11c and the other end has a free end 11.
d. In the above state, the jig 15 is fitted to the tip of the pipe-shaped structure 11 as shown in FIG. 9, and the weight 16 is hung on the jig 15, and the elastic main shaft E as shown in FIG. 10 and FIG.
When a load indicated by an arrow C which does not pass through the upper point is applied downward, the pipe-shaped structure 11 is bent and twisted as shown by a chain line in FIGS. 10 and 11. On the other hand, as shown in FIG. 12, the jig 18 is fitted into the tip of the pipe-shaped structure 11 and the weight 19 is hung from the protruding rod-shaped portion 18a of the jig 18, thereby making it possible to obtain the structure shown in FIGS. When a downward load is applied so as to pass through the point on the elastic main axis E as shown by the arrow D, as shown by the chain line in FIGS. 13 and 14, bending occurs, but twisting occurs. There is no. That is, the pipe-shaped structure 11 of the present embodiment is bent and twisted only when a load is applied so as to pass through a point that is not on the elastic main axis and only bending is applied, while a point on the elastic main axis E is applied. As a result, even if bending and twisting is applied, bending occurs but it does not twist. Although the relationship between α and β is β = −α in the present embodiment, the relationship between α and β is not limited to this relationship, and the relationship α ≠ β may be satisfied. In the second embodiment shown in FIG. 15, the pipe-shaped structure 21 has the same shape as in the first embodiment, and when the cylindrical coordinates are taken so that the geometric main axis G becomes the Z axis, 10 ° ≦ θ. ≤150 °
As shown in FIG. 16, in the portion 21a of the alignment direction F,
The angle with respect to the geometrical principal axis G is α ′ = 60 °, and the other portions, that is, 0 ° ≦ θ <10 ° and 150 ° <θ
In the portion 21b of <360 °, as shown in FIG.
The angle formed by the orientation direction F and the geometrical principal axis G is β ′ = 20 °
I am trying. The relationship between α ′ and β ′ is not limited to the above values, and it is sufficient that the relationship α ′ ≠ β ′ is satisfied. The division of the portions 21a and 21b is not limited to the above angle. Also in the second embodiment, as described above, the angle of at least a portion of the pipe-shaped structure 21 in the circumferential direction with respect to the geometric main axis G with respect to the orientation direction F is symmetric with respect to the geometric main axis G. Since they are different, the geometrical principal axis G and the elastic principal axis E are deviated. Therefore, the same effect as that of the first embodiment is produced. Next, a third embodiment shown in FIG. 18 is configured by combining a rubber sheet having anisotropy and a normal rubber sheet having no anisotropy. That is, the shape of the pipe-shaped structure 31 is the same as that of the first embodiment, but if the cylindrical coordinates are taken so that the geometric main axis G becomes the Z axis, then 60 ° ≦ θ ≦
A rubber sheet having anisotropy is used in the portion 31a of 120 °, and the orientation direction F is α ″ = 60 ° with respect to the geometrical principal axis G, as shown in FIG.
Using a rubber sheet having anisotropy also in the portion 31b where ≦ θ ≦ 300 °, as shown in FIG. 20, β ″ = − 60 ° with respect to the geometrical principal axis of the orientation direction F. ″
The value of is not limited to the above value and may satisfy the relationship α ″ ≠ β ″. Portions other than the above-mentioned portions 31a and 31b, that is, a portion 31 of 0 ° <θ <60 ° and 120 ° <θ <300 °
For c, a normal rubber sheet having no anisotropy is used. Also in the third embodiment, as described above, the pipe-shaped structure 3 is used.
