JPH065948A - Manufacture of ferroelectric thin film - Google Patents

Manufacture of ferroelectric thin film

Info

Publication number
JPH065948A
JPH065948A JP16270392A JP16270392A JPH065948A JP H065948 A JPH065948 A JP H065948A JP 16270392 A JP16270392 A JP 16270392A JP 16270392 A JP16270392 A JP 16270392A JP H065948 A JPH065948 A JP H065948A
Authority
JP
Japan
Prior art keywords
thin film
film
ferroelectric thin
film forming
baking
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP16270392A
Other languages
Japanese (ja)
Other versions
JP3105081B2 (en
Inventor
Akira Kanzawa
公 神澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rohm Co Ltd
Original Assignee
Rohm Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rohm Co Ltd filed Critical Rohm Co Ltd
Priority to JP16270392A priority Critical patent/JP3105081B2/en
Publication of JPH065948A publication Critical patent/JPH065948A/en
Application granted granted Critical
Publication of JP3105081B2 publication Critical patent/JP3105081B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Semiconductor Integrated Circuits (AREA)
  • Semiconductor Memories (AREA)

Abstract

PURPOSE:To provide a method for manufacturing a ferroelectric thin film in which necessary components are not lost while growing a crystal inherited with excellent orientation of a base. CONSTITUTION:A method for manufacturing a ferroelectric thin film has the step of forming a PZT thin film 9 provided on an upper surface of a platinum film 7 by a sol-gel method, and comprises a step of forming films divided into six substeps in such a manner that the initial two steps sinter at a sintering temperature (750 deg.C) capable of inheriting excellent orientation of the film 7 for 20 sec of a sintering time and that the last two steps sinter at the sintering temperature (650 deg.C) lower than that of the initial two steps for longer time (30sec) than that of the initial two steps. The last two steps prevent failure of necessary components by lowering the sintering temperature, and supplement incompleteness of crystallization due to a drop of the sintering temperature by extending the sintering time.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、強誘電体薄膜の製造方
法に関し、特にゾル・ゲル法を用いた製造方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a ferroelectric thin film, and more particularly to a manufacturing method using a sol-gel method.

【0002】[0002]

【従来の技術】近年、残留分極性及び分極反転性を有す
る強誘電体薄膜を用いた半導体装置、主にメモリセルや
コンデンサーが多数報告されている。
2. Description of the Related Art In recent years, many semiconductor devices, mainly memory cells and capacitors, using a ferroelectric thin film having remanent polarization and polarization inversion have been reported.

【0003】強誘電体薄膜の製造方法として、メモリセ
ルのゲート上に形成される強誘電体薄膜の製造方法につ
いて、メモリセル2の製造工程に即して以下に説明す
る。図3A、B及び図4A、Bにメモリセル2の製造工
程を断面構成図で示す。
As a method of manufacturing a ferroelectric thin film, a method of manufacturing a ferroelectric thin film formed on the gate of a memory cell will be described below in accordance with the manufacturing process of the memory cell 2. 3A and 3B and FIGS. 4A and 4B are cross-sectional configuration diagrams showing the manufacturing process of the memory cell 2.

【0004】図3Aに示すように、素子分離が施された
P形シリコン基板17に、熱酸化によりシリコン酸化薄
膜19を形成した後、その上面にCVD(Chemical Vap
ourDeposition)法により白金膜21を堆積させる。
As shown in FIG. 3A, a silicon oxide thin film 19 is formed by thermal oxidation on a P-type silicon substrate 17 with element isolation, and then a CVD (Chemical Vap) is formed on the upper surface thereof.
The platinum film 21 is deposited by the our Deposition method.

【0005】なお、白金結晶というのは優先配向性を有
する。優先配向性というのは、下地の結晶性にかかわら
ず配向性を有した結晶が成長する性質をいう。従って、
白金膜21も配向性に優れた結晶構造を有する。
The platinum crystal has a preferred orientation. The preferential orientation refers to the property that crystals having orientation grow regardless of the crystallinity of the underlying layer. Therefore,
The platinum film 21 also has a crystal structure with excellent orientation.

【0006】次に、図3Bに示すように、白金膜21上
面にゾル・ゲル法により強誘電体薄膜であるPZT薄膜
23を形成する。なおこの際、この白金膜21は、上述
のように配向性に優れた下地として働き、配向性に優れ
たPZT結晶を成長させることができる。
Next, as shown in FIG. 3B, a PZT thin film 23 which is a ferroelectric thin film is formed on the upper surface of the platinum film 21 by the sol-gel method. At this time, the platinum film 21 serves as a base having excellent orientation as described above, and PZT crystals having excellent orientation can be grown.

