JPH065940A - Superconductor thin-film board - Google Patents

Superconductor thin-film board

Info

Publication number
JPH065940A
JPH065940A JP4158224A JP15822492A JPH065940A JP H065940 A JPH065940 A JP H065940A JP 4158224 A JP4158224 A JP 4158224A JP 15822492 A JP15822492 A JP 15822492A JP H065940 A JPH065940 A JP H065940A
Authority
JP
Japan
Prior art keywords
thin film
conductor layer
normal conductor
superconductor thin
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP4158224A
Other languages
Japanese (ja)
Inventor
Hideki Yamawaki
秀樹 山脇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP4158224A priority Critical patent/JPH065940A/en
Publication of JPH065940A publication Critical patent/JPH065940A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Abstract

PURPOSE:To lessen the influence of scattered light by a board incident from the rear of a photoresist film, by using a composite layer board for suppressing scattered ultraviolet light from a transparent board for resist exposing. CONSTITUTION:A Bi2Sv2CuOx normal conductor layer 2 and a Bi2Sr2Cu2Ox superconductor 3 are deposited on a plane (100) MgO board 1 by halide CVD, for example. And plane (001) MgO has a lattice constant approximate to those of the normal conductor layer 2 and a superconductor thin-film 3. And the Bi2Sr2CuOx normal conductor layer 2 absorbs ultraviolet rays emitted from the openings of a glass mask 5 effectively, in case of the patterning of a photoresist film 4. Accordingly, it becomes possible to make the patterning precision higher, improve the performance of the superconducting element, and increase reproducibility, since the light-absorbing oxide normal conductor layer 2 absorbs scattered light too which has come back after being reflected by the rear of the MgO single crystal board 1 in groove 6 regions.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、超伝導体薄膜基板に関
し、特に酸化物高温超伝導体薄膜を形成した超伝導体薄
膜基板に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a superconductor thin film substrate, and more particularly to a superconductor thin film substrate having an oxide high temperature superconductor thin film formed thereon.

【0002】近年、相次いで発見された酸化物高温超伝
導体は、臨界温度が液体窒素温度(77K)以上である
ため、実用性が注目されてきた。これらは材料別にY
系、Bi系およびTl系グループに大別され、いずれも
内蔵するCu−O面が超伝導特性を示すことが明らかに
された。
[0002] In recent years, the high temperature oxide superconductors that have been discovered one after another have attracted attention for their practicality because their critical temperature is liquid nitrogen temperature (77K) or higher. These are Y by material
It was clarified that the Cu-O surface contained in each of the groups was roughly divided into the group of Bi-based, Bi-based, and Tl-based, and had a superconducting property.

【0003】これら高温酸化物超伝導体をエレクトロニ
クス分野のデバイス、たとえば超伝導配線、ジョセフソ
ン素子、超伝導トランジスタ、SQUID等に応用する
場合、粒界雑音を抑制し、通電電流密度を高め、かつ形
状加工を精密に行なって周辺の電子回路と接続するため
に、超伝導体は薄膜形状で用いられる。
When these high-temperature oxide superconductors are applied to devices in the field of electronics such as superconducting wirings, Josephson devices, superconducting transistors, SQUIDs, etc., grain boundary noise is suppressed, the current density is increased, and Superconductors are used in the form of thin films in order to perform precise shape processing and connect with peripheral electronic circuits.

【0004】[0004]

【従来の技術】基板上に堆積された超伝導体薄膜は、結
晶学的にみて高品位なものであればある程、一層超伝導
特性、たとえば臨界温度Tcや臨界電流密度に優れ、ま
た加工性、たとえば平坦性やエッチング特性が向上す
る。
2. Description of the Related Art The higher the crystallographic quality of a superconductor thin film deposited on a substrate is, the more excellent the superconducting properties are, for example, the critical temperature Tc and the critical current density. Properties such as flatness and etching characteristics are improved.