Since the angle of the orientation direction F of at least a part of the circumferential direction 1 with respect to the geometric main axis G is different from that of the other parts, the geometric main axis G and the elastic main axis E are deviated. Therefore, the same effects as those of the first and second embodiments are produced. The pipe-like structure 41 of the embodiment shown in FIG. 4 shown in FIG. 21 is constructed by laminating only rubber sheets having anisotropy, has the same shape as that of the first embodiment, and has the above-mentioned mechanical anisotropy. Five layers of rubber sheets having properties are laminated. When the cylindrical coordinates are taken so that the geometric main axis G of the pipe-shaped structure 41 becomes the Z axis, in the portion 41a where 30 ° ≦ θ <360 °,
The orientation direction F of all the layers laminated in the thickness direction (r direction) is 30 ° with respect to the Z axis. On the other hand, 0 ° ≦ θ <30
In the portion 41b of 90 °, the pipe-like structure 41 in the thickness direction (r
Direction), the orientation direction is different. That is, the orientation direction is set to 30 ° with respect to the Z-axis from the first layer to the second layer inside the pipe of the rubber sheet, and −30 ° from the third layer to the fifth layer from the inside of the rubber sheet. I am trying. Also in the fourth embodiment, as described above, since the orientation direction F of at least a part of the pipe-shaped structure 41 in the circumferential direction and a part of the thickness direction thereof is different from the other parts, the geometric main axis G and There is a gap between the elastic main axis E and
The same effect as that of the first embodiment is obtained. In the fifth embodiment shown in FIG. 22, the pipe-shaped structure 51 is formed by laminating five sheets of rubber having mechanical anisotropy and has the same shape as that of the first embodiment. If the geometrical principal axis G of the pipe-shaped structure 51 is taken as the Z axis and the columnar coordinates are taken, the orientation direction is made different in the thickness direction (r direction) of the pipe-shaped structure 51. That is, in the range from the first layer to the second layer inside the rubber sheet, the orientation direction is 30 ° with respect to the elastic main axis regardless of θ, while the third layer to the fifth layer of the rubber sheet are arranged. In the eye range, the orientation direction is changed depending on the circumferential direction, and in the portion 51a where 0 ° ≦ θ <180 °, the orientation direction is −30 ° with respect to the Z axis, and 180 ° ≦ θ <360 °.
In the portion 51b, the orientation direction is 60 °. Also in the fifth embodiment, as described above, at least a part of the pipe-shaped structure 51 in the circumferential direction has a different orientation direction of the part in the thickness direction from the other part, so that the elastic main axis E is different. And a geometrical main axis G are deviated from each other, and the same effect as the first embodiment is produced. In the fourth and fifth embodiments described above, the angle formed by the orientation direction and the geometrical principal axis is not limited and may be different from each other, and the number of layers in which the orientation direction is different is also limited. Not a thing. As described above, the pipe-shaped structure made of rubber having mechanical anisotropy according to the present invention does not pass through a point on the elastic spindle when one end is a fixed end and the other end is a fixed end. A pipe-like structure made of a conventional isotropic material, which has the mechanical characteristics that it bends and twists when a load is applied, while it bends and does not twist when an arbitrary load is applied so that it passes through a point on an elastic spindle. It has a unique deformation behavior that cannot be obtained with.