【0007】ここで、ゾル・ゲル法について簡単に説明
する。一般に、成膜技術としては真空蒸着法やスパッタ
リング法が一般的によく知られているが、これらの方法
では強誘電体や圧電体のような複雑な系において組成制
御が難しいといわれている。そのような背景から、近年
化学的手法であるゾル・ゲル法が新しい成膜技術として
応用されるようになってきた。
Here, the sol-gel method will be briefly described. Generally, as a film forming technique, a vacuum vapor deposition method and a sputtering method are generally well known, but it is said that it is difficult to control the composition of these methods in a complicated system such as a ferroelectric substance or a piezoelectric substance. Against such a background, the sol-gel method, which is a chemical method, has recently been applied as a new film forming technique.

【0008】ゾル・ゲル法による薄膜形成では、ゾル溶
液の塗布・乾燥・焼成という一連の工程を行うことによ
り成膜することができる。また、この一連の工程を繰り
返すことにより希望膜厚の薄膜を得るようにしている。
In forming a thin film by the sol-gel method, a film can be formed by performing a series of steps of coating, drying and baking a sol solution. Further, by repeating this series of steps, a thin film having a desired film thickness is obtained.

【0009】次に、ゾル・ゲル法を用いたPZT薄膜の
製造方法について詳しく述べる。まず、ゾル溶液を以下
の様に調整する。Pb(CH3CO2)・3H2O(酢酸鉛三
水和物)を1対5のモル比でメトキシエタノールに70
℃で溶解した後、120℃になるまで加熱し、脱水を行
う。この溶液を90℃まで冷却した後、PbTiO3:Pb
TiO3=47:53のモル比になるように所定量のチタ
ンイソプロポキシドとジルコニウムプロポキシドを攪拌
しながら加える。この溶液を125℃まで加熱し続けて
反応副生物を除去する。さらに、この溶液にPZT濃度
が0.5mol/lになるようにメトキシエタノールを加え、
その後PZTゾル溶液に対して2倍モルの蒸留水を添加
し、部分加水分解を行った液を塗布液とする。
Next, a method of manufacturing a PZT thin film using the sol-gel method will be described in detail. First, the sol solution is prepared as follows. Pb (CH 3 CO 2 ) .3H 2 O (lead acetate trihydrate) was added to methoxyethanol at a molar ratio of 1:70.
After melting at ℃, it is dehydrated by heating to 120 ℃. After cooling the solution to 90 ° C., PbTiO 3 : Pb
A predetermined amount of titanium isopropoxide and zirconium propoxide are added with stirring so that the molar ratio of TiO 3 = 47: 53. The solution is continuously heated to 125 ° C. to remove reaction byproducts. Furthermore, methoxyethanol was added to this solution so that the PZT concentration became 0.5 mol / l,
Thereafter, distilled water in an amount of 2 times the molar amount of the PZT sol solution is added, and the partially hydrolyzed solution is used as a coating solution.

【0010】次に、スピンコート法により5000rpm・20s
ecの条件下で調整済のゾル溶液を塗布し、ホットプレー
ト上で200〜300℃で乾燥した後、650℃で焼成
する。この一連の焼成工程を複数回繰り返すことによっ
て希望の膜厚とする。このようにして、ペロブスカイト
型結晶のPZT薄膜23を形成することができる。
Next, spin coating is performed at 5000 rpm for 20 seconds.
The adjusted sol solution is applied under the condition of ec, dried at 200 to 300 ° C. on a hot plate, and then baked at 650 ° C. A desired film thickness is obtained by repeating this series of firing steps a plurality of times. In this way, the PZT thin film 23 of perovskite type crystal can be formed.

【0011】なお、図4Aに示すように、さらにPZT
薄膜23上面にスパッタリング法により白金膜25を堆
積させた後、レジストパタンをマスクにしてエッチング
することによりシリコン酸化薄膜19、白金膜21、P
ZT薄膜23、白金膜25を成形する。次に、図4Bに
示すように、成形された白金膜25をマスクにして、ヒ
素またはリンをイオン注入および熱拡散させて、n+
ドレイン層27およびn+形ソース層29を形成する。
As shown in FIG. 4A, the PZT
After depositing a platinum film 25 on the upper surface of the thin film 23 by a sputtering method, the silicon oxide thin film 19, platinum film 21, P
The ZT thin film 23 and the platinum film 25 are formed. Next, as shown in FIG. 4B, using the molded platinum film 25 as a mask, arsenic or phosphorus is ion-implanted and thermally diffused to form an n + -type drain layer 27 and an n + -type source layer 29.