【0005】したがって、通常は酸化物単結晶基板の特
定面、たとえば(001)面上にC軸配向させて堆積す
る。エピタキシャル成長膜であれば最も好ましいが、C
軸配向多結晶でも実用性の高い超伝導特性が得られる。
C軸配向した超伝導体薄膜は、素子加工する際、通常の
ホトリソグラフィの技術を利用してパターニングされ
る。
Therefore, it is usually deposited with a C-axis orientation on a specific surface of the oxide single crystal substrate, for example, the (001) surface. Most preferred is an epitaxial growth film, but C
Highly practical superconducting properties can be obtained even with axially oriented polycrystals.
The C-axis oriented superconductor thin film is patterned by using a normal photolithography technique when the device is processed.

【0006】ところで、前記した超伝導体薄膜堆積用の
基板には、通常MgO、Al2 3あるいはSrTiO
3 の単結晶基板が用いられる。場合によっては、他の材
料からなる基板上に成長させたMgOが利用されること
もある。これら基板結晶は、一般にバンドギャップが広
く、可視領域からかなり短波長の紫外領域まで透明であ
る。
By the way, the substrate for depositing the superconductor thin film is usually MgO, Al 2 O 3 or SrTiO 3.
3 single crystal substrates are used. In some cases, MgO grown on a substrate made of another material may be used. These substrate crystals generally have a wide band gap and are transparent from the visible region to the ultraviolet region of a considerably short wavelength.

【0007】パターニングされたホトレジスト膜をマス
クとする超伝導体薄膜の選択エッチングは、Arイオン
ビームを用いたドライエッチングや熱燐酸を用いたウエ
ットエッチング等によって行なわれる。
The selective etching of the superconductor thin film using the patterned photoresist film as a mask is performed by dry etching using Ar ion beam, wet etching using hot phosphoric acid, or the like.

【0008】[0008]

【発明が解決しようとする課題】前記したように、超伝
導体薄膜堆積用の基板結晶に「透明な」酸化物が用いら
れるのは、これら材料が高温でも化学的に安定であり、
格子定数が超伝導体に比較的近く、また大型の良質な単
結晶が得られるためである。
As mentioned above, the use of "transparent" oxides in substrate crystals for superconducting thin film deposition is due to the fact that these materials are chemically stable at high temperatures.
This is because the lattice constant is relatively close to that of a superconductor, and a large-sized high quality single crystal can be obtained.

【0009】しかし、該基板上に、たとえばCVD法で
超伝導体薄膜を堆積させ、その上にホトレジスト膜をか
けて紫外(UV)光でパターニングすると、基板が「透
明」であるために不都合が生ずる。
However, if a superconductor thin film is deposited on the substrate by, for example, the CVD method, and a photoresist film is applied on the thin film and patterned by ultraviolet (UV) light, the substrate is "transparent". Occurs.

【0010】図2は、この問題点を説明するための図で
ある。図2において、酸化物単結晶基板11、たとえば
(001)面のMgO基板、上にはCVD法によって超
伝導体薄膜12、たとえば厚さ0.05〜0.4μmの
Bi−Sr−Ca−Cu−O系酸化物薄膜、が堆積して
いる。
FIG. 2 is a diagram for explaining this problem. In FIG. 2, an oxide single crystal substrate 11, for example, a MgO substrate having a (001) plane, is formed on the superconductor thin film 12 by a CVD method, for example, Bi-Sr-Ca-Cu having a thickness of 0.05 to 0.4 μm. -O-based oxide thin film is deposited.

【0011】その上に、ポジタイプのホトレジスト膜1
4を塗布し、金属パターンを形成したガラスマスク15
を重ねて選択露光する。レジスト露光用の紫外線はパタ
ーンの微細度によって異なるが、Hgランプのg線(4
36nm)またはi線(365nm)が使用されること
が多い。0.3μm以下の線幅加工には、エキシマレー
ザ光(KrFの248nm光やArFの193nm光)
が用いられることもある。
On top of that, a positive type photoresist film 1
Glass mask 15 coated with 4 to form a metal pattern
Selectively expose by overlapping. The ultraviolet rays for resist exposure differ depending on the fineness of the pattern, but the g-line (4
36 nm) or i-line (365 nm) is often used. Eximer laser light (248 nm light for KrF or 193 nm light for ArF) is used for line width processing of 0.3 μm or less.
Is sometimes used.

【0012】しかし、基板である酸化物単結晶のバンド
ギャップは10eV以上あり、レジスト露光用の紫外線
に対して「透明」である。この結果、ガラスマスク5の
開口部を透過してホトレジスト膜を感光した紫外光は、
一部「薄い」超伝導体薄膜12を透過する。
However, the band gap of the oxide single crystal as the substrate is 10 eV or more, and it is "transparent" to the ultraviolet rays for resist exposure. As a result, the ultraviolet light transmitted through the opening of the glass mask 5 and exposed to the photoresist film is
It partially penetrates the "thin" superconductor thin film 12.

【0013】そして、該酸化物単結晶基板11の表面で
反射して散乱光となり、超伝導体薄膜12を透過してホ
トレジスト膜14の裏面から感光する。特に、一旦酸化
物単結晶基板11内に侵入し、裏面で反射して戻る光は
マスク開口部とかなり異なるパターンとなる。このた
め、ホトレジスト膜14のパターニング精度は著しく低
下し、サブミクロンの微細加工は困難となる。
Then, the light is reflected by the surface of the oxide single crystal substrate 11 to become scattered light, which passes through the superconductor thin film 12 and is exposed from the back surface of the photoresist film 14. In particular, the light that once enters the oxide single crystal substrate 11, is reflected on the back surface and returns, has a pattern considerably different from that of the mask opening. For this reason, the patterning accuracy of the photoresist film 14 is significantly reduced, and it becomes difficult to perform sub-micron fine processing.

【0014】超伝導素子が微細化し、高機能化するにつ
れてアスペクト比を大きくとったり、多層化をはかる必
要があるため、超伝導体薄膜12の膜厚は薄くする必要
がある。その結果、超伝導体薄膜12を透過した後、反
射してホトレジスト膜14を裏面から露光する散乱光の
光量は一層増大し、悪影響はさらに広まる。
As the superconducting element becomes finer and has higher functionality, it is necessary to increase the aspect ratio and increase the number of layers. Therefore, the superconductor thin film 12 needs to be thin. As a result, after passing through the superconductor thin film 12, the amount of scattered light that reflects and exposes the photoresist film 14 from the back surface is further increased, and the adverse effect is further spread.

【0015】本発明の目的は、超伝導体薄膜を素子加工
するためのホトレジストマスクの選択露光の際、ホトレ
ジスト膜裏面から入射する基板散乱光の影響を低減する
技術を提供することである。
An object of the present invention is to provide a technique for reducing the influence of substrate scattered light incident from the back surface of the photoresist film at the time of selective exposure of the photoresist mask for device processing of the superconductor thin film.

【0016】[0016]

【課題を解決するための手段】本発明は、レジスト露光
用紫外線の透明基板からの散乱光を抑止するため、複合
層基板を用いる。
According to the present invention, a composite layer substrate is used to suppress scattered light of ultraviolet rays for resist exposure from a transparent substrate.

【0017】すなわち、本発明の超伝導体薄膜基板は、
所定の面方位を有し、露光波長に対して透明な酸化物単
結晶基板と、該基板上に堆積され、露光波長に対して不
透明な吸光性酸化物常伝導体層と、該吸光性酸化物常伝
導体層上に堆積した超伝導体薄膜とを有する。
That is, the superconductor thin film substrate of the present invention is
An oxide single crystal substrate having a predetermined plane orientation and transparent to an exposure wavelength, a light absorbing oxide normal conductor layer deposited on the substrate and opaque to the exposure wavelength, and the light absorbing oxide. And a superconductor thin film deposited on the normal conductor layer.

【0018】[0018]

【作用】吸光性酸化物常伝導体層は、超伝導体薄膜とレ
ジスト露光用紫外線に対して「透明な」酸化物単結晶基
板の中間に存在して、ホトレジスト膜および超伝導体薄
膜を透過してきた紫外光を効果的に吸収する。したがっ
て、この経路では酸化物単結晶基板に入射する紫外光を
減衰させ、発生した散乱光はさらに減衰させる。
[Function] The light-absorbing oxide normal conductor layer exists between the superconducting thin film and the "transparent" oxide single crystal substrate for resist exposure ultraviolet light, and penetrates the photoresist film and the superconducting thin film. It effectively absorbs the ultraviolet light. Therefore, in this path, the ultraviolet light incident on the oxide single crystal substrate is attenuated, and the generated scattered light is further attenuated.

【0019】一方、超伝導体薄膜堆積後、素子間分離の
ために第1のパターニングを行い、超伝導体薄膜、吸光
性酸化物常伝導体層を選択的に除去し、溝を形成する
と、該溝領域では酸化物単結晶基板表面が露出する。こ
の場合、各素子加工のため第2のパターニングを行なう
と、露光用紫外光が露出部から酸化物単結晶基板内に侵
入し、その散乱光が発生する。
On the other hand, after depositing the superconductor thin film, the first patterning is performed for element isolation, and the superconductor thin film and the light absorbing oxide normal conductor layer are selectively removed to form a groove. The surface of the oxide single crystal substrate is exposed in the groove region. In this case, when the second patterning is performed for processing each element, the ultraviolet light for exposure penetrates into the oxide single crystal substrate from the exposed portion, and the scattered light is generated.

【0020】しかし、各素子領域には吸光性常伝導体層
が配置されているので、散乱光は該常伝導体層下面から
入射して吸収される。それ故、この場合も散乱光がホト
レジスト膜下面に達する前に減衰する。
However, since the light-absorbing normal conductor layer is arranged in each element region, the scattered light enters from the lower surface of the normal conductor layer and is absorbed. Therefore, also in this case, scattered light is attenuated before reaching the lower surface of the photoresist film.

【0021】以下、本発明を実施例に基づいてより詳し
く述べる。
The present invention will be described in more detail below based on examples.

【0022】[0022]

【実施例】図1は、超伝導体薄膜を堆積させた超伝導体
薄膜基板上を素子加工するため、ホトレジスト膜をパタ
ーニングしている状態を示す断面図である。
EXAMPLE FIG. 1 is a sectional view showing a state in which a photoresist film is patterned in order to process an element on a superconductor thin film substrate on which a superconductor thin film is deposited.

【0023】図において、1は面方位(001)のMg
Oからなる酸化物単結晶基板を、2は該基板上にCVD
堆積した厚さ0.4μmのBi2 Sr2 CuOx 層から
なる吸光性酸化物常伝導体層を、3は該常伝導体層上に
CVD堆積した厚さ0.1μmのBi2 Sr2 CaCu
2 x 層からなる超伝導体薄膜を示す。
In the figure, 1 is Mg having a plane orientation (001).
An oxide single crystal substrate made of O is formed by CVD on the substrate 2.
A light-absorbing oxide normal conductor layer made of a deposited Bi 2 Sr 2 CuO x layer having a thickness of 0.4 μm and a Bi 2 Sr 2 CaCu layer having a thickness of 0.1 μm deposited by CVD on the normal conductor layer.
2 shows a superconductor thin film composed of a 2 O x layer.

【0024】また、4は該超伝導体薄膜3上に塗布され
たポジ型ホトレジスト膜を、5は該ホトレジスト膜に密
着して重ねられたパターニング用ガラスマスクを示す。
さらに、6は素子間分離のために設けられた溝である。
その深さは酸化物単結晶基板表面にまで達している。
Reference numeral 4 denotes a positive photoresist film coated on the superconductor thin film 3, and reference numeral 5 denotes a patterning glass mask which is closely adhered to the photoresist film.
Further, 6 is a groove provided for element isolation.
The depth reaches the surface of the oxide single crystal substrate.

【0025】図1に示したようなBi2 Sr2 CuOx
常伝導体層2およびBi2 Sr2 Cu2 x 超伝導体薄
膜3は、たとえばハライド系CVD法を用いて連続的に
(100)MgO基板1上に堆積させることができる。
Bi 2 Sr 2 CuO x as shown in FIG.
The normal conductor layer 2 and the Bi 2 Sr 2 Cu 2 O x superconductor thin film 3 can be continuously deposited on the (100) MgO substrate 1 by using, for example, a halide-based CVD method.

【0026】ハライドソース材料は、BiCl3 −Sr
I−CaI−CuBrであり、ソースチェンバ内でそれ
ぞれ独立に温度制御され、Heをキャリアガスとして基
板領域に輸送される。酸素および水分は別の導入口から
反応管内の基板領域に輸送されて、上記ハライドソース
ガスと合流、反応して基板上に前記常伝導体層2および
超伝導体薄膜3を連続的に堆積する。成長温度810〜
830℃で(001)MgO基板1上に、C軸配向した
グレインサイズ40〜100μmの多結晶層が平滑な成
長面で得られる。
The halide source material is BiCl 3 --Sr.
I-CaI-CuBr, each of which is temperature-controlled independently in the source chamber and is transported to the substrate region using He as a carrier gas. Oxygen and moisture are transported to the substrate region in the reaction tube through another inlet, join with the halide source gas and react with each other to continuously deposit the normal conductor layer 2 and the superconductor thin film 3 on the substrate. . Growth temperature 810
At 830 ° C., a C-axis oriented polycrystalline layer having a grain size of 40 to 100 μm is obtained on the (001) MgO substrate 1 with a smooth growth surface.

【0027】(001)面MgOは、前記した常伝導体
層2および超伝導体薄膜3と近似した格子定数を有す
る。Bi2 Sr2 CuOx 常伝導体層2は、ホトレジス
ト膜4のパターニングに際してガラスマスク5の開口部
から照射される紫外線を効果的に吸収する。該吸光性酸
化物常伝導体層2は、ホトレジスト膜4を通過して上面
から侵入する紫外光だけでなく、図示したように溝領域
のMgO単結晶基板1の裏面で反射されて戻ってくる散
乱光をも吸収する機能を持つ。
The (001) plane MgO has a lattice constant similar to that of the normal conductor layer 2 and the superconductor thin film 3 described above. The Bi 2 Sr 2 CuO x normal conductor layer 2 effectively absorbs the ultraviolet light emitted from the opening of the glass mask 5 when the photoresist film 4 is patterned. The light-absorbing oxide normal conductor layer 2 is reflected not only by the ultraviolet light penetrating from the upper surface through the photoresist film 4 but also by being reflected by the back surface of the MgO single crystal substrate 1 in the groove region and returns. It also has the function of absorbing scattered light.

【0028】前記した実施例では、Bi系常伝導体層2
および超伝導体層3は、ハライドCVD法でMgO基板
1上に堆積したが、やや格子定数の異なる酸化物単結晶
基板1、たとえばサファイア上にも堆積させることがで
きる。
In the embodiment described above, the Bi-based normal conductor layer 2 is used.
The superconductor layer 3 and the superconductor layer 3 are deposited on the MgO substrate 1 by the halide CVD method, but can be deposited on the oxide single crystal substrate 1 having a slightly different lattice constant, for example, sapphire.

【0029】この場合、基板温度を低下させて熱的歪を
少なくする目的でプラズマCVD法を用いることが望ま
しい。酸化成分(O2 +H2 O)ガスを電極間に流入せ
しめてプラズマ励起することによって堆積を進行させ
る。
In this case, it is desirable to use the plasma CVD method for the purpose of lowering the substrate temperature and reducing the thermal strain. The oxidizing component (O 2 + H 2 O) gas is caused to flow between the electrodes and plasma excitation is performed to promote the deposition.

【0030】前記したBi系常伝導体の組合せだけでは
なく、これ以外にたとえばBi系化合物としては、超伝
導体としてBi2 Sr2 Ca2 Cu3 x 、吸光性酸化
物常伝導体としてBi2 Sr2 Ca7 Cu8 x や金属
成分M(M=Nb、ZrまたはTa)を0.5〜1wt
%含有するSrTiO3 であるM−SrTiO3 、ある
いはCuO、Cu2 O等を用いることも可能である。
In addition to the combination of the Bi-based normal conductors described above, other examples of Bi-based compounds include Bi 2 Sr 2 Ca 2 Cu 3 O x as a superconductor and Bi as a light-absorbing oxide normal conductor. 0.5 to 1 wt% of 2 Sr 2 Ca 7 Cu 8 O x and metal component M (M = Nb, Zr or Ta)
It is also possible to use M-SrTiO 3 , which is SrTiO 3 contained in%, CuO, Cu 2 O or the like.

【0031】また、Y系常伝導体、超伝導体の組合せと
しては、たとえば超伝導体としてYBa2 Cu3 x
YBa2 Cu4 x 、吸光性酸化物常伝導体としてPr
Ba 2 Cu3 x や上記したM−SrTiO3 、Cu
O、Cu2 O等を用いることができる。
In addition, a combination of a Y-type normal conductor and a superconductor
For example, as a superconductor, YBa2Cu3OxOr
YBa2CuFourOx, Pr as a light-absorbing oxide normal conductor
Ba 2Cu3OxAnd M-SrTiO described above3, Cu
O, Cu2O or the like can be used.

【0032】上述の透光性単結晶基板と吸光性酸化物常
伝導体層の複合基板は、散乱光吸収だけでなく超伝導体
薄膜を用いた積層方向通電素子形成にも役立てることが
できる。
The above-mentioned composite substrate of the translucent single crystal substrate and the light-absorbing oxide normal conductor layer can be utilized not only for absorbing scattered light but also for forming a current-carrying element in the stacking direction using a superconductor thin film.

【0033】たとえば、図3で示したように、常伝導体
層を電極への通電路として利用する方法がある。図3に
おいては、酸化物単結晶基板1上に吸光性酸化物常伝導
体層2が形成され、その上に超伝導体薄膜3A、常伝導
体薄膜7、超伝導体薄膜3Bが堆積され、SNS型ジョ
セフソン素子を形成している。超伝導体薄膜3Bの上に
は常伝導体の電極8が形成されている。
For example, as shown in FIG. 3, there is a method of using a normal conductor layer as a current-carrying path to an electrode. In FIG. 3, a light-absorbing oxide normal conductor layer 2 is formed on an oxide single crystal substrate 1, and a superconductor thin film 3A, a normal conductor thin film 7, and a superconductor thin film 3B are deposited thereon. An SNS type Josephson element is formed. A normal conductor electrode 8 is formed on the superconductor thin film 3B.

【0034】酸化物単結晶基板1、吸光性酸化物常伝導
体層2、超伝導体薄膜3は、上述の実施例同様の材料で
形成される。SNS型ジョセフソン素子に垂直方向に電
流を流すため、常伝導体薄膜7を超伝導体薄膜3A、3
Bで挟んだ構成を採用している。吸光性酸化物常伝導体
層2は、下側電極としても機能する。
The oxide single crystal substrate 1, the light-absorbing oxide normal conductor layer 2, and the superconductor thin film 3 are made of the same materials as those in the above-mentioned embodiments. In order to pass a current in the vertical direction to the SNS type Josephson element, the normal conductor thin film 7 is replaced by the superconductor thin films 3A, 3A, 3
The configuration sandwiched between B is adopted. The light-absorbing oxide normal conductor layer 2 also functions as a lower electrode.

【0035】なお、透光性酸化物単結晶基板1は、前記
したMgOやサファイア以外にも、たとえばSrTiO
3 を用いてもよい。以上実施例に沿って本発明を説明し
たが、本発明はこれらに制限されるものではない。たと
えば、種々の変更、改良、組み合わせ等が可能なことは
当業者に自明であろう。
The translucent oxide single crystal substrate 1 is made of, for example, SrTiO 3 in addition to the above-mentioned MgO and sapphire.
3 may be used. Although the present invention has been described above with reference to the embodiments, the present invention is not limited thereto. For example, it will be apparent to those skilled in the art that various modifications, improvements, combinations, and the like can be made.

【0036】[0036]

【発明の効果】以上説明したように、本発明によれば、
基板上に堆積させた超伝導体薄膜の素子化のためのホト
リソグラフィ工程において、パターニングの精度を向上
させることができる。この結果、超伝導素子の性能向
上、再現性向上をはかることができる。
As described above, according to the present invention,
In the photolithography process for converting the superconductor thin film deposited on the substrate into a device, the patterning accuracy can be improved. As a result, it is possible to improve the performance and reproducibility of the superconducting device.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例による超伝導体薄膜基板を用い
たホトリソグラフィ工程を示す断面図である。
FIG. 1 is a sectional view showing a photolithography process using a superconductor thin film substrate according to an embodiment of the present invention.

【図2】従来例による超伝導体薄膜基板を用いたホトリ
ソグラフィ工程を示す断面図である。
FIG. 2 is a sectional view showing a photolithography process using a conventional superconductor thin film substrate.

【図3】本発明の基板の応用例を示す図である。FIG. 3 is a diagram showing an application example of the substrate of the present invention.

【符号の説明】[Explanation of symbols]

1 酸化物単結晶基板 2 吸光性酸化物常伝導体層 3 超伝導体薄膜 4 ポジ型ホトレジスト膜 5 ガラスマスク 6 溝 11 MgO単結晶基板 12 (Bi−Sr−Ca−Cu−O系)酸化物超伝導
体薄膜 14 ポジ型ホトレジスト膜 15 ガラスマスク
1 Oxide Single Crystal Substrate 2 Absorbing Oxide Normal Conductor Layer 3 Superconductor Thin Film 4 Positive Photoresist Film 5 Glass Mask 6 Groove 11 MgO Single Crystal Substrate 12 (Bi-Sr-Ca-Cu-O System) Oxide Superconductor thin film 14 Positive photoresist film 15 Glass mask

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 所定の面方位を有し、露光波長に対して
透明な酸化物単結晶基板(1)と、 該基板(1)上に堆積され、露光波長に対して不透明な
吸光性酸化物常伝導体層(2)と、 該吸光性酸化物常伝導体層(2)上に堆積した超伝導体
薄膜(3)とを有する超伝導体薄膜基板。
1. An oxide single crystal substrate (1) having a predetermined plane orientation and transparent to an exposure wavelength, and a light absorbing oxide deposited on the substrate (1) and opaque to the exposure wavelength. A superconductor thin film substrate comprising a material normal conductor layer (2) and a superconductor thin film (3) deposited on the light absorbing oxide normal conductor layer (2).
【請求項2】 前記酸化物単結晶基板(1)が、Mg
O、Al2 3 またはSrTiO3 で形成され、かつ前
記超伝導体薄膜(3)がBi系またはY系超伝導体で形
成される請求項1記載の超伝導体薄膜基板。
2. The oxide single crystal substrate (1) is Mg
The superconductor thin film substrate according to claim 1, which is formed of O, Al 2 O 3 or SrTiO 3 , and the superconductor thin film (3) is formed of a Bi-based or Y-based superconductor.
【請求項3】 前記吸光性酸化物常伝導体層(2)は、
Bi系超伝導体に対してはM−SrTiO3 (ただし、
MはNb、ZrまたはTaであり、M−SrTiO3
これらを0.5〜1wt%含有するSrTiO3 )、C
uO、Cu2O,Bi2 Sr2 CuOx およびBi2
2 Ca7 Cu8 x からなる群のうち一種類以上の材
料、Y系超伝導体に対してはM−SrTiO3 (ただ
し、MはNb、ZrまたはTaであり、M−SrTiO
3 はこれらを0.5〜1wt%含有するSrTi
3 )、CuO、Cu2 O,PrBa2 Cu3 x から
なる群のうち一種類の材料、から形成される請求項2記
載の超伝導体薄膜基板。
3. The light absorbing oxide normal conductor layer (2) comprises:
For Bi-based superconductors, M-SrTiO 3 (however,
M is Nb, Zr or Ta, SrTiO 3 M-SrTiO 3 is containing these 0.5~1wt%), C
uO, Cu 2 O, Bi 2 Sr 2 CuO x and Bi 2 S
One or more materials from the group consisting of r 2 Ca 7 Cu 8 O x, M-SrTiO 3 for Y-based superconductors (where M is Nb, Zr or Ta, and M-SrTiO 3
3 is SrTi containing 0.5 to 1 wt% of these
The superconductor thin film substrate according to claim 2, which is made of one material selected from the group consisting of O 3 ), CuO, Cu 2 O, and PrBa 2 Cu 3 O x .
JP4158224A 1992-06-17 1992-06-17 Superconductor thin-film board Withdrawn JPH065940A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4158224A JPH065940A (en) 1992-06-17 1992-06-17 Superconductor thin-film board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4158224A JPH065940A (en) 1992-06-17 1992-06-17 Superconductor thin-film board

Publications (1)

Publication Number Publication Date
JPH065940A true JPH065940A (en) 1994-01-14

Family

ID=15666996

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4158224A Withdrawn JPH065940A (en) 1992-06-17 1992-06-17 Superconductor thin-film board

Country Status (1)

Country Link
JP (1) JPH065940A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000016413A1 (en) * 1998-09-14 2000-03-23 Commonwealth Scientific And Industrial Research Organisation Superconducting device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000016413A1 (en) * 1998-09-14 2000-03-23 Commonwealth Scientific And Industrial Research Organisation Superconducting device

Similar Documents

Publication Publication Date Title
US5729046A (en) Superconducting device having pinning regions
US5196395A (en) Method for producing crystallographic boundary junctions in oxide superconducting thin films
US5719105A (en) Superconducting element
JPH08153908A (en) Superconducting field-effect element with grain boundary channel and its manufacture
US5801393A (en) Superconductor-insulator-superconductor Josephson tunnel junction and method therefor
US20030107033A1 (en) Trilayer heterostructure junctions
JP3278638B2 (en) High-temperature superconducting Josephson junction and method of manufacturing the same
US5439875A (en) Process for preparing Josephson junction device having weak link of artificial grain boundary
US4980341A (en) Method of fabricating grain boundary Josephson junction
CA2064169C (en) Method of forming compound oxide superconducting thin film
US5354734A (en) Method for manufacturing an artificial grain boundary type Josephson junction device
EP0493258B1 (en) Superconducting quantum interference device formed of oxide superconductor thin film
JPH065940A (en) Superconductor thin-film board
EP0573340B1 (en) Josephson junction device formed of oxide superconductor
US5571777A (en) Superconducting thin film having at least one isolated superconducting region formed of oxide superconductor material and method for manufacturing the same
JP3189403B2 (en) Element having superconducting junction and method of manufacturing the same
EP0422641B1 (en) Superconductor device
JPH033375A (en) Manufacture of oxide superconducting device
US5646096A (en) Process for fabrication superconducting wiring lines
US7323711B2 (en) High-temperature superconductive device
JP2980716B2 (en) Optical element using oxide high temperature superconducting thin film electrode layer
JPH04284632A (en) Formation of superconductor line
JP2921697B2 (en) Superconducting storage element
KR100416755B1 (en) Ramp-edge high-temperature superconducting josephson junction structure using gallium doping ybco and fabricating method thereof
Barnard et al. Fabrication techniques for thin film applications of high temperature superconductors

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19990831