JPH065947A - Manufacture of ferroelectric thin film - Google Patents

Manufacture of ferroelectric thin film

Info

Publication number
JPH065947A
JPH065947A JP16253492A JP16253492A JPH065947A JP H065947 A JPH065947 A JP H065947A JP 16253492 A JP16253492 A JP 16253492A JP 16253492 A JP16253492 A JP 16253492A JP H065947 A JPH065947 A JP H065947A
Authority
JP
Japan
Prior art keywords
film
thin film
pzt
sol solution
ferroelectric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16253492A
Other languages
Japanese (ja)
Inventor
Akira Kanzawa
公 神澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rohm Co Ltd
Original Assignee
Rohm Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rohm Co Ltd filed Critical Rohm Co Ltd
Priority to JP16253492A priority Critical patent/JPH065947A/en
Publication of JPH065947A publication Critical patent/JPH065947A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide a method for manufacturing a ferroelectric thin film in which ideal sol solution can be sintered in a state inherited with excellent orientation of a platinum film. CONSTITUTION:A method for manufacturing a ferroelectric thin film has the step of forming a PZT thin film 9 provided on an upper surface of a platinum film 7 by a sol-gel method, and comprises the steps of adjusting compositions of ideal sol solution Q and sol solution T, and sintering the solution T on the film 7 thereby to form a PZT film 9d inherited with orientation of the film 7. Since an interstitial distance of the film 9d is similar to that of the ideal sol solution of a sintered state, the ideal sol solution can be sintered in a state inherited with excellent orientation (orientation of the film 7) of the film 9d.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、ゾル・ゲル法を用いた
強誘電体薄膜の製造方法に関し、特に理想ゾル溶液の焼
結に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a ferroelectric thin film using a sol-gel method, and more particularly to sintering an ideal sol solution.

【0002】[0002]

【従来の技術】近年、残留分極性及び分極反転性を有す
る強誘電体薄膜を用いた半導体装置、主にメモリセルや
コンデンサーが多数報告されている。
2. Description of the Related Art In recent years, many semiconductor devices, mainly memory cells and capacitors, using a ferroelectric thin film having remanent polarization and polarization inversion have been reported.

【0003】強誘電体薄膜の製造方法として、メモリセ
ルのゲート上に形成される強誘電体薄膜の製造方法につ
いて、メモリセル2の製造工程に即して以下に説明す
る。図3A、B及び図4A、Bにメモリセル2の製造工
程を断面構成図で示す。
As a method of manufacturing a ferroelectric thin film, a method of manufacturing a ferroelectric thin film formed on the gate of a memory cell will be described below in accordance with the manufacturing process of the memory cell 2. 3A and 3B and FIGS. 4A and 4B are cross-sectional configuration diagrams showing the manufacturing process of the memory cell 2.

【0004】図3Aに示すように、P形シリコン基板1
7に、熱酸化によりシリコン酸化薄膜19を形成した後
に、その上面にCVD(Chemical Vapour Deposition)
法により<111>配向の白金膜21を堆積させる。
As shown in FIG. 3A, a P-type silicon substrate 1
7, a silicon oxide thin film 19 is formed by thermal oxidation, and then CVD (Chemical Vapor Deposition) is performed on the upper surface thereof.
The <111> -oriented platinum film 21 is deposited by the method.

【0005】なお、白金結晶は優先配向性を有する。優
先配向性というのは、下地の結晶性にかかわらず配向性
を有した結晶が成長する性質をいう。従って、白金膜2
1も配向性に優れた結晶構造を有する。
The platinum crystal has a preferred orientation. The preferential orientation refers to the property that crystals having orientation grow regardless of the crystallinity of the underlying layer. Therefore, the platinum film 2
No. 1 also has a crystal structure with excellent orientation.

【0006】次に、図3Bに示すように、白金膜21上
面にゾル・ゲル法により強誘電体薄膜であるPZT薄膜
23を形成する。なお、この白金膜21は、上述のよう
に優先配向性を有するので配向性に優れた結晶構造を有
する。従って、白金膜21は配向性に優れた下地として
働き、その上面に配向性に優れたPZT結晶を成長させ
ることができる。
Next, as shown in FIG. 3B, a PZT thin film 23 which is a ferroelectric thin film is formed on the upper surface of the platinum film 21 by the sol-gel method. Since the platinum film 21 has the preferential orientation as described above, it has a crystal structure excellent in orientation. Therefore, the platinum film 21 acts as a base having excellent orientation, and PZT crystals having excellent orientation can be grown on the upper surface thereof.

【0007】ここで、ゾル・ゲル法について簡単に説明
する。一般に、成膜技術としては真空蒸着法やスパッタ
リング法が一般的によく知られているが、これらの方法
では強誘電体や圧電体のような複雑な系において組成制
御が難しいといわれている。そのような背景から、近年
化学的手法であるゾル・ゲル法が新しい成膜技術として
応用されるようになってきた。
Here, the sol-gel method will be briefly described. Generally, as a film forming technique, a vacuum vapor deposition method and a sputtering method are generally well known, but it is said that it is difficult to control the composition of these methods in a complicated system such as a ferroelectric substance or a piezoelectric substance. Against such a background, the sol-gel method, which is a chemical method, has recently been applied as a new film forming technique.

【0008】ゾル・ゲル法による薄膜形成では、ゾル溶
液の塗布・乾燥・焼成という一連の工程を行うことによ
り成膜することができる。また、この一連の工程を繰り
返すことにより希望膜厚の薄膜を得るようにしている。
In forming a thin film by the sol-gel method, a film can be formed by performing a series of steps of coating, drying and baking a sol solution. Further, by repeating this series of steps, a thin film having a desired film thickness is obtained.

【0009】次に、ゾル・ゲル法を用いたPZT薄膜の
製造方法について詳しく述べる。まず、ゾル溶液を以下
の様に調整する。Pb(CH3CO2)・3H2O(酢酸鉛三
水和物)を1対5のモル比でメトキシエタノールに70
℃で溶解した後、120℃になるまで加熱し、脱水を行
う。この溶液を90℃まで冷却した後、PbTiO3:Pb
TiO3=47:53のモル比になるように所定量のチタ
ンイソプロポキシドとジルコニウムプロポキシドをかく
はんしながら加える。この溶液を125℃まで加熱し続
けて反応副生物を除去する。さらに、この溶液にPZT
濃度が0.5mol/lになるようにメトキシエタノールを加
え、その後PZTゾル溶液に対して2倍モルの蒸留水を
添加し、部分加水分解を行った液を塗布液とする。
Next, a method of manufacturing a PZT thin film using the sol-gel method will be described in detail. First, the sol solution is prepared as follows. Pb (CH 3 CO 2 ) .3H 2 O (lead acetate trihydrate) was added to methoxyethanol at a molar ratio of 1:70.
After melting at ℃, it is dehydrated by heating to 120 ℃. After cooling the solution to 90 ° C., PbTiO 3 : Pb
A predetermined amount of titanium isopropoxide and zirconium propoxide are added with stirring so that the molar ratio of TiO 3 = 47: 53. The solution is continuously heated to 125 ° C. to remove reaction byproducts. Furthermore, PZT was added to this solution.
Methoxyethanol was added to a concentration of 0.5 mol / l, and then distilled water was added in an amount twice that of the PZT sol solution, and the partially hydrolyzed solution was used as a coating solution.

【0010】次に、スピンコート法により5000rpm・20s
ecの条件下で調整済のゾル溶液を塗布し、ホットプレー
ト上で200〜300℃で乾燥した後、650℃で焼成
する。この一連の焼成工程を複数回繰り返すことによっ
て希望の膜厚とする。このようにして、ペロブスカイト
型結晶のPZT薄膜23を形成することができる。
Next, spin coating is performed at 5000 rpm for 20 seconds.
The adjusted sol solution is applied under the condition of ec, dried at 200 to 300 ° C. on a hot plate, and then baked at 650 ° C. A desired film thickness is obtained by repeating this series of firing steps a plurality of times. In this way, the PZT thin film 23 of perovskite type crystal can be formed.

【0011】なお、図4のAに示すように、さらにPZ
T薄膜23上面にスパッタリング法により白金膜25を
堆積させた後、レジストパタンをマスクにしてエッチン
グすることによりシリコン酸化薄膜19、白金膜21、
PZT薄膜23、白金膜25を成形する。次に、図4の
Bに示すように、成形された白金膜25をマスクにし
て、ヒ素またはリンをイオン注入および熱拡散させて、
+形ドレイン層27およびn+形ソース層29を形成す
る。
Further, as shown in A of FIG.
After the platinum film 25 is deposited on the upper surface of the T thin film 23 by the sputtering method, the silicon oxide thin film 19, the platinum film 21, and the platinum film 21 are etched by etching using the resist pattern as a mask.
The PZT thin film 23 and the platinum film 25 are formed. Next, as shown in FIG. 4B, arsenic or phosphorus is ion-implanted and thermally diffused using the formed platinum film 25 as a mask,
An n + type drain layer 27 and an n + type source layer 29 are formed.