本発明に係る力学的異方性を有するゴムからなるパイプ
状構造物の力学特性を調べる為に、曲げを加えた場合の
変形量を測定する実験を行った。 本実験は、上記した第1図に示す第1実施例において、
一方の半周部分11aの配向方向がすべて幾何学的主軸
に対してα=20°、他の半周部分11bの配向方向を
β=−20°としたパイプ状構造物と、同様にα=30
°、β=−30°としたパイプ状構造物を作成した。か
つ、この2種類の配向方向を有するものについて、夫
々、下記の(形状1)〜(形状3)の3種類の寸法のパ
イプを作成して、合計6種類のパイプ状構造物について
実験をした。 (形状1) 外形φ1=18mm、内径φ2=5mm、長さL=120m
m、ゴムシート積層数3層 (形状2) 外形φ1=18mm、内径φ2=9mm、長さL=120m
m、ゴムシート積層数2層 (形状3) 外形φ1=35mm、内径φ2=13mm、長さL=310
mm、ゴムシート積層数5層 実験方法は、第8図に示すように、パイプ状構造物11
の一端をチャックにより締付けて固定端11cとし、他
端を自由端11dとして固定端11cよりパイプ状構造
物11が上記(形状1)、(形状2)についてはL′=
100mm、(形状3)についてはL′=260mm突出し
た状態とした。該状態で、第9図に示す治具15を用い
て上記自由端11dと幾何学的主軸Gの交点を着力点と
して、鉛直方向に重りWにより荷重P=0.5、1.0kgを加
え、上記自由端11dに水平に取付けた指針17の先端
の垂直方向の変位からたわみ量及びねじれ角を算出し
た。 上記した実験の結果より、下記の表1に示すように、曲
げのみをかけたにもかかわらず、たわみかつ、ねじれる
ことが確認できる。 また、実験結果より、第24図に示す幾何学的主軸Gに
対する弾性主軸Eのずれεは、配向方向と幾何学的主軸
のなす角度に応じて、下記の表2に示すような値である
ことが分かった。 上記の結果より、配向方向と幾何学的主軸のなす角度を
制御することにより、たわみ量、ねじれ角および弾性主
軸のずれを調節することが出来ることが確認できた。 効果 以上の説明より明らかなように、本発明に係る少なくと
も一部分が力学的異方性を有するゴムからなるパイプ状
構造物では、その周方向の少なくとも一部分の、当該一
部分の少なくとも厚さ方向の一部分に用いる異方性を有
するゴムの配向方向の幾何学的主軸に対する角度を他の
部分と相違させているため、幾何学的主軸と弾性主軸に
ずれを生じさせることが出来る。従って、該パイプ状構
造物を、その一端を固定端、他端を自由端とした場合
に、弾性主軸上にある点を通らない荷重を加えた場合に
はたわみが生じると共にねじれが生じ、弾性主軸上にあ
る点を通るように荷重を加えた場合にはたわみが生じる
のみでねじれず、曲げるとねじれ又はねじると曲がると
いう特殊な変形挙動を生じさせることが出来る。 また、上記力学的異方性を有するゴムからなるパイプ状
構造物は、配向方向の幾何学的主軸に対する角度や、配
向方向の幾何学的主軸に対する角度が等しい部分の周方
向の部分の分けかたを変えることにより、上記の幾何学
的主軸に対する弾性主軸のずれの量を容易に変えること
が可能である。 さらに、本発明に係るパイプ状構造物は力学的異方性を
有するゴムからなり低剛性、低弾性率、かつ、破壊延び
が大きいため、上記のような特殊な変形挙動を小さい力
で生じると共に、大きく変形することが可能である等の
種々の利点を有するものであり、該変形挙動を利用し
て、種々の産業上の分野に利用することができる。In order to investigate the mechanical characteristics of the pipe-shaped structure made of rubber having mechanical anisotropy according to the present invention, an experiment was performed to measure the amount of deformation when bending was applied. This experiment was carried out in the first embodiment shown in FIG.
A pipe-shaped structure in which the orientation direction of one half-circumferential portion 11a is all α = 20 ° with respect to the geometrical principal axis and the orientation direction of the other half-circumferential portion 11b is β = −20 °, similarly α = 30.
A pipe-shaped structure was prepared in which β and β were −30 °. And, for those having these two types of orientation directions, pipes having the following three types of (shape 1) to (shape 3) were created, and experiments were conducted on a total of 6 types of pipe-shaped structures. . (Shape 1) Outer diameter φ1 = 18 mm, inner diameter φ2 = 5 mm, length L = 120 m
m, number of laminated rubber sheets 3 layers (shape 2) outer diameter φ1 = 18 mm, inner diameter φ2 = 9 mm, length L = 120 m
m, number of laminated rubber sheets 2 layers (shape 3) outer diameter φ1 = 35 mm, inner diameter φ2 = 13 mm, length L = 310
mm, number of laminated rubber sheets 5 layers The experimental method is as shown in FIG.
