JPH0660404A - Method and device for controlling optical axis of laser light - Google Patents

Method and device for controlling optical axis of laser light

Info

Publication number
JPH0660404A
JPH0660404A JP11116291A JP11116291A JPH0660404A JP H0660404 A JPH0660404 A JP H0660404A JP 11116291 A JP11116291 A JP 11116291A JP 11116291 A JP11116291 A JP 11116291A JP H0660404 A JPH0660404 A JP H0660404A
Authority
JP
Japan
Prior art keywords
optical axis
photodetector
laser
corner cube
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11116291A
Other languages
Japanese (ja)
Inventor
Hideyasu Endo
英康 遠藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP11116291A priority Critical patent/JPH0660404A/en
Publication of JPH0660404A publication Critical patent/JPH0660404A/en
Pending legal-status Critical Current

Links

Landscapes

  • Moving Of The Head For Recording And Reproducing By Optical Means (AREA)
  • Optical Recording Or Reproduction (AREA)
  • Manufacturing Optical Record Carriers (AREA)

Abstract

PURPOSE:To improve the detection sensitivity of a displacement signal for the optical axis of a laser near a quadripartite center and to improve control accuracy. CONSTITUTION:By executing the analog calculation of a signal from a photodetector(quadripartite photodiode) 5 by an optical axis detecting circuit 6, a displacement signal (Vx, Vz) in the two axial directions is obtained. The displacement signal (Vx, Vz) passes through control circuits 7a, 7b and works so as to drive linear actuators 8a, 8b. Since a circular insensitive zone is provided on the central part of the relevant quadripartite photodiode, the sensitivity of displacement detection in the vicinity of the center is improved.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【技術分野】本発明は、レーザー光軸制御方法及び制御
装置に関し、より詳細には、Arレーザーを用いた光デ
ィスク原盤露光装置におけるレーザー光軸の安定化方法
及び安定化装置に関する。例えば、レーザー加工装置に
おける光軸の安定化に適用されるものである。
TECHNICAL FIELD The present invention relates to a laser optical axis control method and control apparatus, and more particularly to a laser optical axis stabilization method and stabilization apparatus in an optical disc master exposure apparatus using an Ar laser. For example, it is applied to stabilization of the optical axis in a laser processing device.

【0002】[0002]

【従来技術】図5は、従来のレーザ光軸の変位信号を得
るための回路図である。光検出器である4分割各素子か
らの光電変換信号をアナログ演算する。その結果、Z方
向はVZ=A+B−(C+D)、X方向はVX=A+D−
(B+C)となる。一般的に光電変換信号は図6に素子
Aについてのみ示したが、素子Aに発生する光電流を演
算増幅器で電圧に変換して得ることができる。従って、
Z,VXの検出感度を大きくしようとする場合、各演算
増幅器が飽和しない範囲で光軸変位の最大の箇所で上記
光電変換信号が最大となるように電流・電圧変換抵抗
(R)が決定される。しかし、図5に示すような4分割
素子の場合は電流・電圧変換抵抗を大きくし、検出感度
を上げることが困難である。なお、先に提案されたもの
としては、コーナーキューブからの出力レーザー光を4
分割光素子で受光し、アナログ演算することでX軸・Z
軸方向の変動信号を得て、コーナーキューブをX,Z軸
方向に駆動するサーボ回路を構成するものがある。
2. Description of the Related Art FIG. 5 is a circuit diagram for obtaining a displacement signal of a conventional laser optical axis. The photoelectric conversion signals from the four-divided elements, which are the photodetectors, are subjected to analog calculation. As a result, V Z = A + B- (C + D) in the Z direction and V X = A + D- in the X direction.
(B + C). Although the photoelectric conversion signal is generally shown only for the element A in FIG. 6, it can be obtained by converting the photocurrent generated in the element A into a voltage by an operational amplifier. Therefore,
When increasing the detection sensitivity of V Z and V X , the current / voltage conversion resistance (R) is set so that the photoelectric conversion signal becomes maximum at the position where the displacement of the optical axis is maximum within the range where each operational amplifier is not saturated. It is determined. However, in the case of the four-division element as shown in FIG. 5, it is difficult to increase the current / voltage conversion resistance and increase the detection sensitivity. In addition, as previously proposed, the output laser light from the corner cube is 4
X-axis / Z
There is a servo circuit that obtains an axial variation signal and drives a corner cube in the X and Z axis directions.