【0012】なお、以上のようにして形成されたメモリ
セル2では、シリコン基板17と制御電極である白金膜
25間に電界VPを印加することにより、PZT薄膜2
3は電界VP方向に分極し、電界VPを取り除いても分
極は残留する。一方、電界VPとは反対方向の電界VQ
をシリコン基板17・制御電極25間に印加することに
より、PZT薄膜23の分極は、電界VQ方向に反転
し、電界VQを取り除いても分極は残留する。従って、
メモリセル2は、強誘電体薄膜の上記のような残留分極
及び分極反転の性質を利用することにより、情報を記憶
することが出来る。
In the memory cell 2 thus formed, the PZT thin film 2 is formed by applying the electric field VP between the silicon substrate 17 and the platinum film 25 which is the control electrode.
3 is polarized in the direction of the electric field VP, and the polarization remains even if the electric field VP is removed. On the other hand, the electric field VQ in the opposite direction to the electric field VP
Is applied between the silicon substrate 17 and the control electrode 25, the polarization of the PZT thin film 23 is inverted in the direction of the electric field VQ, and the polarization remains even if the electric field VQ is removed. Therefore,
The memory cell 2 can store information by utilizing the properties of the above-mentioned remanent polarization and polarization inversion of the ferroelectric thin film.

【0013】[0013]

【発明が解決しようとする課題】最近、ゾル溶液を焼結
することにより得られるPZTのペロブスカイト型結晶
において、最も強誘電性に富んだ成膜を得ることのでき
る理想ゾル溶液の組成が報告されている。
Recently, in the perovskite type crystal of PZT obtained by sintering a sol solution, the composition of an ideal sol solution capable of obtaining a film having the highest ferroelectricity has been reported. ing.

【0014】従って、よりよい強誘電性を示すPZT薄
膜を得る為に、この理想ゾル溶液を上記の様に白金膜2
1の優れた配向性を受継がせた状態で焼結させることが
考えられる。しかしながら、従来の方法により白金膜2
1上面にPZT薄膜を形成した場合には次の様な問題点
があった。
Therefore, in order to obtain a PZT thin film exhibiting better ferroelectricity, this ideal sol solution was added to the platinum film 2 as described above.
It is conceivable to sinter in a state where the excellent orientation of No. 1 is inherited. However, according to the conventional method, the platinum film 2
When the PZT thin film was formed on the upper surface of the No. 1, there were the following problems.

【0015】理想ゾル溶液を焼成し結晶化させる際に、
その結晶に白金膜21の配向性を受継ぐことができなか
った。というのは、理想ゾル溶液が焼結した時の結晶の
格子間距離と<111>配向の白金膜21の格子間距離
には隔たりがあり、両格子間距離の関係が配向性の受継
ぎに適さなかったからである。つまり、よりよい強誘電
性を示すPZT薄膜を形成することはできなかった。
When the ideal sol solution is baked and crystallized,
The crystal could not inherit the orientation of the platinum film 21. This is because there is a gap between the interstitial distance of the crystal when the ideal sol solution is sintered and the interstitial distance of the platinum film 21 having the <111> orientation, and the relationship between the interstitials is the inheritance of orientation. Because it was not suitable. That is, it was not possible to form a PZT thin film exhibiting better ferroelectricity.

【0016】よって、本発明は、上記の問題点を解決
し、理想ゾル溶液を白金膜の優れた配向性を受継いだ状
態で焼結させることのできる強誘電体薄膜の製造方法を
提供することである。
Therefore, the present invention solves the above-mentioned problems and provides a method for producing a ferroelectric thin film capable of sintering an ideal sol solution in a state where the excellent orientation of the platinum film is inherited. That is.

【0017】[0017]

【課題を解決するための手段】請求項1に係る強誘電体
薄膜の製造方法においては、<111>配向の白金膜上
面にゾル・ゲル法を用いて強誘電体薄膜を形成する方法
であって、強誘電体薄膜を複数の強誘電体成膜に分けて
形成するとともに、最上層の強誘電体成膜と白金膜との
間に少なくとも一層の中間層を設け、前記白金膜から上
の層へすすむに従い、下地の結晶配向性を受継ぐことの
できる範囲で格子間距離を順次変えて、焼成により優れ
た強誘電性を示す組成を有する理想ゾル溶液を用いて最
上層の強誘電体成膜を形成することを特徴としている。
A method of manufacturing a ferroelectric thin film according to claim 1 is a method of forming a ferroelectric thin film on the upper surface of a <111> oriented platinum film by using a sol-gel method. Then, the ferroelectric thin film is divided into a plurality of ferroelectric films, and at least one intermediate layer is provided between the uppermost ferroelectric film and the platinum film. As the layer progresses, the interstitial distance is sequentially changed within a range where the crystal orientation of the underlying layer can be inherited, and an ideal sol solution having a composition exhibiting excellent ferroelectricity by firing is used to form the uppermost ferroelectric substance. The feature is that a film is formed.

【0018】[0018]

【作用】請求項1に係る強誘電体薄膜の製造方法におい
ては、<111>配向の白金膜上面にゾル・ゲル法を用
いて強誘電体薄膜を形成する方法であって、強誘電体薄
膜を複数の強誘電体成膜に分けて形成するとともに、最
上層の強誘電体成膜と白金膜との間に少なくとも一層の
中間層を設け、前記白金膜から上の層へすすむに従い、
下地の結晶配向性を受継ぐことのできる範囲で格子間距
離を順次変えて、焼成により優れた強誘電性を示す組成
を有する理想ゾル溶液を用いて最上層の強誘電体成膜を
形成することを特徴としている。
The method of manufacturing a ferroelectric thin film according to claim 1 is a method of forming a ferroelectric thin film on the upper surface of a platinum film having a <111> orientation by using a sol-gel method. Is formed by dividing into a plurality of ferroelectric film formation, at least one intermediate layer is provided between the uppermost ferroelectric film formation and the platinum film, and as the platinum film is advanced to the upper layer,
The inter-lattice distance is sequentially changed within a range where the crystal orientation of the underlayer can be inherited, and the uppermost ferroelectric film is formed by firing using an ideal sol solution having a composition exhibiting excellent ferroelectricity. It is characterized by that.

【0019】従って、前記白金膜の配向性を受継いだ状
態で前期理想ゾル溶液を焼結させることができる。
Therefore, it is possible to sinter the ideal sol solution in the previous period while inheriting the orientation of the platinum film.

【0020】[0020]

【実施例】本発明に係る強誘電体薄膜の製造方法の一実
施例として、メモリセルのゲート上に形成される強誘電
体薄膜の製造方法について、メモリセル1の製造工程に
即して以下に説明する。図1A、B及び図2A、Bにメ
モリセルの製造工程を断面構成図で示す。
EXAMPLES As an example of a method for manufacturing a ferroelectric thin film according to the present invention, a method for manufacturing a ferroelectric thin film formed on a gate of a memory cell will be described below in accordance with the manufacturing process of the memory cell 1. Explained. 1A and 1B and FIGS. 2A and 2B are cross-sectional views showing the manufacturing process of the memory cell.

【0021】図1Aに示すように、まずシリコンウエー
ハ3が準備される。次に、熱酸化によりシリコン酸化薄
膜5を形成した後に、その上面にCVD法により<11
1>配向の白金膜7を堆積させる。
First, as shown in FIG. 1A, a silicon wafer 3 is prepared. Next, after the silicon oxide thin film 5 is formed by thermal oxidation, <11 is formed on the upper surface by the CVD method.
A platinum film 7 having a 1> orientation is deposited.

【0022】次に、図1Bに示すように、ゾル・ゲル法
により強誘電体薄膜であるPZT薄膜9が白金膜7上面
に形成される。このゾル・ゲル法によるPZT薄膜の形
成は以下の様に行う。
Next, as shown in FIG. 1B, a PZT thin film 9 which is a ferroelectric thin film is formed on the upper surface of the platinum film 7 by the sol-gel method. The PZT thin film is formed by this sol-gel method as follows.

【0023】まず、4種類のゾル溶液Q、R、S、Tを
用意する。ゾル溶液Qは、理想ゾル溶液であり、Pb:Z
r:Ti=1.05:0.52:0.48のモル比になるように調整す
る。また、ゾル溶液Rは、Pb:Zr:Ti=1.05:0:1の
モル比になるように調整する。また、ゾル溶液Sは、P
b:Zr:Ti=1.05:0.2:0.8のモル比になるように調整
する。また、ゾル溶液Tは、Pb:Zr:Ti=1.05:0.4:
0.6のモル比になるように調整する。
First, four kinds of sol solutions Q, R, S and T are prepared. The sol solution Q is an ideal sol solution, Pb: Z
Adjust so that the molar ratio is r: Ti = 1.05: 0.52: 0.48. Further, the sol solution R is adjusted to have a molar ratio of Pb: Zr: Ti = 1.05: 0: 1. Also, the sol solution S is P
Adjust so that the molar ratio is b: Zr: Ti = 1.05: 0.2: 0.8. Further, the sol solution T is Pb: Zr: Ti = 1.05: 0.4:
Adjust so that the molar ratio is 0.6.

【0024】次に、調整済のゾル溶液Rを白金膜7の上
面にスピンコート法により3000rpmの条件下で塗布し1
00℃で15分間乾燥させた後、RTA(Rapid Therma
l Anneeling)装置を使用し、酸素雰囲気中700℃、
20秒の条件で焼結させ中間層であるPZT成膜9a
(膜厚50nm程度)を形成する。この際、ゾル溶液R
は、焼結時の格子間距離Drが白金膜21の格子間距離
D21に近似(Dr>D21)するようにその組成が調整さ
れている。従って、白金膜7の優れた配向性をPZT成
膜9aに受継がすことができる。また、この成膜工程を
もう一度繰り返し中間層であるPZT成膜9b(膜厚5
0nm程度)を形成する。この際、PZT薄膜9bにも
同様に白金膜7の優れた配向性を受継がすことができ
る。
Next, the adjusted sol solution R is applied to the upper surface of the platinum film 7 by spin coating under the condition of 3000 rpm.
After drying at 00 ℃ for 15 minutes, RTA (Rapid Therma
l Anneeling) device, 700 ℃ in oxygen atmosphere,
PZT film 9a, which is an intermediate layer, is sintered under the condition of 20 seconds.
(Film thickness of about 50 nm) is formed. At this time, the sol solution R
The composition is adjusted so that the interstitial distance Dr during sintering approximates the interstitial distance D21 of the platinum film 21 (Dr> D21). Therefore, the excellent orientation of the platinum film 7 can be inherited by the PZT film 9a. Further, this film forming process is repeated once more to form the PZT film 9b (film thickness 5
0 nm) is formed. At this time, the PZT thin film 9b can similarly inherit the excellent orientation of the platinum film 7.

【0025】次に、調整済のゾル溶液SをPZT成膜9
bの上面にスピンコート法により3000rpmの条件下で塗
布し100℃で15間分乾させた後、RTA装置を使用
し酸素雰囲気中700℃、20秒の条件で焼結させ中間
層であるPZT成膜9c(膜厚50nm程度)を形成す
る。この際、ゾル溶液Sは、焼結時の格子間距離Dsが
PZT成膜9bの格子間距離Drに近似(Ds>Dr)す
るようにその組成が調整されている。従って、PZT成
膜9bの優れた配向性をPZT成膜9cに受継がすこと
ができる。
Next, the adjusted sol solution S is formed into a PZT film 9
It was coated on the upper surface of b by spin coating under the condition of 3000 rpm, dried at 100 ° C. for 15 minutes, and then sintered using an RTA device in an oxygen atmosphere at 700 ° C. for 20 seconds to form an intermediate layer of PZT. A film 9c (film thickness of about 50 nm) is formed. At this time, the composition of the sol solution S is adjusted so that the interstitial distance Ds during sintering approximates the interstitial distance Dr of the PZT film 9b (Ds> Dr). Therefore, the excellent orientation of the PZT film 9b can be inherited by the PZT film 9c.

【0026】次に、調整済のゾル溶液TをPZT成膜9
cの上面にスピンコート法により3000rpmの条件下で塗
布し100℃で15間分乾させた後、RTA装置を使用
し酸素雰囲気中700℃、20秒の条件で焼結させ中間
層であるPZT成膜9d(膜厚50nm程度)を形成す
る。この際、ゾル溶液Tは、焼結時の格子間距離Dtが
PZT成膜9cの格子間距離Dsに近似(Dt>Ds)す
るようにその組成が調整されている。従って、PZT成
膜9cの優れた配向性をPZT成膜9dに受継がすこと
ができる。以上のことは、中間層であるPZT成膜9d
が白金膜7の配向性を受継いだことを意味している。
Next, the adjusted sol solution T is formed into a PZT film 9
It is coated on the upper surface of c by spin coating at 3000 rpm, dried at 100 ° C. for 15 minutes, and then sintered using an RTA apparatus in an oxygen atmosphere at 700 ° C. for 20 seconds to form PZT as an intermediate layer. A film 9d (film thickness of about 50 nm) is formed. At this time, the composition of the sol solution T is adjusted so that the interstitial distance Dt during sintering approximates the interstitial distance Ds of the PZT film 9c (Dt> Ds). Therefore, the excellent orientation of the PZT film 9c can be inherited by the PZT film 9d. The above is the PZT film 9d which is the intermediate layer.
Means that the orientation of the platinum film 7 is inherited.

【0027】次に、調整済の理想ゾル溶液QをPZT成
膜9dの上面にスピンコート法により3000rpmの条件下
で塗布し100℃で15分間乾燥した後、RTA装置を
使用し、酸素雰囲気中750℃、20秒の条件で焼結さ
せPZT成膜9e(50nm程度)を形成する。この
際、PZT成膜9dの格子間距離が焼結状態の理想ゾル
溶液Qが有する格子間距離Dqに近似(Dq>Dt)にす
るようにゾル溶液Rの組成が調整されている。従って、
PZT成膜9dの優れた配向性を受継いだ状態で理想ゾ
ル溶液Qを焼結させることができる。さらに、この成膜
工程を繰り返すことによりPZT成膜9fを形成する。
この際、PZT成膜9fにも同様にPZT成膜9eの優
れた配向性を受継がすことができる。なお、この実施例
では、PZT成膜9e及び9fを最上層とし理想ゾル溶
液を用いて成膜している。
Next, the adjusted ideal sol solution Q was applied on the upper surface of the PZT film 9d by spin coating under the condition of 3000 rpm and dried at 100 ° C. for 15 minutes, and then, using an RTA apparatus, in an oxygen atmosphere. PZT film 9e (about 50 nm) is formed by sintering at 750 ° C. for 20 seconds. At this time, the composition of the sol solution R is adjusted so that the interstitial distance of the PZT film 9d approximates to the interstitial distance Dq of the ideal sol solution Q in the sintered state (Dq> Dt). Therefore,
The ideal sol solution Q can be sintered in a state where the excellent orientation of the PZT film 9d is inherited. Further, by repeating this film forming process, a PZT film 9f is formed.
At this time, similarly, the PZT film 9f can inherit the excellent orientation of the PZT film 9e. In this example, the PZT films 9e and 9f are used as the uppermost layers and are formed using an ideal sol solution.

【0028】上記の様に、白金膜7の配向性を順々にP
ZT成膜9a、9b、9c、9dに受継がし、PZT成
膜9d上面で理想ゾル溶液Qを焼結させることによっ
て、白金膜7の配向性を受継いだ状態で理想ゾル溶液Q
が焼成したPZT成膜9e及び9fを形成することがで
きる。
As described above, the orientation of the platinum film 7 is set to P
The ideal sol solution Q is inherited by the ZT films 9a, 9b, 9c and 9d, and the ideal sol solution Q is sintered on the upper surface of the PZT film 9d so that the orientation of the platinum film 7 is inherited.
It is possible to form the PZT films 9e and 9f that have been fired.

【0029】なお、次に、図2Aに示すように上部電極
11をリフトオフ法により形成した後、レジストパタン
をマスクにしてエッチングすることによりシリコン酸化
薄膜5、白金膜7、PZT薄膜9、上部電極11を成形
する。次に、図2のBに示すように成形された上部電極
11ををマスクにして、ヒ素またはリンをイオン注入お
よび熱拡散させて、n+形ドレイン層13およびn+形ソ
ース層15を形成する。
Next, as shown in FIG. 2A, after the upper electrode 11 is formed by the lift-off method, the silicon oxide thin film 5, the platinum film 7, the PZT thin film 9 and the upper electrode are etched by etching using the resist pattern as a mask. Mold 11. Next, using the upper electrode 11 formed as shown in FIG. 2B as a mask, arsenic or phosphorus is ion-implanted and thermally diffused to form the n + -type drain layer 13 and the n + -type source layer 15. To do.

【0030】上記のように形成された強誘電体メモリセ
ル1のPZT薄膜は、膜の配向性も良好で、分極反転の
繰り返しにともなう残留分極性の低下が少なかった。
The PZT thin film of the ferroelectric memory cell 1 formed as described above had a good film orientation, and the remanent polarizability was not significantly reduced by repeated polarization inversion.

【0031】[0031]

【発明の効果】請求項1に係る強誘電体薄膜の製造方法
においては、<111>配向の白金膜上面にゾル・ゲル
法を用いて強誘電体薄膜を形成する方法であって、強誘
電体薄膜を複数の強誘電体成膜に分けて形成するととも
に、最上層の強誘電体成膜と白金膜との間に少なくとも
一層の中間層を設け、前記白金膜から上の層へすすむに
従い、下地の結晶配向性を受継ぐことのできる範囲で格
子間距離を順次変えて、焼成により優れた強誘電性を示
す組成を有する理想ゾル溶液を用いて最上層の強誘電体
成膜を形成することを特徴としている。
The method of manufacturing a ferroelectric thin film according to claim 1 is a method of forming a ferroelectric thin film on the upper surface of a platinum film having a <111> orientation by using a sol-gel method. The body thin film is formed by dividing it into a plurality of ferroelectric films, and at least one intermediate layer is provided between the uppermost ferroelectric film and the platinum film. , The inter-lattice distance is sequentially changed within a range where the crystal orientation of the base can be inherited, and the uppermost ferroelectric film is formed by firing using an ideal sol solution having a composition showing excellent ferroelectricity. It is characterized by doing.

【0032】従って、よりよい強誘電性を示す強誘電体
薄膜を形成することができる。
Therefore, it is possible to form a ferroelectric thin film exhibiting better ferroelectricity.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例による結晶性薄膜の製造方法
を示す為の製造工程図である。
FIG. 1 is a manufacturing process diagram illustrating a method of manufacturing a crystalline thin film according to an embodiment of the present invention.

【図2】本発明の一実施例による結晶性薄膜の製造方法
を示す為の製造工程図である。
FIG. 2 is a manufacturing process diagram illustrating a method of manufacturing a crystalline thin film according to an embodiment of the present invention.

【図3】従来の結晶性薄膜を示す為の製造工程図であ
る。
FIG. 3 is a manufacturing process diagram for showing a conventional crystalline thin film.

【図4】従来の結晶性薄膜を示す為の製造工程図であ
る。
FIG. 4 is a manufacturing process diagram for showing a conventional crystalline thin film.

【符号の説明】[Explanation of symbols]

7・・・白金膜 9・・・PZT薄膜 9a、9b、9c、9d・・・PZT成膜(中間層) 9e,9f・・・PZT成膜(最上層) 7 ... Platinum film 9 ... PZT thin film 9a, 9b, 9c, 9d ... PZT film formation (intermediate layer) 9e, 9f ... PZT film formation (uppermost layer)

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 H01L 27/108 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification code Internal reference number FI Technical indication H01L 27/108

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】<111>配向の白金膜上面にゾル・ゲル
法を用いて強誘電体薄膜を形成する方法であって、 強誘電体薄膜を複数の強誘電体成膜に分けて形成すると
ともに、 最上層の強誘電体成膜と白金膜との間に少なくとも一層
の中間層を設け、 前記白金膜から上の層へすすむに従い、下地の結晶配向
性を受継ぐことのできる範囲で格子間距離を順次変え
て、 焼成により優れた強誘電性を示す組成を有する理想ゾル
溶液を用いて最上層の強誘電体成膜を形成する、 ことを特徴とする強誘電体薄膜の製造方法。
1. A method of forming a ferroelectric thin film on a top surface of a <111> oriented platinum film by using a sol-gel method, wherein the ferroelectric thin film is divided into a plurality of ferroelectric film formations. At the same time, an intermediate layer of at least one layer is provided between the uppermost ferroelectric film and the platinum film, and as the platinum film is advanced to the upper layer, a lattice is formed within a range where the crystal orientation of the underlayer can be inherited. A method for producing a ferroelectric thin film, comprising forming an uppermost ferroelectric film by using an ideal sol solution having a composition exhibiting excellent ferroelectricity by sequentially changing the distance.
JP16253492A 1992-06-22 1992-06-22 Manufacture of ferroelectric thin film Pending JPH065947A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16253492A JPH065947A (en) 1992-06-22 1992-06-22 Manufacture of ferroelectric thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16253492A JPH065947A (en) 1992-06-22 1992-06-22 Manufacture of ferroelectric thin film

Publications (1)

Publication Number Publication Date
JPH065947A true JPH065947A (en) 1994-01-14

Family

ID=15756444

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16253492A Pending JPH065947A (en) 1992-06-22 1992-06-22 Manufacture of ferroelectric thin film

Country Status (1)

Country Link
JP (1) JPH065947A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002524850A (en) * 1998-08-31 2002-08-06 インフィネオン テクノロジース アクチエンゲゼルシャフト Microelectronic structure, method of manufacture thereof and its use in memory cells
JP2006199507A (en) * 2005-01-18 2006-08-03 National Institute Of Advanced Industrial & Technology Substrate for formation of (111)-oriented pzt-type dielectric film and (111)-oriented pzt-type dielectric film formed by using the substrate
CN100444975C (en) * 2004-12-24 2008-12-24 淮北煤炭师范学院 Method for preparing thin-film material of Sr (Ba, Ca) Fe, Mo, O in structure of double perovskite

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002524850A (en) * 1998-08-31 2002-08-06 インフィネオン テクノロジース アクチエンゲゼルシャフト Microelectronic structure, method of manufacture thereof and its use in memory cells
CN100444975C (en) * 2004-12-24 2008-12-24 淮北煤炭师范学院 Method for preparing thin-film material of Sr (Ba, Ca) Fe, Mo, O in structure of double perovskite
JP2006199507A (en) * 2005-01-18 2006-08-03 National Institute Of Advanced Industrial & Technology Substrate for formation of (111)-oriented pzt-type dielectric film and (111)-oriented pzt-type dielectric film formed by using the substrate

Similar Documents

Publication Publication Date Title
JP3113141B2 (en) Ferroelectric crystal thin film coated substrate, method of manufacturing the same, and ferroelectric thin film device using ferroelectric crystal thin film coated substrate
KR100360468B1 (en) manufacturing method of ferroelectric film, capacator adopting the film and menufacturing method of the capacator
US5439845A (en) Process for fabricating layered superlattice materials and making electronic devices including same
JP3476932B2 (en) Ferroelectric thin film, substrate coated with ferroelectric thin film, and method of manufacturing ferroelectric thin film
JPH09153597A (en) Ferroelectric thin film element, fabrication thereof, and ferroelectric memory element
JPH0799252A (en) Manufacture of ferroelectric film and semiconductor device using manufacture thereof
JP2002170938A (en) Semiconductor device and manufacturing method thereof
JP3105081B2 (en) Manufacturing method of ferroelectric thin film
JP3105080B2 (en) Manufacturing method of ferroelectric thin film
JPH0812494A (en) Production of oxide crystal thin film and thin-film element
JP2995290B2 (en) Method of forming PZT-based ferroelectric thin film
JP4237967B2 (en) Method for producing zirconate-lead titanate thick film using sol-gel process
JPH06305714A (en) Formation of ferroelectric film by sol-gel method and production of capacitor
JPH065947A (en) Manufacture of ferroelectric thin film
JPH0891841A (en) Production of ferroelectric film
JP3118702B2 (en) Method for manufacturing non-volatile memory thin film
JPH0632613A (en) Production of double oxide thin film
JP2004152922A (en) Manufacturing method of ferroelectric film
JPH09282943A (en) Manufacture of ferroelectric crystal thin film and ferroelectric capacitor
JPH06112504A (en) Manufacture of crystalline thin film
JP2000031411A (en) Manufacture of ferroelectric thin film
JPH10223847A (en) Manufacture of ferroelectric thin film element, ferroelectric thin film element and ferroelectric memory device
JP3267278B2 (en) Method for manufacturing semiconductor device
JP4075120B2 (en) Method for manufacturing ferroelectric thin film
JPH08316433A (en) Forming method of ferroelectric thin film of semiconductor device