【0012】なお、以上のようにして形成されたメモリ
セル2では、シリコン基板17と制御電極である白金膜
25間に電界VPを印加することにより、強誘電体薄膜
は電界VP方向に分極し、電界VPを取り除いても分極
は残留する。一方、電界VPとは反対方向の電界VQを
シリコン基板17・制御電極25間に印加することによ
り、強誘電体薄膜の分極は、電界VQ方向に反転し、電
界VQを取り除いても分極は残留する。従って、メモリ
セル2は、強誘電体薄膜の上記のような残留分極及び分
極反転の性質を利用することにより、情報を記憶するこ
とが出来る。
In the memory cell 2 formed as described above, the ferroelectric thin film is polarized in the electric field VP direction by applying the electric field VP between the silicon substrate 17 and the platinum film 25 which is the control electrode. , The polarization remains even after the electric field VP is removed. On the other hand, by applying an electric field VQ opposite to the electric field VP between the silicon substrate 17 and the control electrode 25, the polarization of the ferroelectric thin film is reversed in the direction of the electric field VQ, and the polarization remains even if the electric field VQ is removed. To do. Therefore, the memory cell 2 can store information by utilizing the properties of the remanent polarization and polarization inversion of the ferroelectric thin film as described above.

【0013】[0013]

【発明が解決しようとする課題】しかしながら、ゾル・
ゲル法を用いた従来の強誘電体薄膜の製造方法には次の
ような問題点があった。
[Problems to be Solved by the Invention]
The conventional method for manufacturing a ferroelectric thin film using the gel method has the following problems.

【0014】一般に、強誘電体薄膜が上記のような残留
分極性及び分極反転性を示す為には配向性に優れたペロ
ブスカイト型結晶構造を有する必要がある。
Generally, in order for the ferroelectric thin film to exhibit the remanent polarization and the polarization reversal as described above, it is necessary to have a perovskite type crystal structure excellent in orientation.

【0015】従って、強誘電体薄膜であるPZT薄膜2
3のゾル・ゲル法による製造において、塗布されたゾル
溶液は無定形(アモルファス)状態であるから、強誘電
体の性質を獲得する為には500〜750℃程度で焼成
することが必要であった。さらに、下地である白金膜2
1の優れた配向性を受継ぐ為には高い温度(750℃程
度)で焼成するが要求された。しかし、このような高い
温度(750℃)で焼成を行うと、比較的融点の低い組
成の成分が一部失われてしまうという問題があった。
Therefore, the PZT thin film 2 which is a ferroelectric thin film
In the production by the sol-gel method of No. 3, since the applied sol solution is in an amorphous state, it is necessary to bake at about 500 to 750 ° C. in order to acquire the property of the ferroelectric substance. It was Furthermore, the platinum film 2 that is the base
In order to inherit the excellent orientation of No. 1, firing at a high temperature (about 750 ° C.) was required. However, when firing is performed at such a high temperature (750 ° C.), there is a problem that some components having a composition with a relatively low melting point are lost.

【0016】失われた成分が結晶構造に必要な場合には
欠陥のあるペロブスカイト型結晶構造となり、強誘電体
薄膜23の性質が損われることがあった。
When the lost component is necessary for the crystal structure, a defective perovskite type crystal structure may be obtained, and the properties of the ferroelectric thin film 23 may be impaired.

【0017】よって、本発明は、上記の問題点を解決
し、下地の優れた配向性を受継いだ結晶を成長させつ
つ、必要な成分を失わない強誘電体薄膜製造方法を提供
することである。
Therefore, the present invention solves the above-mentioned problems and provides a method for manufacturing a ferroelectric thin film in which necessary crystals are not lost while growing a crystal that inherits the excellent orientation of the underlayer. is there.

【0018】[0018]

【課題を解決するための手段】請求項1に係る強誘電体
薄膜製造方法においては、結晶性第一膜上面にゾル・ゲ
ル法を用いて強誘電体薄膜を形成する方法であって、ゾ
ル溶液を塗布した後に焼成する成膜工程を複数回行うと
ともに、前記複数回の成膜工程のうち初期の成膜工程で
は、前記結晶性第一膜の配向性を受継ぐことの出来るよ
うな焼成温度で焼成し、前記複数回の成膜工程のうち後
期の成膜工程では、前記初期の成膜工程おける焼成温度
よりも低い温度で焼成することを特徴としている。
A method of manufacturing a ferroelectric thin film according to claim 1, wherein the ferroelectric thin film is formed on the upper surface of the crystalline first film by using a sol-gel method. The film forming step of applying the solution and then baking is performed a plurality of times, and in the initial film forming step of the plurality of film forming steps, baking is performed so that the orientation of the crystalline first film can be inherited. Firing is performed at a temperature, and in the film forming step in the latter half of the plurality of film forming steps, baking is performed at a temperature lower than the baking temperature in the initial film forming step.

【0019】請求項2に係る強誘電体薄膜の製造方法に
おいては、前期後期の成膜工程では前記初期の成膜工程
おける焼成時間よりも長い焼成時間で焼成することを特
徴としている。
In the method of manufacturing a ferroelectric thin film according to a second aspect, the film-forming step in the latter half of the first half is characterized by baking for a longer baking time than the baking time in the initial film-forming step.

【0020】[0020]

【作用】請求項1に係る強誘電体薄膜製造方法では、前
記初期の成膜工程で前記結晶性第一膜の配向性を受継ぐ
ことの出来るような焼成温度で焼成することにより、第
一膜の配向性を受継いだ成膜を形成することができる。
In the method of manufacturing a ferroelectric thin film according to claim 1, the first thin film is formed by baking at a baking temperature that can inherit the orientation of the crystalline first film in the initial film forming step. It is possible to form a film that inherits the orientation of the film.

【0021】また、前記後期の成膜工程で前記初期の成
膜工程おける焼成温度よりも低い温度で焼成することに
より、必要な成分が失われにくい。
Further, by firing at a temperature lower than the firing temperature in the initial film forming step in the latter film forming step, necessary components are less likely to be lost.

【0022】請求項2に係る強誘電体薄膜製造方法で
は、後期の製造工程において前記初期の成膜工程おける
焼成時間よりも長い焼成時間で焼成することにより、後
期の製造工程における焼成温度の低下にともなう結晶化
の不完全さを補うことができる。
In the ferroelectric thin film manufacturing method according to the second aspect, the firing temperature is lowered in the latter manufacturing process by firing in the latter manufacturing process for a firing time longer than the firing time in the initial film forming process. It is possible to compensate for the imperfections of crystallization that accompany it.

【0023】[0023]

【実施例】本発明に係る強誘電体薄膜の製造方法の一実
施例として、強誘電体メモリセルのゲート上に形成され
る強誘電体薄膜の製造方法について、メモリセル1の製
造工程に即して以下に説明する。図1A、B及び図2
A、Bにメモリセルの製造工程を断面構成図で示す。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS As an embodiment of a method for manufacturing a ferroelectric thin film according to the present invention, a method for manufacturing a ferroelectric thin film formed on a gate of a ferroelectric memory cell will be described with reference to the manufacturing process of the memory cell 1. And will be described below. 1A, B and FIG.
A and B are cross-sectional views showing the manufacturing process of the memory cell.

【0024】図1Aに示すように、まずシリコンウエー
ハ3が準備される。次に、熱酸化によりシリコン酸化薄
膜5を形成した後に、その上面にCVD法により結晶性
第一膜として白金膜7を堆積させる。
As shown in FIG. 1A, first, a silicon wafer 3 is prepared. Next, after the silicon oxide thin film 5 is formed by thermal oxidation, the platinum film 7 is deposited as the crystalline first film on the upper surface of the silicon oxide thin film 5 by the CVD method.

【0025】次に、図1Bに示すように、ゾル・ゲル法
により強誘電体薄膜であるPZT薄膜9が白金膜7上面
に形成される。このゾル・ゲル法によるPZT薄膜の形
成方法は、以下の様に行う。
Next, as shown in FIG. 1B, a PZT thin film 9 which is a ferroelectric thin film is formed on the upper surface of the platinum film 7 by the sol-gel method. The method for forming the PZT thin film by the sol-gel method is performed as follows.

【0026】まず、3種類のゾル溶液Q、R、Tを用意
する。ゾル溶液Qは、Pb:Zr:Ti=1:0.58:0.48のモ
ル比になるように調整される。また、ゾル溶液Rは、ゾ
ル溶液TのPb濃度だけが5モル%上昇するよう調整され
る。また、ゾル溶液Tは、ゾル溶液RのPb濃度だけが5
モル%上昇するよう調整される。
First, three kinds of sol solutions Q, R and T are prepared. The sol solution Q is adjusted to have a molar ratio of Pb: Zr: Ti = 1: 0.58: 0.48. Further, the sol solution R is adjusted so that only the Pb concentration of the sol solution T increases by 5 mol%. In the sol solution T, only the Pb concentration of the sol solution R is 5
Adjusted to increase mol%.

【0027】この実施例では、上述のようにPb濃度の異
なる3種類のゾル溶液Q、R、Tを用意し、Pbが失われ
やすい後期の成膜工程でPbが高濃度のゾル溶液Tを用い
ることによりPbの喪失分を補うようにしている。
In this embodiment, three kinds of sol solutions Q, R, and T having different Pb concentrations are prepared as described above, and a sol solution T having a high Pb concentration is prepared in a later film forming process where Pb is easily lost. By using it, we try to make up for the loss of Pb.

【0028】次に、スピンコート法により3000rpmの条
件下で調整済のゾル溶液Qを塗布し、100℃、15分
の条件で乾燥した後、RTA(Rapid Thermal Anneelin
g)装置を使用し、酸素雰囲気中750℃、20秒の条
件で焼結させる。この成膜工程により、白金膜7の優れ
た配向性を受継いだPZT成膜9a(膜厚50nm程
度)を形成することができる。また、この成膜工程をも
う一度繰り返すことにより、白金膜7の優れた配向性を
受継いだPZT成膜9b(膜厚50nm程度)を形成す
る。
Next, the sol solution Q which has been adjusted under the condition of 3000 rpm by the spin coating method is applied and dried under the condition of 100 ° C. for 15 minutes, and then RTA (Rapid Thermal Anneelin).
g) Using an apparatus, sintering is performed in an oxygen atmosphere at 750 ° C. for 20 seconds. By this film forming process, it is possible to form the PZT film 9a (film thickness of about 50 nm) which inherits the excellent orientation of the platinum film 7. Further, by repeating this film forming process once again, the PZT film 9b (film thickness of about 50 nm) which inherits the excellent orientation of the platinum film 7 is formed.

【0029】上述のように、初期の成膜工程としてはじ
めから2回目までの成膜工程において、白金膜の配向性
を受継ぐことの出来るような焼成温度(750℃)を設
定している。
As described above, the firing temperature (750 ° C.) is set so that the orientation of the platinum film can be inherited in the first to second film forming steps as the initial film forming step.

【0030】次に、スピンコート法により3000rpmの条
件下で調整済のゾル溶液Rを塗布し、100℃、15分
の条件で乾燥した後、RTA装置を使用し、酸素雰囲気
中700℃、20秒の条件で焼結させる。この成膜工程
を二回を行うことにより、PZT成膜9c(50nm程
度)及び9d(50nm程度)を形成する。
Next, the sol solution R which has been adjusted under the condition of 3000 rpm by the spin coating method is applied and dried under the condition of 100 ° C. for 15 minutes, and then the RTA device is used to 700 ° C. in an oxygen atmosphere at 20 ° C. Sinter under the condition of seconds. By performing this film formation process twice, PZT film formations 9c (about 50 nm) and 9d (about 50 nm) are formed.

【0031】なお、この成膜工程においては、必要な成
分をなるべく喪失させずに白金膜7及びPZT成膜9b
の優れた配向性を受継ぐことができる焼成の温度(70
0℃)及び時間(20秒)を設定している。
In this film forming process, the platinum film 7 and the PZT film 9b are formed without losing necessary components as much as possible.
The firing temperature (70
(0 ° C.) and time (20 seconds) are set.

【0032】次に、スピンコート法により3000rpmの条
件下で調整済のゾル溶液Tを塗布し、100℃、15分
の条件で乾燥した後、RTA装置を使用し、オゾン雰囲
気中650℃、30秒の条件で焼結させる。この工程を
二回行うことにより、PZT成膜9e(50nm程度)
及び9f(50nm程度)を形成する。
Next, the sol solution T which has been adjusted under the condition of 3000 rpm by the spin coating method is applied and dried under the condition of 100 ° C. for 15 minutes, and then, the RTA apparatus is used and 650 ° C. in the ozone atmosphere at 30 ° C. Sinter under the condition of seconds. By performing this step twice, PZT film formation 9e (about 50 nm)
And 9f (about 50 nm) are formed.

【0033】上記の2回の成膜工程を後期の成膜工程と
して前期の成膜工程の焼成温度(750℃)より低い焼
成温度(650℃)で焼成することにより、必要な成分
を殆ど失うことなくPZT成膜9e及び9fを形成する
ことができる。
By performing the above-described two film forming steps as the latter film forming step at a baking temperature (650 ° C.) lower than the baking temperature (750 ° C.) of the former film forming step, most of the necessary components are lost. The PZT films 9e and 9f can be formed without using them.

【0034】また、この後期の成膜工程では初期の成膜
工程おける焼成時間(20秒)よりも長い焼成時間(3
0秒)で焼成しているから、後期の成膜工程における焼
成温度の低下による結晶化の不完全さを補うことができ
る。
Further, in this latter film forming process, a baking time (3 seconds) longer than the baking time (20 seconds) in the initial film forming process is used.
Since the baking is performed for 0 second), it is possible to compensate for the incomplete crystallization due to the decrease in the baking temperature in the later film forming step.

【0035】なお、焼成工程、特に後期の焼成工程にお
いて、酸素原子の濃度不足に伴いPZT薄膜のペロブス
カイト型結晶構造で酸素原子の欠如(酸素のベイ間子と
呼ばれる)が発生することがある。しかしながら、後期
の成膜工程では、この酸素ベイ間子の発生を防止する為
に、酸素雰囲気中の代りにオゾン雰囲気中で焼成してい
る。
In the firing process, particularly in the latter firing process, oxygen atom deficiency (called oxygen bay messenger) may occur in the perovskite type crystal structure of the PZT thin film due to insufficient oxygen atom concentration. However, in the latter film forming process, in order to prevent the generation of the oxygen bay spacers, baking is performed in an ozone atmosphere instead of the oxygen atmosphere.

【0036】以上のようにして、ゾル・ゲル法において
PZT薄膜9の製造を複数(6)回の成膜工程にわける
とともに、白金膜7の優れた配向性を受継いだ結晶を成
長させつつ必要な成分を失わない焼成温度及び焼成時間
を設定することにより、形成されたPZT薄膜9は膜の
深さ方向に対する組成判御性が良好で、ペロブスカイト
型結晶が得られていた。
As described above, the production of the PZT thin film 9 is divided into a plurality of (6) film forming steps in the sol-gel method, and at the same time, a crystal that inherits the excellent orientation of the platinum film 7 is grown. By setting the firing temperature and the firing time at which necessary components were not lost, the formed PZT thin film 9 had good composition controllability in the depth direction of the film, and a perovskite type crystal was obtained.

【0037】なお、次に、図2Aに示すように上部電極
11をリフトオフ法により形成した後、レジストパタン
をマスクにしてエッチングすることによりシリコン酸化
薄膜5、白金膜7、PZT薄膜9、上部電極11を成形
する。次に、図2Bに示すように成形された上部電極1
1ををマスクにして、ヒ素またはリンをイオン注入およ
び熱拡散させて、n+形ドレイン層13およびn+形ソー
ス層15を形成する。以上のようにして、強誘電体メモ
リセル1が形成される。
Next, as shown in FIG. 2A, after the upper electrode 11 is formed by the lift-off method, the silicon oxide thin film 5, the platinum film 7, the PZT thin film 9 and the upper electrode are formed by etching using the resist pattern as a mask. Mold 11. Next, the upper electrode 1 formed as shown in FIG. 2B.
Using 1 as a mask, arsenic or phosphorus is ion-implanted and thermally diffused to form an n + -type drain layer 13 and an n + -type source layer 15. The ferroelectric memory cell 1 is formed as described above.

【0038】[0038]

【発明の効果】請求項1に係る強誘電体薄膜製造方法で
は、前記初期の成膜工程で前記結晶性第一膜の配向性を
受継ぐことの出来るような焼成温度で焼成するようにし
ている。 従って、前記結晶性第一膜の配向性を受継い
だ成膜が形成できる。
According to the method of manufacturing a ferroelectric thin film according to the first aspect of the present invention, the firing is performed at a firing temperature that can inherit the orientation of the crystalline first film in the initial film forming step. There is. Therefore, it is possible to form a film that inherits the orientation of the crystalline first film.

【0039】また、前記後期の成膜工程で前記初期の成
膜工程おける焼成温度よりも低い温度で焼成するように
している。
Further, in the latter film forming step, the baking is performed at a temperature lower than the baking temperature in the initial film forming step.

【0040】従って、焼成時に必要な成分が失われにく
いから、欠陥のないペロブスカイト型結晶構造の強誘電
体薄膜を得ることができる。
Therefore, it is possible to obtain a ferroelectric thin film having a perovskite type crystal structure having no defects, since the necessary components are hardly lost during firing.

【0041】請求項2に係る強誘電体薄膜製造方法で
は、後期の製造工程において前記初期の成膜工程おける
焼成時間よりも長い焼成時間で焼成するようにしてい
る。
In the ferroelectric thin film manufacturing method according to the second aspect of the present invention, in the latter manufacturing process, the baking time is longer than the baking time in the initial film forming process.