Of the pipe-shaped structure 11 from the fixed end 11c to the fixed end 11c by tightening with a chuck to form the fixed end 11c and the free end 11d.
For 100 mm and (shape 3), L '= 260 mm was projected. In this state, a jig 15 shown in FIG. 9 is used to apply a load P = 0.5, 1.0 kg by a weight W in the vertical direction with the intersection of the free end 11d and the geometrical main axis G as a point of application, and The deflection amount and the twist angle were calculated from the vertical displacement of the tip of the pointer 17 mounted horizontally on the end 11d. From the results of the above-described experiment, as shown in Table 1 below, it can be confirmed that the material is flexible and twisted even though only bending is applied. From the experimental results, the deviation ε of the elastic principal axis E from the geometrical principal axis G shown in FIG. 24 is a value as shown in Table 2 below according to the angle between the orientation direction and the geometrical principal axis. I found out. From the above results, it was confirmed that the deflection amount, the twist angle, and the deviation of the elastic main axis can be adjusted by controlling the angle formed by the orientation direction and the geometric main axis. Effect As is apparent from the above description, in the pipe-shaped structure according to the present invention, at least a part of which is made of rubber having mechanical anisotropy, at least a part of the circumferential direction of the pipe-shaped structure, at least a part of the part in the thickness direction. Since the angle of the orientation direction of the rubber having anisotropy used for the above with respect to the geometrical principal axis is different from that of the other portions, a deviation can be caused between the geometrical principal axis and the elastic principal axis. Therefore, when one end of the pipe-shaped structure is a fixed end and the other end is a free end, when a load that does not pass through a point on the elastic spindle is applied, bending and twisting occur, and When a load is applied so as to pass through a point on the main shaft, it is possible to cause a special deformation behavior in which only bending occurs and it is not twisted, and it is twisted when bent or bent when twisted. In addition, the pipe-shaped structure made of rubber having the above-mentioned mechanical anisotropy is divided into a circumferential portion of an angle with respect to the geometric main axis in the orientation direction and a portion with the same angle with respect to the geometric main axis of the orientation direction. It is possible to easily change the amount of deviation of the elastic main axis from the geometrical main axis by changing the above. Furthermore, since the pipe-shaped structure according to the present invention is made of rubber having mechanical anisotropy and has low rigidity, low elastic modulus, and large fracture elongation, the special deformation behavior as described above is generated with a small force. It has various advantages such as being capable of being greatly deformed, and by utilizing the deformation behavior, it can be utilized in various industrial fields.
第1図は本発明に係る力学的異方性を有するゴムからな
るパイプ状構造物の第1実施例を示す斜視図、第2図は
第1図の配向方向を示す平面図、第3図は第1図の配向
方向を示す底面図、第4図は異方性ゴムの成形方法を示
す概略図、第5図及び第6図は第1図のパイプ状構造物
の製造方法を示す斜視図、第7図(A)および第7図(B)は
異方性を有するゴムシートの配向方向の設定方法を示す
概略図、第8図は第1図のパイプ状構造物の一端を固定
端とした状態を示す斜視図、第9図は治具の取り付けを
示す斜視図、第10図および第11図は第1図のパイプ
状構造物の自由端に荷重を加えた場合の変形を示す概略
図、第12図は治具の取り付けを示す斜視図、第13図
および第14図は第1図のパイプ状構造物の自由端に荷
重を加えて場合の変形を示す概略図、第15図は本発明
の第2実施例を示す斜視図、第16図及び第17図は第
15図の配向方向を示す概略図、第18図は本発明の第
3実施例を示す斜視図、第19図および第20図は第1
8図の配向方向を示す概略図、第21図は本発明の第4
実施例を示す斜視図、第22図は本発明の第5実施例を
示す斜視図、第23図は本発明に係るパイプ状構造物の
実験装置の概略図、第24図は自由端での幾何学的主軸
と弾性主軸とのずれを表す概略図(第23図を上から見
た図)、第25図乃至第28図は等方性材料からなるパ
イプ状構造物の自由端に荷重を加えた場合の変形を示す
概略図である。 1a、11c……固定端、 1b、11d……自由端、 11、21、31、41、51……パイプ状構造物、 G……幾何学的主軸、E……弾性主軸、 F……配向方向。FIG. 1 is a perspective view showing a first embodiment of a pipe-shaped structure made of rubber having mechanical anisotropy according to the present invention, FIG. 2 is a plan view showing an orientation direction of FIG. 1, and FIG. Is a bottom view showing the orientation direction of FIG. 1, FIG. 4 is a schematic view showing a method of molding anisotropic rubber, and FIGS. 5 and 6 are perspective views showing a method of manufacturing the pipe-shaped structure of FIG. FIGS. 7 (A) and 7 (B) are schematic diagrams showing a method for setting the orientation direction of a rubber sheet having anisotropy, and FIG. 8 fixes one end of the pipe-shaped structure of FIG. FIG. 9 is a perspective view showing a state in which the jig is attached, FIG. 9 is a perspective view showing attachment of a jig, and FIGS. 10 and 11 show deformation when a load is applied to the free end of the pipe-shaped structure of FIG. FIG. 12 is a schematic view showing the attachment of a jig, and FIGS. 13 and 14 are changes in the case where a load is applied to the free end of the pipe-like structure shown in FIG. FIG. 15 is a perspective view showing a second embodiment of the present invention, FIGS. 16 and 17 are schematic views showing the orientation direction of FIG. 15, and FIG. 18 is a third embodiment of the present invention. An example perspective view, FIG. 19 and FIG.
FIG. 8 is a schematic view showing the orientation direction of FIG. 8 and FIG.
FIG. 22 is a perspective view showing an embodiment, FIG. 22 is a perspective view showing a fifth embodiment of the present invention, FIG. 23 is a schematic view of an experimental apparatus for a pipe-like structure according to the present invention, and FIG. A schematic diagram showing the deviation between the geometrical principal axis and the elastic principal axis (a diagram in which FIG. 23 is viewed from above), and FIGS. 25 to 28 show a load applied to the free end of a pipe-shaped structure made of an isotropic material. It is the schematic which shows the modification at the time of adding. 1a, 11c ... fixed end, 1b, 11d ... free end, 11, 21, 31, 41, 51 ... pipe-shaped structure, G ... geometric main axis, E ... elastic main axis, F ... orientation direction.
Claims (4)
分で、該一部分の厚さ方向の少なくとも一部分が異方性
を有するゴムからなり、該異方性を有するゴムの配向方
向を、他の部分と異ならせることを特徴とするゴム製パ
イプ状構造物。1. A pipe-shaped structure, at least a part of which in the circumferential direction, at least a part of which in the thickness direction is made of rubber having anisotropy. A rubber pipe-shaped structure characterized by being different from the part.
物であって、 該パイプ状構造物の周方向の少なくとも一部分で、該一
部分の厚さ方向の少なくとも一部分の配向方向が、他の
部分と異なるゴム製パイプ状構造物。2. A pipe-shaped structure made of rubber having anisotropy, wherein at least part of the pipe-shaped structure in the circumferential direction has at least part of the orientation direction in the thickness direction of the other part. A rubber pipe-shaped structure different from the part.
重量部、α,β−不飽和脂肪酸の金属塩3〜100重量
部、有機過酸化物0.5〜5.0重量部を含み、他の配向性付
与剤を含まないゴム組成物を、一方向に剪断力をかけて
混練した後、加硫することにより得られるものからなる
請求項1又は2記載のパイプ状構造物。3. The rubber having anisotropy is a base rubber 100.
A rubber composition containing 3 to 100 parts by weight of a metal salt of an α, β-unsaturated fatty acid and 0.5 to 5.0 parts by weight of an organic peroxide and containing no other orientation-imparting agent is unidirectionally sheared. The pipe-shaped structure according to claim 1 or 2, which is obtained by vulcanizing after kneading.