【0003】[0003]

【目的】本発明は、上述のごとき実情に鑑みてなされた
もので、4分割中心付近でのレーザー光軸変位信号の検
出感度を上げ、制御精度を向上させるレーザー光軸制御
方法及び制御装置を提供することを目的としてなされた
ものである。
[Object] The present invention has been made in view of the above circumstances, and provides a laser optical axis control method and a control device for increasing the detection sensitivity of a laser optical axis displacement signal near the center of four divisions and improving the control accuracy. It was made for the purpose of providing.

【0004】[0004]

【構成】本発明は、上記目的を達成するために、(1)
コーナーキューブを通過したレーザー出射光の1部を光
検出器(4分割フォトダイオード)で受光し、該光検出
器からの信号をアナログ演算により、2軸方向の変位信
号をフィードバックし、前記コーナーキューブを駆動さ
せ、レーザー出射光軸を安定させるレーザー光軸制御方
法において、前記光検出器(4分割フォトダイオード)
の中心部分に円形の不感帯を設けたこと、或いは、
(2)2軸方向に移動させるコーナーキューブと、該コ
ーナーキューブを通過したレーザー出射光の1部を受光
する光検出器と、該光検出器からの信号をアナログ演算
する演算装置と、該演算装置による演算結果により2軸
方向の変位信号をフィードバックし、前記コーナーキュ
ーブを駆動させるアクチュエータとから成り、前記光検
出器の中心部分に円形の不感帯を設けたこと、更には、
(3)前記(2)において、前記光検出器の不感帯の半
径をレーザービーム径の略1/2としたこと、更には、
(4)前記(2)において、前記光検出器の不感帯の半
径を多種レーザービーム径に対応させるために可変可7
変能としたことを特徴としたものである。以下、本発明
の実施例に基づいて説明する。
In order to achieve the above object, the present invention provides (1)
A part of the laser emission light that has passed through the corner cube is received by a photodetector (four-division photodiode), and the signal from the photodetector is fed back as a displacement signal in two axial directions by analog calculation. In the laser optical axis control method for driving a laser to stabilize the laser emission optical axis, the photodetector (four-division photodiode)
A circular dead zone is provided in the center of the
(2) A corner cube that is moved in two axial directions, a photodetector that receives a part of laser emission light that has passed through the corner cube, an arithmetic device that performs an analog operation on a signal from the photodetector, and the operation An actuator for driving the corner cube by feeding back displacement signals in two axial directions based on the calculation result by the device, and providing a circular dead zone in the central portion of the photodetector,
(3) In (2) above, the radius of the dead zone of the photodetector is set to approximately ½ of the laser beam diameter, and further,
(4) In (2) above, the radius of the dead zone of the photodetector can be changed to correspond to various laser beam diameters.
It is characterized by being insane. Hereinafter, description will be given based on examples of the present invention.

【0005】図1は、本発明によるレーザー光軸制御装
置の一実施例を説明するための構成図で、図中、1はA
rレーザー、2,4は偏向ビームスプリッタ(PB
S)、3はコーナーキューブ、5は光検出器(4PD;
4分割フォトダイオード)、6は光軸検出回路、7a,
7bは制御回路(X軸、Z軸)、8a,8bはリニアア
クチュエータ(X軸,Z軸)である。
FIG. 1 is a block diagram for explaining an embodiment of a laser optical axis control device according to the present invention, in which 1 is A.
r lasers, 2 and 4 are deflection beam splitters (PB
S), 3 is a corner cube, 5 is a photodetector (4PD;
4-division photodiode), 6 is an optical axis detection circuit, 7a,
Reference numeral 7b is a control circuit (X axis, Z axis), and 8a, 8b are linear actuators (X axis, Z axis).

【0006】入射レーザ光に光軸変動があっても、コー
ナーキューブ3をX軸,Z軸に移動させることで、その
変動を抑え、レーザー出射光軸を安定させることができ
る。光検出器(4PD;4分割フォトダイオード)5か
らの信号を光軸検出回路6でアナログ演算することによ
り2軸方向の変位信号(VX,VZ)を得る。変位信号V
X,VZは制御回路7a,7b(一般的に位相補償回路、
増幅回路で構成される)を通り、リニアアクチュエータ
(X軸,Z軸)8a,8bを駆動するように働く。リニ
アアクチュエータ(X軸)8aは左右方向に移動させる
ためのもので、リニアアクチュエータ(Z軸)8bは上
下方向に移動させるためのものである。
Even if the incident laser beam changes its optical axis, the corner cube 3 can be moved along the X and Z axes to suppress the fluctuation and stabilize the laser emission optical axis. The signals from the photodetector (4PD; 4-division photodiode) 5 are analog-calculated by the optical axis detection circuit 6 to obtain displacement signals (V X , V Z ) in the two axis directions. Displacement signal V
X and V Z are control circuits 7a and 7b (generally a phase compensation circuit,
It operates to drive the linear actuators (X axis, Z axis) 8a, 8b through an amplifier circuit. The linear actuator (X axis) 8a is for moving in the horizontal direction, and the linear actuator (Z axis) 8b is for moving in the vertical direction.

【0007】図3は、光検出器の構成を示す図で、図
(a)は本発明の光検出器と比較するためのタイプ
(a)の従来の光検出器、図(b),図(c),図
(d)は中心に不感帯を有するタイプ(b),タイプ
(c),タイプ(d)の光検出器である。まず、図3
(a)に示す従来の光検出器を利用し、アナログ演算に
より、光軸変位信号を得る方法について説明する。この
素子を利用した場合の光軸変位と、変位信号(Z軸方
向)の関係は図2(a)のようになる。4分割フォトダ
イオードの中心付近での変位検出感度をS(mV/u
m)とすると、高制御精度を目標とする場合は、変位検
出感度を向上させなければならない。
FIG. 3 is a diagram showing the structure of a photodetector, wherein FIG. 3A is a conventional photodetector of type (a) for comparison with the photodetector of the present invention, FIG. 3B and FIG. (C) and (d) are photodetectors of type (b), type (c), and type (d) having a dead zone at the center. First, FIG.
A method of obtaining the optical axis displacement signal by analog calculation using the conventional photodetector shown in (a) will be described. The relationship between the optical axis displacement and the displacement signal (Z-axis direction) when using this element is as shown in FIG. The displacement detection sensitivity near the center of the 4-division photodiode is S (mV / u
In the case of m), the displacement detection sensitivity must be improved when high control accuracy is targeted.

【0008】図3(b)の光検出器は、感度向上を狙っ
た素子形状で、4分割素子の中心にレーザービーム径の
1/2になる円形の不感帯を設けたものである。従って
制御の中心を4分割素子の中心とすればここでの各素子
の光電変換信号は小さくなるので電流・電圧変換抵抗を
大きくし、変位信号を大きく取り出せば検出感度が向上
する。又、不感帯の径がw/2(wはビーム径)なので
他の大きさに設定するよりも検出感度は向上する。不感
帯の径をビーム径の1/2と設定したのは、ビーム強度
分布でw/2の箇所が最大の強度傾きを示すからであ
る。図4に示すwはビーム径、Imaxの1/e2の箇所、
w/2で強度はImax/√eとなり最大の傾きとなる。
図2(b)に示すように急峻な傾きをもった変位検出特
性となる。
The photodetector shown in FIG. 3 (b) has an element shape aiming at an improvement in sensitivity, and is provided with a circular dead zone which is 1/2 of the laser beam diameter at the center of the four-divided element. Therefore, if the center of control is set to the center of the four-divided element, the photoelectric conversion signal of each element here becomes small, so that the detection sensitivity is improved by increasing the current / voltage conversion resistance and extracting the displacement signal largely. Further, since the dead zone diameter is w / 2 (w is the beam diameter), the detection sensitivity is improved as compared with the case of setting it to another size. The diameter of the dead zone is set to 1/2 of the beam diameter because the beam intensity distribution shows the maximum intensity gradient at w / 2. In FIG. 4, w is the beam diameter, 1 / e 2 of Imax,
At w / 2, the intensity is Imax / √e, which is the maximum slope.
As shown in FIG. 2B, the displacement detection characteristic has a steep inclination.

【0009】図3(c)は、図3(b)で使用するレー
ザービーム径よりも大きい場合に対応可能である。この
場合、VZ=A+B−(C+D),VX=A+D−(B+
C)となる。ビーム径が小さい場合(図3(b)と同じ
場合)は、VZ=A+B+E+F−(C+D+G+
H),VX=A+D+E+H−(B+C+G)として使
用する。又さらに分割数を増やせば、多種ビーム径に対
応できる。その例を図3(d)に示す。
FIG. 3 (c) can deal with a case where the diameter is larger than the laser beam diameter used in FIG. 3 (b). In this case, V Z = A + B- (C + D), V X = A + D- (B +
C). When the beam diameter is small (the same as in FIG. 3B), V Z = A + B + E + F− (C + D + G +
H), V X = A + D + E + H- use as (B + C + G). Further, if the number of divisions is further increased, various beam diameters can be supported. An example thereof is shown in FIG.

【0010】[0010]

【効果】以上の説明から明らかなように、本発明による
と、以下のような効果がある。 (1)制御の中心となる光検出素子の中央部に円形の不
感帯を設けたので、中心付近での変位検出感度が向上
し、高精度制御が可能になる。 (2)円形不感帯の半径をビーム径の1/2に設定した
のでビーム変位に対して最大の検出感度が得られる。 (3)素子分割数を増やし、円形不感帯の半径を変えら
れるようにしたので多種ビーム径に対応できる。
As is apparent from the above description, the present invention has the following effects. (1) Since the circular dead zone is provided in the central portion of the photodetection element which is the center of control, the displacement detection sensitivity in the vicinity of the center is improved and high precision control becomes possible. (2) Since the radius of the circular dead zone is set to 1/2 of the beam diameter, the maximum detection sensitivity with respect to the beam displacement can be obtained. (3) Since the number of divided elements is increased and the radius of the circular dead zone can be changed, it is possible to cope with various beam diameters.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明によるレーザー光軸制御装置の一実施
例を説明するための構成図である。
FIG. 1 is a configuration diagram for explaining an embodiment of a laser optical axis control device according to the present invention.

【図2】 光検出器の光軸変位と変位信号の関係を示す
図である。
FIG. 2 is a diagram showing a relationship between a displacement signal and an optical axis displacement of a photodetector.

【図3】 光検出器の構成を示す図である。FIG. 3 is a diagram showing a configuration of a photodetector.

【図4】 ビーム強度分布を示す図である。FIG. 4 is a diagram showing a beam intensity distribution.

【図5】 従来のレーザー光軸の変位信号を得るための
回路図である。
FIG. 5 is a circuit diagram for obtaining a displacement signal of a conventional laser optical axis.

【図6】 光電変換回路を示す図である。FIG. 6 is a diagram showing a photoelectric conversion circuit.

【符号の説明】[Explanation of symbols]

1…Arレーザー、2,4…偏向ビームスプリッタ(P
BS)、3…コーナーキューブ、5…光検出器(4P
D;4分割フォトダイオード)、6…光軸検出回路、7
a,7b…制御回路(X軸、Z軸)、8a,8b…リニ
アアクチュエータ(X軸,Z軸)。
1 ... Ar laser, 2, 4 ... Deflection beam splitter (P
BS), 3 ... Corner cube, 5 ... Photodetector (4P
D: 4-division photodiode), 6 ... Optical axis detection circuit, 7
a, 7b ... Control circuit (X axis, Z axis), 8a, 8b ... Linear actuator (X axis, Z axis).

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 コーナーキューブを通過したレーザー出
射光の1部を光検出器で受光し、該光検出器からの信号
をアナログ演算により、2軸方向の変位信号をフィード
バックし、前記コーナーキューブを駆動させ、レーザー
出射光軸を安定させるレーザー光軸制御方法において、
前記光検出器の中心部分に円形の不感帯を設けたことを
特徴とするレーザー光軸制御方法。
1. A part of laser emitted light which has passed through a corner cube is received by a photodetector, and a signal from the photodetector is fed back as a displacement signal in two axial directions by analog calculation, so that the corner cube is moved. In the method of controlling the laser optical axis for driving and stabilizing the laser emission optical axis,
A method for controlling a laser optical axis, characterized in that a circular dead zone is provided in a central portion of the photodetector.
【請求項2】 2軸方向に移動させるコーナーキューブ
と、該コーナーキューブを通過したレーザー出射光の1
部を受光する光検出器と、該光検出器からの信号をアナ
ログ演算する演算装置と、該演算装置による演算結果に
より2軸方向の変位信号をフィードバックし、前記コー
ナーキューブを駆動させるアクチュエータとから成り、
前記光検出器の中心部分に円形の不感帯を設けたことを
特徴とするレーザー光軸制御装置。
2. A corner cube that is moved in two axial directions, and one of laser emission light that has passed through the corner cube.
A photodetector that receives light from a light source, a computing device that performs analog computation of the signal from the photodetector, and an actuator that feeds back displacement signals in two axial directions based on the computation results of the computing device and drives the corner cube. Consists of
A laser optical axis control device, wherein a circular dead zone is provided in a central portion of the photodetector.
【請求項3】 前記光検出器の不感帯の半径をレーザー
ビーム径の略1/2としたことを特徴とする請求項2記
載のレーザー光軸制御装置。
3. The laser optical axis control device according to claim 2, wherein a radius of a dead zone of the photodetector is set to be approximately ½ of a laser beam diameter.
【請求項4】 前記光検出器の不感帯の半径を多種レー
ザービーム径に対応させるために可変可能としたことを
特徴とする請求項2記載のレーザー光軸制御装置。
4. The laser optical axis control device according to claim 2, wherein the radius of the dead zone of the photodetector is variable so as to correspond to various laser beam diameters.
JP11116291A 1991-04-16 1991-04-16 Method and device for controlling optical axis of laser light Pending JPH0660404A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11116291A JPH0660404A (en) 1991-04-16 1991-04-16 Method and device for controlling optical axis of laser light

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11116291A JPH0660404A (en) 1991-04-16 1991-04-16 Method and device for controlling optical axis of laser light

Publications (1)

Publication Number Publication Date
JPH0660404A true JPH0660404A (en) 1994-03-04

Family

ID=14554051

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11116291A Pending JPH0660404A (en) 1991-04-16 1991-04-16 Method and device for controlling optical axis of laser light

Country Status (1)

Country Link
JP (1) JPH0660404A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6419997B1 (en) 1995-03-09 2002-07-16 Citizen Watch Co., Ltd. Guide bush and method of forming hard carbon film over the inner surface of the guide bush
US6619848B2 (en) 2001-02-13 2003-09-16 Ngk Spark Plug Co., Ltd. Ceramic dynamic pressure bearing, motor with bearing, hard disc apparatus and polygon scanner
US6659647B2 (en) 2001-03-08 2003-12-09 Ngk Spark Plug Co., Ltd. Ceramic dynamic pressure bearing, motor with bearing, hard disk device, and polygon scanner
US7215508B2 (en) 2001-03-08 2007-05-08 Ngk Spark Plug Co., Ltd. Ceramic dynamic-pressure bearing and hard disk drive using the same
US7682711B2 (en) 2005-02-15 2010-03-23 Tdk Corporation Magnetic recording medium, magnetic recording and reproducing apparatus, and manufacturing method of magnetic recording medium
EP2549223A1 (en) 2011-07-20 2013-01-23 Canon Kabushiki Kaisha Laser light deflection amount detecting apparatus, displacement measuring apparatus, method for manufacturing mold for molding optical element, and optical element
JP2013061233A (en) * 2011-09-13 2013-04-04 Mitsubishi Electric Corp Optical displacement measuring device
JP2017174933A (en) * 2016-03-23 2017-09-28 信越半導体株式会社 Detection device and detection method

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6419997B1 (en) 1995-03-09 2002-07-16 Citizen Watch Co., Ltd. Guide bush and method of forming hard carbon film over the inner surface of the guide bush
US6619848B2 (en) 2001-02-13 2003-09-16 Ngk Spark Plug Co., Ltd. Ceramic dynamic pressure bearing, motor with bearing, hard disc apparatus and polygon scanner
US6659647B2 (en) 2001-03-08 2003-12-09 Ngk Spark Plug Co., Ltd. Ceramic dynamic pressure bearing, motor with bearing, hard disk device, and polygon scanner
US7215508B2 (en) 2001-03-08 2007-05-08 Ngk Spark Plug Co., Ltd. Ceramic dynamic-pressure bearing and hard disk drive using the same
US7682711B2 (en) 2005-02-15 2010-03-23 Tdk Corporation Magnetic recording medium, magnetic recording and reproducing apparatus, and manufacturing method of magnetic recording medium
EP2549223A1 (en) 2011-07-20 2013-01-23 Canon Kabushiki Kaisha Laser light deflection amount detecting apparatus, displacement measuring apparatus, method for manufacturing mold for molding optical element, and optical element
US8867036B2 (en) 2011-07-20 2014-10-21 Canon Kabushiki Kaisha Laser light deflection amount detecting apparatus, displacement measuring apparatus, method for manufacturing mold for molding optical element, and optical element
JP2013061233A (en) * 2011-09-13 2013-04-04 Mitsubishi Electric Corp Optical displacement measuring device
JP2017174933A (en) * 2016-03-23 2017-09-28 信越半導体株式会社 Detection device and detection method
US10365227B2 (en) 2016-03-23 2019-07-30 Shin-Etsu Handotai Co., Ltd. Detection device and detection method

Similar Documents

Publication Publication Date Title
US7566861B2 (en) Detection device controlled by driving speed and driving direction
US4942563A (en) Signal processing apparatus and method capable of providing precise digital data
JPH0147762B2 (en)
JPH0660404A (en) Method and device for controlling optical axis of laser light
JPS56140477A (en) Laser driving control system
JPH0758206B2 (en) Position detector using moire fringes
US5315374A (en) Three-dimensional measuring apparatus
US4686359A (en) Picture scanning and recording using a photoelectric focusing system
JP3036081B2 (en) Electron beam drawing apparatus and method, and sample surface height measuring apparatus thereof
JP3552170B2 (en) Raster scanner beam steering sensor
EP2985623B1 (en) System and method for array lateral effect position sensing detector
JPH0783612A (en) Optical type displacement sensor
US4994661A (en) Optical two-dimensional servo-loop for laser beam stabilization and/or position encoding
JP3187538B2 (en) Optical axis controller
JP2958035B2 (en) Beam position control device
JPH04103044A (en) Optical axis controller
JP3045241B2 (en) Optical position detector
JPH04253020A (en) Laser optical axis controller
JP2529049B2 (en) Optical displacement meter
JPH0610327Y2 (en) Laser light fiber input device
EP0387019A3 (en) Beam track position control apparatus for optical disk apparatus
JPH02289929A (en) Semiconductor integrated circuit
JPS5525853A (en) Tracking device for optical information track
Takamatsu et al. Fiber-optic position sensor
SU1191937A1 (en) Automatic focusing device