【0042】従って、後期の製造工程における焼成温度
の低下にともなう結晶化の不完全さを補うことにより、
後期の製造工程において欠陥のないペロブスカイト型結
晶構造の強誘電体薄膜を得ることができる。
Therefore, by compensating for the incompleteness of crystallization that accompanies the lowering of the firing temperature in the later manufacturing process,
A ferroelectric thin film having a perovskite type crystal structure without defects can be obtained in the latter manufacturing process.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例による結晶性薄膜の製造方法
を示す為の製造工程図である。
FIG. 1 is a manufacturing process diagram illustrating a method of manufacturing a crystalline thin film according to an embodiment of the present invention.

【図2】本発明の一実施例による結晶性薄膜の製造方法
を示す為の製造工程図である。
FIG. 2 is a manufacturing process diagram illustrating a method of manufacturing a crystalline thin film according to an embodiment of the present invention.

【図3】従来の結晶性薄膜を示す為の製造工程図であ
る。
FIG. 3 is a manufacturing process diagram for showing a conventional crystalline thin film.

【図4】従来の結晶性薄膜を示す為の製造工程図であ
る。
FIG. 4 is a manufacturing process diagram for showing a conventional crystalline thin film.

【符号の説明】[Explanation of symbols]

7・・・白金膜 9・・・PZT薄膜 7: Platinum film 9: PZT thin film

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 H01L 27/04 C 8427−4M 27/108 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification code Internal reference number FI technical display location H01L 27/04 C 8427-4M 27/108

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】結晶性第一層上面にゾル・ゲル法を用いて
強誘電体薄膜を形成する方法であって、 ゾル溶液を塗布した後に焼成する成膜工程を複数回行う
とともに、 前記複数回の成膜工程のうち初期の成膜工程では、前記
結晶性第一膜の配向性を受継ぐことの出来るような焼成
温度で焼成し、 前記複数回の成膜工程のうち後期の成膜工程では、前記
初期の成膜工程おける焼成温度よりも低い温度で焼成す
ることを特徴とする強誘電体薄膜の製造方法。
1. A method of forming a ferroelectric thin film on the upper surface of a crystalline first layer by using a sol-gel method, wherein a film forming step of applying a sol solution and baking the same is performed a plurality of times. In the initial film forming step of the multiple film forming steps, baking is performed at a baking temperature that allows the orientation of the crystalline first film to be inherited, and the latter film forming step of the plurality of film forming steps is performed. In the step, the method for producing a ferroelectric thin film is characterized by firing at a temperature lower than the firing temperature in the initial film forming step.
【請求項2】請求項1に係る強誘電体薄膜製造方法にお
いて、前期後期の成膜工程では前記初期の成膜工程おけ
る焼成時間よりも長い焼成時間で焼成することを特徴と
する強誘電体薄膜の製造方法。
2. The ferroelectric thin film manufacturing method according to claim 1, wherein in the film forming process in the first and second semesters, the baking is performed for a baking time longer than the baking time in the initial film forming process. Thin film manufacturing method.
JP16270392A 1992-06-22 1992-06-22 Manufacturing method of ferroelectric thin film Expired - Fee Related JP3105081B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16270392A JP3105081B2 (en) 1992-06-22 1992-06-22 Manufacturing method of ferroelectric thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16270392A JP3105081B2 (en) 1992-06-22 1992-06-22 Manufacturing method of ferroelectric thin film

Publications (2)

Publication Number Publication Date
JPH065948A true JPH065948A (en) 1994-01-14
JP3105081B2 JP3105081B2 (en) 2000-10-30

Family

ID=15759700

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16270392A Expired - Fee Related JP3105081B2 (en) 1992-06-22 1992-06-22 Manufacturing method of ferroelectric thin film

Country Status (1)

Country Link
JP (1) JP3105081B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11214762A (en) * 1998-01-22 1999-08-06 Seiko Epson Corp Piezoelectric element and ink jet-type recorder head using the same
EP1329964A2 (en) * 2002-01-22 2003-07-23 Seiko Epson Corporation Piezoelectric element, liquid jetting head, and method for manufacturing thereof
JP2006093346A (en) * 2004-09-22 2006-04-06 Brother Ind Ltd Manufacturing method of piezoelectric actuator and ink jet head
JP2006245619A (en) * 1997-03-27 2006-09-14 Seiko Epson Corp Method for manufacturing piezoelectric substance element
JP2007287918A (en) * 2006-04-17 2007-11-01 Seiko Epson Corp Piezoelectric laminate, manufacturing method of same, surface acoustic wave element, thin film piezoelectric resonator, and piezoelectric actuator
JP2010226121A (en) * 2002-01-22 2010-10-07 Seiko Epson Corp Manufacturing method of piezoelectric element
WO2011062050A1 (en) * 2009-11-17 2011-05-26 コニカミノルタホールディングス株式会社 Method of manufacturing piezoelectric thin film, and piezoelectric thin film and piezoelectric element