一部で、かつ、該一部の厚さ方向の少なくとも一部の配
向方向を異ならせ、パイプ状構造物の弾性主軸を所望の
位置に設定していることを特徴とする請求項1乃至3に
記載のパイプ状構造物。4. The elastic main axis of the pipe-shaped structure is set at a desired position by changing the orientation direction of at least part of the pipe-shaped structure in the circumferential direction and at least part of the thickness of the pipe-shaped structure. The pipe-shaped structure according to claim 1, wherein the pipe-shaped structure is set to.
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10671690A JPH0661874B2 (en) | 1990-04-23 | 1990-04-23 | Rubber pipe structure |
US07/617,877 US5242721A (en) | 1989-11-27 | 1990-11-26 | Structural member of pipe shape |
EP19900122685 EP0430188B1 (en) | 1989-11-27 | 1990-11-27 | Structural member of pipe shape |
DE69017598T DE69017598T2 (en) | 1989-11-27 | 1990-11-27 | Tubular structural element. |
US08/053,707 US5348777A (en) | 1989-11-27 | 1993-04-29 | Structural member of pipe shape |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10671690A JPH0661874B2 (en) | 1990-04-23 | 1990-04-23 | Rubber pipe structure |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH044387A JPH044387A (en) | 1992-01-08 |
JPH0661874B2 true JPH0661874B2 (en) | 1994-08-17 |
Family
ID=14440684
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP10671690A Expired - Fee Related JPH0661874B2 (en) | 1989-11-27 | 1990-04-23 | Rubber pipe structure |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0661874B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100626241B1 (en) * | 2004-12-30 | 2006-09-20 | 주식회사 로지텍 | An aeolotropic liner used in repairing drainpipe |
-
1990
- 1990-04-23 JP JP10671690A patent/JPH0661874B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH044387A (en) | 1992-01-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA2877263C (en) | Metal polymer composite, a method for its extrusion and shaped articles made therefrom | |
EP0430188B1 (en) | Structural member of pipe shape | |
US20200032029A1 (en) | Metal polymer composite with enhanced viscoelastic and thermal properties | |
KR20160014130A (en) | High entropy alloy having excellent strength and ductility | |
JP2007040517A (en) | Harmonic speed reducer and its manufacturing method | |
WO2015045769A1 (en) | Glass-fibers-reinforced thermoplastic resin molded article and method for producing same | |
CN101062993A (en) | Carbon fiber composite resin material and method of producing the same | |
JP6018312B2 (en) | Rigid IPVC pipe resin composition and rigid IPVC pipe excellent in strength and water pressure resistance | |
Ning et al. | Building effective core/shell polymer nanoparticles for epoxy composite toughening based on Hansen solubility parameters | |
JPH0661874B2 (en) | Rubber pipe structure | |
JP6572398B2 (en) | Resin composition, molded article and method for producing the same | |
WO2019124554A1 (en) | Aluminum alloy, spring made of aluminum alloy, and fastening member made of aluminum alloy | |
JP3985074B2 (en) | Conductive resin composition and molded product thereof | |
KR101761266B1 (en) | Composite master batch for high-strength golf ball core and the method thereof | |
CN109468506A (en) | A kind of conductive sponge charging roller and preparation method thereof | |
JPH1192141A (en) | Production of calcium carbonate powdered particles, calcium carbonate powdered particles and additive for polymer using the same | |
JPS6395243A (en) | Bead filler rubber composition | |
JPH044241A (en) | Formed rubber article having anisotropic strength | |
JP2003213356A (en) | High lubrication aluminum alloy sheet for bulging and production method therefor | |
JP2005200572A (en) | Biaxially oriented styrene resin sheet | |
JP2002220505A (en) | Rubber composition and heat-resistant hose | |
WO2022092152A1 (en) | Resin composition, molded body and tube | |
JP2008200867A (en) | Rubber composition | |
JPH05255815A (en) | Iron-based shape memory alloy | |
CN103938120A (en) | High temperature resistant die steel |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313113 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |