JPH066028B2 - Extraction method of flavor components - Google Patents

Extraction method of flavor components

Info

Publication number
JPH066028B2
JPH066028B2 JP59209778A JP20977884A JPH066028B2 JP H066028 B2 JPH066028 B2 JP H066028B2 JP 59209778 A JP59209778 A JP 59209778A JP 20977884 A JP20977884 A JP 20977884A JP H066028 B2 JPH066028 B2 JP H066028B2
Authority
JP
Japan
Prior art keywords
extraction
tea
extracted
ethanol
supercritical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59209778A
Other languages
Japanese (ja)
Other versions
JPS6188853A (en
Inventor
勝久 古川
桂太郎 羽室
伸夫 京極
匡子 芦刈
一則 上松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suntory Ltd
Original Assignee
Suntory Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suntory Ltd filed Critical Suntory Ltd
Priority to JP59209778A priority Critical patent/JPH066028B2/en
Publication of JPS6188853A publication Critical patent/JPS6188853A/en
Publication of JPH066028B2 publication Critical patent/JPH066028B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Tea And Coffee (AREA)
  • Seasonings (AREA)
  • Extraction Or Liquid Replacement (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は超臨界状態又はその近傍の状態の流体を用い
る、嗜好性飲料材料からの香味成分の抽出方法に関す
る。
TECHNICAL FIELD The present invention relates to a method for extracting a flavor component from a palatable beverage material using a fluid in a supercritical state or in the vicinity thereof.

(従来の技術) 超臨界状態の流体を用いる抽出方法は、通常の抽出法で
は分離することが困難な成分を容易に分離することがで
きること、抽出後抽出流体の温度又は圧力をわずかに変
えることによって抽出された成分を分離することができ
エネルギーコストが低いこと等多くの利点を有し、広
く、実施されている。
(Prior Art) An extraction method using a fluid in a supercritical state is capable of easily separating components that are difficult to be separated by an ordinary extraction method, and slightly changing the temperature or pressure of the extraction fluid after extraction. It has many advantages such as the ability to separate the components extracted by, and the low energy cost, and is widely practiced.

特開昭47−28172には、水で加湿した紅茶又はコ
ーヒーから液体又は気体の二酸化炭素により揮発性香気
成分を抽出する方法が記載されているが、超臨界状態で
の抽出については記載されておらず、又有機溶剤の存在
下での抽出についてもなんら記載されていない。特公昭
59−10775には超臨界状態の二酸化炭素を用いて
水で加湿した紅茶からカフェインを抽出する方法が記載
されているが、有機溶剤の存在下での抽出については記
載されていない。特公昭54−10539には、超臨界
ガスによる有機物質の抽出が記載されており、特公昭5
1−33185には超臨界状態の二酸化炭素による粗砕
焙煎コーヒーからのアロマ成分の抽出が記載されてお
り、さらに特公昭45−8624には超臨界状態の溶剤
を用いてコーヒー、茶等から揮発性芳香成分を抽出する
方法が記載されているが、いずれにも、有機溶剤の存在
下での抽出については記載されていない。
JP-A-47-28172 describes a method for extracting a volatile aroma component from water-humidified tea or coffee with liquid or gaseous carbon dioxide, but does not describe extraction in a supercritical state. Neither is there any mention of extraction in the presence of organic solvents. Japanese Patent Publication No. 59-10775 describes a method for extracting caffeine from black tea moistened with water using carbon dioxide in a supercritical state, but does not describe extraction in the presence of an organic solvent. Japanese Patent Publication No. 54-10539 describes extraction of organic substances with a supercritical gas.
1-333185 describes extraction of aroma components from coarsely crushed roasted coffee with carbon dioxide in a supercritical state, and Japanese Examined Patent Publication No.45-8624 discloses that coffee, tea, etc. can be extracted using a solvent in a supercritical state. A method for extracting volatile aroma components is described, but none of them describes extraction in the presence of an organic solvent.

これらの従来技術の方法は、超臨界状態を用いない常法
に比べて先に記載した特徴を有するが、抽出効率の点で
まだ十分とは言えない。
These prior art methods have the above-mentioned characteristics as compared with the conventional methods that do not use the supercritical state, but they are still insufficient in terms of extraction efficiency.

(発明が解決しようとする問題点) この発明は、超臨界状態又はこの近傍の状態の流体を用
いる嗜好性飲料材料中の香味成分の抽出方法であって、
従来技術の方法よりも著しく効率よく抽出できる方法を
提供するものである。
(Problems to be Solved by the Invention) The present invention relates to a method for extracting a flavor component in a palatable beverage material using a fluid in a supercritical state or a state in the vicinity thereof,
It provides a method that can be extracted significantly more efficiently than prior art methods.

(問題点を解決するための手段) 上記の問題点は、超臨界状態又は近傍の状態の流体と嗜
好性飲料材料とを接触せしめることにより該材料中の香
味成分(フレーバー)を抽出する方法において、該接触
を、非毒性であり香味成分を溶解し得る有機溶剤の存在
下で行うことを特徴とする方法により解決される。
(Means for Solving Problems) The above problem is in a method of extracting a flavor component (flavor) in a palatable beverage material by bringing a fluid in a supercritical state or a nearby state into contact with a palatability beverage material. The method is characterized in that the contact is carried out in the presence of an organic solvent which is non-toxic and can dissolve the flavor component.

この発明の抽出方法は、超臨界流体を用いる従来技術の
方法とほぼ同様にして実施することができる。第1図に
概略のフローシートを示す。この図において、抽出剤、
例えば二酸化炭素はその貯槽1か液化槽2に移送され、
ここで冷却、液化される。液化した抽出剤は必要に応じ
て中間タンク3に一時的に貯蔵され、ポンプ4により臨
界圧より高圧に加圧され、そして熱交換器5により臨界
温度より高温に調節される。このようにして超臨界状態
となった抽出剤流体は抽出槽6に供給される。抽出槽6
には抽出させるべく材料、例えば焙煎コーヒー、葉紅茶
等が有機溶剤、例えばエタノール水溶液と共に仕込まれ
ている。この有機溶剤の存在下で前記材料と前記臨界状
態の流体が接触し、抽出が行われる。主として油成分
(オイル)と香味成分(フレーバー)とから成る抽出
物、及び有機溶剤(これらの全体を粗抽出物と称する)
を含有する抽出剤流体は抽出槽6から圧力コントロール
バルブ7に送られ、圧力が低下する。この圧力低下によ
って分離槽8において抽出物及び有機溶剤(粗抽出物)
が液体となって分離する。抽出剤は液化槽2に油砕され
再使用される。他方、抽出物及び有機溶剤は抽出物槽9
に取り出され、これが製品として使用され、あるいはそ
の後抽出物(製品)と有機溶剤が分離され(図には示し
てない)有機溶剤は必要に応じて精製された後、抽出槽
6において再使用される。
The extraction method of the present invention can be carried out in much the same manner as the prior art methods using supercritical fluids. FIG. 1 shows a schematic flow sheet. In this figure, the extractant,
For example, carbon dioxide is transferred to its storage tank 1 or liquefaction tank 2,
Here, it is cooled and liquefied. The liquefied extractant is temporarily stored in the intermediate tank 3 as needed, pressurized to a pressure higher than the critical pressure by the pump 4, and adjusted to a temperature higher than the critical temperature by the heat exchanger 5. The extractant fluid thus brought into the supercritical state is supplied to the extraction tank 6. Extraction tank 6
In order to extract, materials such as roasted coffee and black tea are charged together with an organic solvent such as an aqueous ethanol solution. In the presence of this organic solvent, the material and the fluid in the critical state are brought into contact with each other to perform extraction. An extract mainly composed of an oil component (oil) and a flavor component (flavor), and an organic solvent (these are collectively called a crude extract)
The extractant fluid containing is sent from the extraction tank 6 to the pressure control valve 7, and the pressure is reduced. Due to this pressure decrease, the extract and the organic solvent (crude extract) in the separation tank 8
Becomes liquid and separates. The extractant is ground in the liquefaction tank 2 and reused. On the other hand, the extract and the organic solvent are used in the extract tank 9
Which is used as a product, or after which the extract (product) and the organic solvent are separated (not shown in the figure), the organic solvent is purified if necessary, and then reused in the extraction tank 6. It

この発明の方法は、嗜好性飲料材料からその香味成分を
抽出するために使用される。嗜好性飲料としては、例え
ば紅茶、コーヒー、緑茶、ウーロン茶、ほうじ茶、麦
茶、花香茶、プーアー茶等を挙げることができる。これ
らの飲料の抽出材料としては、例えば紅茶及びコーヒー
について言えば葉紅茶、焙煎コーヒー等を使用すること
ができる。これらは、抽出流体との接触面積を大きくし
て抽出効率を高めるために小片、小粒又は粉状にして使
用するのが好ましい。この発明においては乾燥材料及び
湿潤材料のいずれも使用することができる。
The method of this invention is used to extract its flavor components from palatable beverage ingredients. Examples of the palatable beverages include black tea, coffee, green tea, oolong tea, houjicha, barley tea, scented tea, and puer tea. As the extraction material of these beverages, for example, leaf tea and roasted coffee can be used for tea and coffee. These are preferably used in the form of small pieces, small particles or powder in order to increase the contact area with the extraction fluid and enhance the extraction efficiency. Both dry and wet materials can be used in the present invention.

超臨界状態又はその近傍の状態において使用する抽出剤
としては、臨界温度が比較的低く、臨界状態において香
味成分と接触した場合に該香味成分を実質上変質せしめ
ないものであればよい。抽出剤の例として、例えば二酸
化炭素(臨界温度31.6℃;臨界圧力74.3気
圧)、エチレン(9.2℃;49.7気圧)エタン(3
2.2℃;48.2気圧)、プロピレン(91.8℃;
45.6気圧)、プロパン(96.6℃;41.9気
圧)等を挙げることができる。これらの内、臨界温度が
比較的低く、しかも人体に対して毒性を有しない二酸化
炭素が最も好ましい。
The extractant used in the supercritical state or in the vicinity thereof may be one that has a relatively low critical temperature and does not substantially change the flavor component when it comes into contact with the flavor component in the critical state. Examples of the extractant include carbon dioxide (critical temperature 31.6 ° C .; critical pressure 74.3 atm), ethylene (9.2 ° C .; 49.7 atm), ethane (3
2.2 ° C; 48.2 atm), propylene (91.8 ° C;
45.6 atm), propane (96.6 ° C .; 41.9 atm) and the like. Of these, carbon dioxide is most preferable because it has a relatively low critical temperature and is not toxic to the human body.

これらの抽出剤は超臨界状態、又はその近傍の状態(臨
界状態もしくは準臨界状態)において使用する。超臨界
状態とは、例えば二酸化炭素については31.6℃より
高温で且つ74.3気圧より高い圧力の状態を意味し、
超臨界状態の近傍の状態とは例えば圧力が臨界圧力より
高く温度が約25℃〜31.6℃の状態を言う。このよ
うな状態においても、超臨界状態とほぼ同様の抽出効果
が得られる。
These extractants are used in a supercritical state or a state in the vicinity thereof (critical state or subcritical state). The supercritical state means, for example, a state in which carbon dioxide has a temperature higher than 31.6 ° C. and higher than 74.3 atm,
The state in the vicinity of the supercritical state means, for example, a state in which the pressure is higher than the critical pressure and the temperature is approximately 25 ° C to 31.6 ° C. Even in such a state, the same extraction effect as in the supercritical state can be obtained.

香味成分の高い抽出効率を得るためには、30容量%
(含水率70%)〜70容量%(含水率30%)のエタ
ノール水溶液を抽出槽内に存在せしめる事が好ましい。
このような濃度のエタノールを抽出槽内に存在せしめる
には、抽出材料として乾燥材料を使用する場合には、上
記の濃度範囲のエタノールを使用すればよい。また、抽
出材料として湿潤材料を使用する場合には、その水分含
量を考慮して、やや高濃度のアルコール水溶液を使用す
るのが好ましい。
To obtain high extraction efficiency of flavor components, 30% by volume
It is preferable to allow an aqueous ethanol solution having a water content of 70% to 70% by volume (water content of 30%) to exist in the extraction tank.
In order to make ethanol having such a concentration exist in the extraction tank, when a dry material is used as the extraction material, ethanol having the above concentration range may be used. When a wet material is used as the extraction material, it is preferable to use an alcohol aqueous solution having a slightly high concentration in consideration of its water content.

有機溶剤の使用量は、抽出材料の種類、抽出剤の種類等
によって異るが、一般に抽出材料100重量部に対して
約10〜100重量部、そして好ましくは約10〜30
重量部である。
The amount of the organic solvent used depends on the type of extraction material, the type of extraction agent, etc., but is generally about 10 to 100 parts by weight, and preferably about 10 to 30 parts by weight per 100 parts by weight of the extraction material.
Parts by weight.

有機溶剤を抽出槽に導入する方法として、例えば有機溶
剤及び抽出材料を別々に抽出槽に入れる方法、有機溶剤
と抽出材料とをあらかじめ均一に混合しておき、一度に
抽出槽に入れる方法、抽出槽に導入される抽出剤に一定
の速度で連続的に注入混合する方法等を用いることがで
きる。
As a method of introducing the organic solvent into the extraction tank, for example, a method of separately putting the organic solvent and the extraction material into the extraction tank, a method of uniformly mixing the organic solvent and the extraction material in advance, and putting them into the extraction tank at once, extraction It is possible to use a method in which the extractant introduced into the tank is continuously injected and mixed at a constant rate.

抽出槽から取り出される抽出剤はなお超臨界状態又は、
その近傍の状態にあり、そして主として油成分(オイ
ル)と香味成分とからなる抽出物、及び有機溶剤を随伴
している。これを抽出物及び有機溶剤(粗抽出物)と、
抽出剤とに分離するためには、超臨界抽出に常用されて
いる方法、例えば圧力を低下せしめる方法、温度を変化
せしめる方法等を用いることができる。圧力を低下せし
める場合には圧力コントロールバルブを使用し、例えば
圧力を臨界圧以下に低下せしめる。こうして減圧された
抽出剤を分離槽に導入し、ここで液状の粗抽出物と気体
状の抽出剤とを分離し、抽出剤は液化槽に輸送して再利
用する。
The extractant extracted from the extraction tank is still in a supercritical state, or
It is in the vicinity thereof and is accompanied by an extract mainly composed of an oil component (oil) and a flavor component, and an organic solvent. This is an extract and an organic solvent (crude extract),
In order to separate the extractant from the extractant, a method commonly used for supercritical extraction, for example, a method of decreasing the pressure, a method of changing the temperature or the like can be used. When lowering the pressure, a pressure control valve is used, for example, the pressure is lowered below the critical pressure. The depressurized extractant is introduced into the separation tank, where the liquid crude extract and the gaseous extractant are separated, and the extractant is transported to the liquefaction tank for reuse.

抽出剤から分離された粗抽出物は、そのまま使用し、又
は有機溶剤を除去して抽出物の状態で使用する。この抽
出物は主として油成分(オイル)と香味成分(フレーバ
ー)とから成る通常はこの両者を分離する必要はない。
例えば、有機溶剤としてエタノールを使用した場合には
エタノールは毒性を全く有さないから、これを除去する
ことなく粗抽出物の状態で使用するのが便利である。例
えば、紅茶から抽出した粗抽出物をインスタント紅茶と
混合した後、香味成分を吸着せしめた状態でエタノール
を蒸発除去することにより香味成分が富化されたインス
タント紅茶が得られる。
The crude extract separated from the extractant is used as it is, or the organic solvent is removed and used as an extract. This extract, which is mainly composed of an oil component (oil) and a flavor component (flavor), usually does not need to be separated.
For example, when ethanol is used as the organic solvent, ethanol has no toxicity, so it is convenient to use it in the state of a crude extract without removing it. For example, a crude extract extracted from black tea is mixed with instant black tea, and then ethanol is evaporated and removed in a state where the flavor components are adsorbed to obtain instant black tea in which the flavor components are enriched.

(発明の効果) 超臨界状態又はその近傍の状態の流体を用いて抽出を行
う場合に有機溶剤を存在せしめることを特徴とするこの
発明の方法においては、従来技術の超臨界抽出法に比べ
て香味成分及び油成分の抽出速度が速く、短時間の内に
完全な抽出を行うことができ、しかも低、中沸点揮発成
分を含む多様な成分を抽出することができ、高い品質の
香味成分が得られる。
(Effect of the Invention) In the method of the present invention, which is characterized by allowing an organic solvent to exist when performing extraction using a fluid in a supercritical state or a state in the vicinity thereof, compared with the supercritical extraction method of the prior art. The extraction speed of flavor and oil components is fast, and complete extraction can be performed within a short period of time. Moreover, various components including low and medium boiling point volatile components can be extracted, and high quality flavor components can be obtained. can get.

(実施例) 次に実施例により、この発明をさらに具体的に説明す
る。
(Examples) Next, the present invention will be described in more detail with reference to Examples.

例1.(参考例) 100gのセイロン産葉紅茶に99.9容量%(含水率
0.1%)のエタノール20gを加え、これを超臨界ガ
ス用抽出装置に充填した。この抽出装置に40℃、30
0気圧の超臨界状態の二酸化炭素を50〜60g/分の
速度で通して抽出を行なった。対照として、上記のエタ
ノールの代りに同量の水を加えた場合、及び無添加の場
合について、上記と同一条件で抽出を行った。それぞれ
の試験につき、抽出前後の葉紅茶に含まれている油成分
を測定し、その差から抽出された油成分を量を求めた。
この結果を次の第1表に示す。
Example 1. (Reference Example) 20 g of 99.9% by volume (water content 0.1%) of ethanol was added to 100 g of Ceylon leaf tea, and the extractor for supercritical gas was filled with this. 40 ℃, 30
Extraction was carried out by passing carbon dioxide in a supercritical state of 0 atm at a rate of 50 to 60 g / min. As a control, extraction was performed under the same conditions as above, in the case of adding the same amount of water instead of the above ethanol and in the case of not adding it. For each test, the oil component contained in the black tea leaves was measured before and after extraction, and the amount of the extracted oil component was determined from the difference.
The results are shown in Table 1 below.

上記の結果の通り、エタノールの添加により、従来法の
水添加及び無添加に比べて、約3倍の油成分が抽出され
た。
As shown in the above results, the addition of ethanol extracted about 3 times as much oil component as the conventional method with or without addition of water.

粗抽出物(香味成分、油成分及びエタノールを含有す
る)を0〜60分及び60〜360分の時間において分
取し、それぞれのサンプルをガスクロマトグラフィーに
より分析し、香味成分のうち紅茶の品質判定の重要な指
標となるリナロールおよびリナロールオキサイドに相当
するピーク面積を測定し、その合計値と粗抽出物量とか
ら抽出されたリナロール及びリナロールオキサイドを任
意単位として算出した。この結果を次の第2表に示す。
The crude extract (containing a flavor component, an oil component and ethanol) was collected at a time of 0 to 60 minutes and 60 to 360 minutes, and each sample was analyzed by gas chromatography to determine the quality of black tea among the flavor components. Peak areas corresponding to linalool and linalool oxide, which are important indexes for determination, were measured, and linalool and linalool oxide extracted from the total value and the amount of crude extract were calculated as arbitrary units. The results are shown in Table 2 below.

上記の結果から明らかな通り、エタノールを添加した場
合、6時間に抽出されたリナロール及びリナロールオキ
サイドのうち約60%が最初の1時間に抽出され、抽出
速度が極めて速かった。これに対して水添加の場合には
抽出速度が遅く、6時間後の合計抽出量も少なかった。
As is clear from the above results, when ethanol was added, about 60% of linalool and linalool oxide extracted in 6 hours was extracted in the first hour, and the extraction rate was extremely high. On the other hand, in the case of adding water, the extraction rate was slow, and the total extraction amount after 6 hours was also small.

この例により得られた粗抽出物は、グリーンノートのさ
わやかな香りが強く、インスタント紅茶に添加した場
合、顕著な添加効果が生じ、インスタント紅茶の香りが
著しく改善される。
The crude extract obtained in this example has a strong refreshing scent of green note, and when added to instant black tea, a remarkable addition effect occurs and the scent of instant black tea is remarkably improved.

例2. 実施例1と同様と方法で抽出を行った。但し抽出材料と
してケニア産紅茶を使用し、有機溶剤として(A)(参
考例)99.9容量%(含水率0.1%)のエタノー
ル、(B)(実施例)70容量%(含水率30%)のエ
タノール水溶液、及び(C)(実施例)50容量%(含
水率50%)のエタノール水溶液を使用した。結果を次
の第3表に示す。
Example 2. Extraction was performed in the same manner as in Example 1. However, Kenya black tea was used as the extraction material, and (A) (reference example) ethanol of 99.9% by volume (water content 0.1%) and (B) (example) 70% by volume (water content) as the organic solvent. An aqueous solution of 30% ethanol and an aqueous solution of (C) (Example) 50% by volume (water content 50%) were used. The results are shown in Table 3 below.

抽出された油性分の量はエタノールの濃度によって大き
な差はなかったが、リナロール及びリナロールオキサイ
ドの抽出量は50〜70容量%エタノール水溶液におい
て非常に多かった。
The amount of extracted oily matter did not differ greatly depending on the concentration of ethanol, but the amounts of linalool and linalool oxide extracted were very large in the 50-70% by volume aqueous ethanol solution.

例3.(参考例) 100gのセイロン産葉紅茶に99.9容量%(含水率
0.1%)のエタノール20gを加え、これを超臨界ガ
ス用抽出装置に充填した。この抽出装置に60℃,30
0気圧にした超臨界状態の二酸化炭素を1時間通して抽
出を行なった。抽出された粗抽出物について香味成分量
を分析した。対照として,100gのセイロン産葉紅茶
のエタノール150gを加えたものを冷却管付きのフラ
スコで60℃に撹拌しながら加温して、1時間抽出し
た。粗抽出物についても同様の分析を行なった。その結
果を第4表に示す。
Example 3. (Reference Example) 20 g of 99.9% by volume (water content 0.1%) of ethanol was added to 100 g of Ceylon leaf tea, and the extractor for supercritical gas was filled with this. 60 ℃, 30
Extraction was performed by passing supercritical carbon dioxide at 0 atm for 1 hour. The amount of flavor component was analyzed for the extracted crude extract. As a control, 100 g of Ceylon leaf tea to which 150 g of ethanol was added was heated to 60 ° C. with stirring in a flask equipped with a cooling tube and extracted for 1 hour. The same analysis was performed on the crude extract. The results are shown in Table 4.

フラスコ抽出による粗抽出物のガスクロマトグラフィー
の結果は、高沸点部に数ピークを示すのみで、低、中沸
点部にはエタノールの他にはほとんどピークを示さなか
った。これに対して、超臨界ガスによる粗抽出物では、
低、中、高沸点部にまんべんなく極めて多種のピークが
認められ、官能的にも後者の方がさわやかなグリーンノ
ートの香りを有していて優れていた。また、フラスコ抽
出により得られた粗抽出物中のリナロール及びリナロー
ルオキサイドの濃度は極めてうすく、粗抽出物をさらに
濃縮しなければフレーバーとしては使用不可能である。
The results of the gas chromatography of the crude extract obtained by the flask extraction showed only a few peaks in the high boiling point portion and almost no peaks other than ethanol in the low and medium boiling point portions. On the other hand, in the crude extract with supercritical gas,
An extremely wide variety of peaks were found evenly in the low, middle and high boiling points, and the latter was also organoleptically superior in that it had a refreshing green note scent. Further, the concentration of linalool and linalool oxide in the crude extract obtained by the flask extraction is extremely thin, and it cannot be used as a flavor unless the crude extract is further concentrated.

例4.(参考例) 100gのセイロン産葉紅茶に99.9容量%(含水率
0.1%)のエタノール20gを加え、これを超臨界ガ
ス抽出装置に充填した。この抽出装置に30℃,150
気圧にした準臨界状態の二酸化炭素を1時間通して抽出
を行なった。粗抽出物17gを得た。この粗抽出物には
原料葉紅茶中の油成分の48%が抽出されてでてきた。
またリナロール及びリナロールオキサイドの量は95で
あった。(実施例1における99.9%エタノールで抽
出されたリナロール及びリナロールオキサイドを100
として) 例5.(参考例) 100gのセイロン産葉紅茶に99.9容量%(含水率
0.1%)のエタノール10gを加え、これを超臨界ガ
ス抽出装置に充填した。この抽出装置に40℃,300
気圧にした超臨界状態の二酸化炭素を5時間通して抽出
を行なった。粗抽出物8gを得た。リナロール及びリナ
ロールオキサイドの量は77であった。(実施例1にお
ける99.9%エタノールで抽出されたリナロール及び
リナロールオキサイドを100として) 例6. 100gの粉砕焙煎コーヒーに99.9容量%(含水率
0.1%)(参考例),50容量%(含水率50%)
(実施例)及び5容量%(含水率95%)(参考例)の
エタノール水溶液20gを加え、それぞれを超臨界ガス
用抽出装置に充填した。この装置に40℃,30気圧の
超臨界状態の二酸化炭素を通して抽出を行なった。対照
としてエタノール水溶液の代りに20gの水を加えた場
合、及び無添加の場合についても上記と同一条件で抽出
を行なった。抽出前後の焙煎コーヒー中の油成分量を測
定し、その差を抽出された油成分量として求めた。また
香味成分の量をガスクロマトグラフィーにより分析し、
同一条件の分析で得られたピークの内エタノールを除く
すべての香味成分のピーク面積を測定し、その合計値と
粗抽出物量とから抽出された香味成分量を任意の単位と
して算出した。この結果を次の第5表に示す。
Example 4. (Reference Example) 20 g of 99.9% by volume (water content 0.1%) ethanol was added to 100 g of Ceylon leaf tea, and this was filled in a supercritical gas extraction apparatus. This extractor is operated at 30 ℃, 150
Extraction was carried out by passing subcritical carbon dioxide at atmospheric pressure for 1 hour. 17 g of crude extract was obtained. 48% of the oil component in the raw black tea leaves was extracted into this crude extract.
The amount of linalool and linalool oxide was 95. (100 linalool and linalool oxide extracted with 99.9% ethanol in Example 1 were used.
As Example 5 (Reference Example) 10 g of 99.9% by volume (water content 0.1%) of ethanol was added to 100 g of Ceylon leaf tea, and this was filled in a supercritical gas extraction apparatus. This extractor is 40 ℃, 300
Extraction was performed by passing supercritical carbon dioxide at atmospheric pressure for 5 hours. 8 g of crude extract was obtained. The amount of linalool and linalool oxide was 77. (Based on linalool and linalool oxide extracted with 99.9% ethanol in Example 1 as 100) Example 6. In 100 g of ground roasted coffee, 99.9% by volume (water content 0.1%) (reference example), 50% by volume (water content 50%)
(Example) and 20 g of an aqueous ethanol solution of 5% by volume (water content 95%) (Reference Example) were added, and each was filled in an extraction device for supercritical gas. Extraction was carried out by passing carbon dioxide in a supercritical state at 40 ° C. and 30 atm. As a control, extraction was carried out under the same conditions as above, even when 20 g of water was added instead of the aqueous ethanol solution and when no water was added. The amount of oil component in the roasted coffee before and after extraction was measured, and the difference was determined as the amount of extracted oil component. Moreover, the amount of the flavor component is analyzed by gas chromatography,
Of the peaks obtained by the analysis under the same conditions, the peak areas of all flavor components except ethanol were measured, and the flavor component amount extracted from the total value and the crude extract amount was calculated as an arbitrary unit. The results are shown in Table 5 below.

水を添加した場合とエタノール水溶液を添加した場合と
で抽出された油成分の量には差がなかったが、香味成分
の抽出量は水を加えた場合に比べてエタノール水溶液を
加えた場合に明らかに多かった。またこの実施例で用い
たエタノール水溶液の内では50%エタノールを使用し
た場合に香味成分の抽出量が最も多く、この結果は実施
例2の結果とよく一致した。
There was no difference in the amount of the extracted oil component between the case of adding water and the case of adding the aqueous ethanol solution, but the amount of flavor components extracted was higher when the aqueous ethanol solution was added than when water was added. Obviously there were many. Further, of the aqueous ethanol solutions used in this example, the amount of the flavor component extracted was the largest when 50% ethanol was used, and this result was in good agreement with the result of Example 2.

なお、50%エタノール添加(実施例)、水添加(参考
例)、及び無添加(参考例)の場合については、粗抽出
物を0〜60分と60〜300分に分けて採取し、抽出
量の経時変化をみた。この結果を次の第6表に示す。
In addition, in the case of 50% ethanol addition (Example), water addition (Reference Example), and no addition (Reference Example), the crude extract was collected by dividing into 0 to 60 minutes and 60 to 300 minutes, and extracted. The change of the amount with time was observed. The results are shown in Table 6 below.

この結果から明らかな通り、50容量%エタノール水溶
液を添加した場合には、水添加の場合及び無添加の場合
に比べて、香味成分の抽出総量が多いのみならず、抽出
速度も明らかに速かった。
As is clear from this result, when the 50% by volume aqueous ethanol solution was added, not only the total amount of the flavor components extracted but also the extraction speed were obviously higher than those in the case of adding water and the case of not adding water. .

例7.(参考例) 100gの粉砕・焙煎コーヒーに99.9容量%(含水
率0.1%)のエタノール10gを加え、これを超臨界
ガス抽出装置に充填した。この充填装置に40℃,50
0気圧にした超臨界状態の二酸化炭素を6時間通して抽
出を行なった。粗抽出物22gを得た。この粗抽出物に
は原料コーヒー中の油成分のすべてが抽出されてでてき
た。香味成分量は591であった(第5表で99.9%
エタノール添加で抽出した香味成分量を100とし
た)。
Example 7. Reference Example 10 g of 99.9% by volume (water content 0.1%) of ethanol was added to 100 g of crushed and roasted coffee, and this was filled in a supercritical gas extraction apparatus. 40 ℃, 50 in this filling device
Extraction was carried out by passing supercritical carbon dioxide at 0 atm for 6 hours. 22 g of crude extract was obtained. All of the oil components in the raw coffee have been extracted into this crude extract. The amount of flavor component was 591 (99.9% in Table 5).
The amount of flavor component extracted by adding ethanol was set to 100).

例8.(実施例) 100gの粉砕・焙煎コーヒーに50容量%(含水率5
0%)のエタノール水溶液100gを加え、これを超臨
界ガス抽出装置に充填した。この抽出装置に40℃,3
00気圧にした超臨界状態の二酸化炭素を5時間通して
抽出を行なった。粗抽出物56gを得た。この粗抽出物
には原料コーヒー中の油成分のすべてが抽出されてでて
きた。香味成分量は237であった。(第5表で99.
9%エタノール添加で抽出した香味成分量を100とし
た)。
Example 8. (Example) 50 volume% (water content 5
100 g of 0% aqueous ethanol solution was added, and this was filled in a supercritical gas extraction apparatus. 40 ℃, 3
Extraction was carried out by passing supercritical carbon dioxide at 00 atm for 5 hours. 56 g of crude extract was obtained. All of the oil components in the raw coffee have been extracted into this crude extract. The amount of flavor component was 237. (In Table 5, 99.
The amount of the flavor component extracted by adding 9% ethanol was set to 100).

例9.(実施例) 100gの粉砕・焙煎コーヒーに50容量%(含水率5
0%)のエタノール水溶液30gを加え、これを超臨界
ガス抽出装置に充填した。この抽出装置に40℃,30
0気圧にした超臨界状態の二酸化炭素を1時間通して抽
出を行なった。粗抽出物20gを得た。この粗抽出物に
は原料コーヒー中の油成分の76%が抽出されてでてき
た。香味成分量は180であった(第5表で99.9%
エタノール添加で抽出した香味成分量を100とし
た)。
Example 9. (Example) 50 volume% (water content 5
30 g of 0% aqueous ethanol solution was added, and this was filled in the supercritical gas extraction apparatus. 40 ℃, 30
Extraction was performed by passing supercritical carbon dioxide at 0 atm for 1 hour. 20 g of crude extract was obtained. In this crude extract, 76% of the oil component in the raw coffee has been extracted. The amount of the flavor component was 180 (99.9% in Table 5).
The amount of flavor component extracted by adding ethanol was set to 100).

例10.(実施例) 100gの粉砕・焙煎コーヒーに30容量%(含水率7
0%)のエタノール水溶液20gを加え、これを超臨界
ガス抽出装置に充填した。この抽出装置に40℃,30
0気圧にした超臨界状態の二酸化炭素を1時間通して抽
出を行なった。粗抽出物9gを得た。この粗抽出物には
原料コーヒー中の油成分の65%が抽出されてでてき
た。香味成分量は118であった(第5表で99.9%
エタノール添加で抽出した香味成分量を100とし
た)。
Example 10. (Example) 30% by volume (water content 7
20 g of 0%) aqueous ethanol solution was added, and this was filled in a supercritical gas extraction apparatus. 40 ℃, 30
Extraction was performed by passing supercritical carbon dioxide at 0 atm for 1 hour. 9 g of crude extract was obtained. In this crude extract, 65% of the oil component in the raw coffee has been extracted. The amount of flavor component was 118 (99.9% in Table 5)
The amount of flavor component extracted by adding ethanol was set to 100).

【図面の簡単な説明】[Brief description of drawings]

第1図は、この発明の方法において使用される装置の1
例のフローシートである。図中1は抽出剤貯槽、2は液
化槽、3は中間槽、4はポンプ、5は熱交換器、6は抽
出槽、7は圧力コントロールバルブ、8は分離槽、9は
抽出物槽を示す。
FIG. 1 shows one of the devices used in the method of the invention.
It is an example flow sheet. In the figure, 1 is an extractant storage tank, 2 is a liquefaction tank, 3 is an intermediate tank, 4 is a pump, 5 is a heat exchanger, 6 is an extraction tank, 7 is a pressure control valve, 8 is a separation tank, and 9 is an extract tank. Show.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭55−54003(JP,A) 特公 昭59−10775(JP,B2) ─────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-55-54003 (JP, A) JP-B-59-10775 (JP, B2)

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】超臨界状態又はその近傍の状態の流体と嗜
好性飲料材料とを接触せしめることにより該材料中の香
味成分を抽出する方法において、該接触を、30〜70容量
%のエタノール水溶液の存在下で行うことを特徴とする
方法。
1. A method of extracting a flavor component in a palatable beverage material by bringing a fluid in a supercritical state or in the vicinity thereof into contact with a palatability beverage material, wherein the contacting is performed with an aqueous ethanol solution of 30 to 70% by volume. A method characterized by being carried out in the presence of.
【請求項2】前記嗜好性飲料材料が葉紅茶、緑茶、焙煎
コーヒー、ウーロン茶、ほうじ茶、麦茶、花香茶、又は
プーアー茶である特許請求の範囲第1項記載の方法。
2. The method according to claim 1, wherein the palatable beverage material is leaf tea, green tea, roasted coffee, oolong tea, hoji tea, barley tea, fragrant tea, or puer tea.
JP59209778A 1984-10-08 1984-10-08 Extraction method of flavor components Expired - Lifetime JPH066028B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59209778A JPH066028B2 (en) 1984-10-08 1984-10-08 Extraction method of flavor components

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59209778A JPH066028B2 (en) 1984-10-08 1984-10-08 Extraction method of flavor components

Publications (2)

Publication Number Publication Date
JPS6188853A JPS6188853A (en) 1986-05-07
JPH066028B2 true JPH066028B2 (en) 1994-01-26

Family

ID=16578447

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59209778A Expired - Lifetime JPH066028B2 (en) 1984-10-08 1984-10-08 Extraction method of flavor components

Country Status (1)

Country Link
JP (1) JPH066028B2 (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS633755A (en) * 1986-06-23 1988-01-08 House Food Ind Co Ltd Instant powdery tea
JPH01123864A (en) * 1987-11-09 1989-05-16 Mori Seiyu Kk Separation of dye oleoresin and spice oleoresin by extraction
JPH01211449A (en) * 1988-02-19 1989-08-24 Seitetsu Kagaku Co Ltd Extraction and separation of coffee oil containing aromatic component
JPH03127961A (en) * 1989-10-12 1991-05-31 T Hasegawa Co Ltd Production of flavor of baked grain
JP2981364B2 (en) * 1993-03-30 1999-11-22 高砂香料工業株式会社 Manufacturing method of coffee aroma components
DE10252168B4 (en) * 2002-11-09 2007-01-11 Degussa Ag Use of a process for the selective separation of volatile aroma substances from single-phase, liquid starting materials having a fat and / or oil content ≦ 20% by weight
JP3773524B1 (en) * 2005-11-09 2006-05-10 ケミ・コム・ジャパン株式会社 Coffee extract production method and beverages and foods containing the same
JP5425518B2 (en) * 2009-04-28 2014-02-26 株式会社東洋高圧 High pressure ethanol extraction method
FR2969656B1 (en) * 2010-12-23 2013-01-04 Charabot PROCESS FOR OBTAINING ODORANT EXTRACT OF FLOWERS AND / OR FRESH LEAVES BY NATURAL SOLVENTS
CN104605057B (en) * 2015-02-12 2017-09-22 华祥苑茶业股份有限公司 Tea perfume gaseous beverages and its manufacture craft
KR101865768B1 (en) * 2016-08-24 2018-06-11 한국과학기술연구원 Method for preparing coffee using green coffee bean and subcritical water
JP2018153134A (en) * 2017-03-17 2018-10-04 株式会社エルビー Black tea drink
JP6936663B2 (en) * 2017-08-31 2021-09-22 小川香料株式会社 How to search for lingering aroma components
KR102324943B1 (en) * 2021-08-02 2021-11-10 송현 Method for producing supercritical cold brew coffee with flavor

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2844781A1 (en) * 1978-10-13 1980-04-24 Hag Ag METHOD FOR EXTRACTIVE PROCESSING OF VEGETABLE AND ANIMAL MATERIALS
JPS5910775A (en) * 1982-07-07 1984-01-20 Toyota Motor Corp Intake air-fuel supply device of internal-combustion engine

Also Published As

Publication number Publication date
JPS6188853A (en) 1986-05-07

Similar Documents

Publication Publication Date Title
Parliment Solvent extraction and distillation techniques
US5512285A (en) Fragrance extraction
JPH066028B2 (en) Extraction method of flavor components
US4328255A (en) Method of extracting coffee oil containing aroma constituents from roasted coffee
US5225223A (en) Process for the preparation of soluble coffee
Taniguchi et al. Extraction of oils from wheat germ with supercritical carbon dioxide
US3132947A (en) Method of producing aromatized coffee extract
US4167589A (en) Method for the manufacture of caffeine free black tea
GB1596364A (en) Process for the selective exraction of caffeine from plant materials
Sanagi et al. Supercritical fluid extraction of pyrazines in roasted cocoa beans effect of pod storage period
US3783163A (en) Aromatizing edible oils
CA1047436A (en) Preparation of hop oil
CA1130636A (en) Decaffeination process
Hung et al. Improvement of the water brewing of Vietnamese green tea by pretreatment with supercritical carbon dioxide
KR20110019974A (en) A method for extracting coffee beans by using supercritical carbon dioxide
US4008340A (en) Method for stabilizing coffee grinder gas aroma
Bahar et al. Decaffeinated black tea: Process optimization and phenolic profiles
JP6890959B2 (en) Method for producing chlorogenic acid-containing composition
DE3780849T2 (en) RECOVERY AND TRANSFER OF AROMA.
Daukšas et al. Supercritical CO2 extraction of the main constituents of lovage (Levisticum officinale Koch.) essential oil in model systems and overground botanical parts of the plant
Kery et al. Recovery of a bioactive sesquiterpene lactone from Tanacetum parthenium by extraction with supercritical carbon dioxide
Lee et al. Compositional changes in brewed coffee as a function of brewing time
US2335206A (en) Coffee extract
JP2003204757A (en) Method for producing concentrated coffee liquid where aroma component is recovered
US2903359A (en) Process for coffee