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006245619A (en) * 1997-03-27 2006-09-14 Seiko Epson Corp Method for manufacturing piezoelectric substance element
JPH11214762A (en) * 1998-01-22 1999-08-06 Seiko Epson Corp Piezoelectric element and ink jet-type recorder head using the same
EP1329964A2 (en) * 2002-01-22 2003-07-23 Seiko Epson Corporation Piezoelectric element, liquid jetting head, and method for manufacturing thereof
US6883901B2 (en) 2002-01-22 2005-04-26 Seiko Epson Corporation Piezoelectric element, liquid jetting head, and method for manufacturing thereof
EP1329964A3 (en) * 2002-01-22 2006-03-15 Seiko Epson Corporation Piezoelectric element, liquid jetting head, and method for manufacturing thereof
EP1763093A1 (en) * 2002-01-22 2007-03-14 Seiko Epson Corporation Piezoelectric element, liquid jetting head, and method for manufacturing thereof
US7328490B2 (en) 2002-01-22 2008-02-12 Seiko Epson Corporation Method for manufacturing a liquid jetting head
JP2010226121A (en) * 2002-01-22 2010-10-07 Seiko Epson Corp Manufacturing method of piezoelectric element
JP2006093346A (en) * 2004-09-22 2006-04-06 Brother Ind Ltd Manufacturing method of piezoelectric actuator and ink jet head
JP2007287918A (en) * 2006-04-17 2007-11-01 Seiko Epson Corp Piezoelectric laminate, manufacturing method of same, surface acoustic wave element, thin film piezoelectric resonator, and piezoelectric actuator
WO2011062050A1 (en) * 2009-11-17 2011-05-26 コニカミノルタホールディングス株式会社 Method of manufacturing piezoelectric thin film, and piezoelectric thin film and piezoelectric element
JPWO2011062050A1 (en) * 2009-11-17 2013-04-04 コニカミノルタホールディングス株式会社 Method for manufacturing piezoelectric thin film, piezoelectric thin film, and piezoelectric element

Also Published As

Publication number Publication date
JP3105081B2 (en) 2000-10-30

Similar Documents

Publication Publication Date Title
KR100269025B1 (en) Process ffor fabricating layered suferlattice materials
JP3113141B2 (en) Ferroelectric crystal thin film coated substrate, method of manufacturing the same, and ferroelectric thin film device using ferroelectric crystal thin film coated substrate
US5439845A (en) Process for fabricating layered superlattice materials and making electronic devices including same
JP3188179B2 (en) Method of manufacturing ferroelectric thin film element and method of manufacturing ferroelectric memory element
KR100360468B1 (en) manufacturing method of ferroelectric film, capacator adopting the film and menufacturing method of the capacator
JP3476932B2 (en) Ferroelectric thin film, substrate coated with ferroelectric thin film, and method of manufacturing ferroelectric thin film
JPH0855967A (en) Manufacture of ferroelectric thin film capacitor
JPH0799252A (en) Manufacture of ferroelectric film and semiconductor device using manufacture thereof
US6072207A (en) Process for fabricating layered superlattice materials and making electronic devices including same
US5840615A (en) Method for forming a ferroelectric material film by the sol-gel method, along with a process for a production of a capacitor and its raw material solution
JPH11502673A (en) Laminated superlattice material and low-temperature manufacturing method of electronic device including the same
JP3105081B2 (en) Manufacturing method of ferroelectric thin film
JPH065946A (en) Manufacture of ferroelectric thin film
JP3966479B2 (en) Method for forming ferroelectric film by sol-gel method and method for manufacturing capacitor
US6507060B2 (en) Silicon-based PT/PZT/PT sandwich structure and method for manufacturing the same
JPH0812494A (en) Production of oxide crystal thin film and thin-film element
JP3118702B2 (en) Method for manufacturing non-volatile memory thin film
JP2753170B2 (en) Crystallization method of ferroelectric film
JPH0891841A (en) Production of ferroelectric film
JPH065947A (en) Manufacture of ferroelectric thin film
JPH0969614A (en) Manufacturing method for ferroelectric thin film, dielectric thin film and integrated circuit containing ferroelectric thin film
JPH0632613A (en) Production of double oxide thin film
JP3244311B2 (en) Method for manufacturing semiconductor device
JP3924928B2 (en) Ferroelectric material and ferroelectric memory
JPH08340084A (en) Manufacture of dielectric thin film and dielectric thin film manufactured by it

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100901

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110901

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees