JP2921697B2 - Superconducting storage element - Google Patents

Superconducting storage element

Info

Publication number
JP2921697B2
JP2921697B2 JP2077784A JP7778490A JP2921697B2 JP 2921697 B2 JP2921697 B2 JP 2921697B2 JP 2077784 A JP2077784 A JP 2077784A JP 7778490 A JP7778490 A JP 7778490A JP 2921697 B2 JP2921697 B2 JP 2921697B2
Authority
JP
Japan
Prior art keywords
superconductor
layer
storage element
junction
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2077784A
Other languages
Japanese (ja)
Other versions
JPH03276776A (en
Inventor
保彦 竹村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Energy Laboratory Co Ltd
Original Assignee
Semiconductor Energy Laboratory Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Energy Laboratory Co Ltd filed Critical Semiconductor Energy Laboratory Co Ltd
Priority to JP2077784A priority Critical patent/JP2921697B2/en
Publication of JPH03276776A publication Critical patent/JPH03276776A/en
Application granted granted Critical
Publication of JP2921697B2 publication Critical patent/JP2921697B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Superconductor Devices And Manufacturing Methods Thereof (AREA)

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は超伝導体を利用した記憶素子に関するもので
ある。
Description: TECHNICAL FIELD OF THE INVENTION The present invention relates to a storage element using a superconductor.

〔従来技術及びその問題点〕[Prior art and its problems]

従来超伝導体を利用した記憶素子としてはジョセフソ
ン接合を用いた素子が提案されていた。これは、既に金
属系超伝導体をもちいて試作されている。しかしなが
ら、金属系超伝導体はその臨界温度が極めて低く、冷却
には高価で資源的にも偏在したヘリウムを必要とした。
一方、近年、液体窒素温度以上の高温でも、超伝導を示
す超伝導体が酸化物において見出された。いわゆる酸化
物高温超伝導体である。それを用いて従来の如く記憶素
子を作れば液体窒素冷却で動作させることが可能である
と考えられる。しかしながら、これら酸化物高温超伝導
体は、コヒーレント長が極めて短く、化学反応性が強い
ため、人工的なジョセフソン接合は作製されていない。
現在までに報告されているジョセフソン効果は、自然に
発生する結晶粒界によるものであり、これは人工的に制
御することが難しいため素子の作製には無理がある。そ
こで、ジョセフソン接合を全く使用しない素子(記憶素
子を含む)の開発が必要とされていた。
Conventionally, as a storage element using a superconductor, an element using a Josephson junction has been proposed. This has already been prototyped using a metallic superconductor. However, the metal-based superconductor has a very low critical temperature, and requires helium which is expensive and unevenly distributed in terms of resources for cooling.
On the other hand, in recent years, superconductors exhibiting superconductivity even at a high temperature equal to or higher than the temperature of liquid nitrogen have been found in oxides. It is a so-called oxide high-temperature superconductor. It is considered that a storage element can be operated by cooling with liquid nitrogen if a storage element is made by using it as in the related art. However, these oxide high-temperature superconductors have an extremely short coherent length and strong chemical reactivity, so that no artificial Josephson junction has been produced.
The Josephson effect reported to date is due to naturally occurring crystal grain boundaries, which are difficult to control artificially, making fabrication of the device impossible. Therefore, development of an element (including a storage element) that does not use a Josephson junction at all has been required.

本発明は上記の通り、ジョセフソン素子等、作製上の
困難なものを全く含まない素子を目的とする。
As described above, an object of the present invention is to provide a device that does not include any difficult-to-manufacture device such as a Josephson device.

〔問題を解決するための手段〕[Means for solving the problem]

そのためにジョセフソン接合に変わって、準粒子トン
ネル接合もしくはSIN接合と呼ばれる、超伝導体−絶縁
体−常伝導体接合を使用する。これはジョセフソン接合
が超伝導体−絶縁体−超伝導体接合であるため、どおし
ても、絶縁体層を形成した後、再び、超伝導体を形成す
るために高温の処理が必要であったのに対し、一度超伝
導体層を形成すれば、その後の絶縁体層と常伝導体層は
室温で簡単な装置(例えば真空蒸着装置やスパッタリン
グ成膜装置等)で制御性よく作製が可能である。加え
て、この接合の速度の速度はジョセフソン接合のものに
比して、決して遅くはない。
For this purpose, a superconductor-insulator-normal conductor junction called a quasiparticle tunnel junction or SIN junction is used instead of a Josephson junction. This is because the Josephson junction is a superconductor-insulator-superconductor junction, so even after all, high-temperature processing is necessary to form the superconductor again after forming the insulator layer. On the other hand, once the superconductor layer is formed, the subsequent insulator layer and normal conductor layer can be manufactured at room temperature with a simple device (for example, a vacuum deposition device or a sputtering film deposition device) with good controllability. It is. In addition, the speed of this junction is by no means slower than that of the Josephson junction.

本発明における記憶素子は第1図(d)のように酸化
物超伝導体層、絶縁体の薄い膜と金属からなり、場合に
よっては酸化物超伝導体と金属層の間の絶縁体膜は設け
られないこともある。この素子は絶縁体層が設けられな
いこともある。この素子は絶縁層が設けられても、そう
でなくても本質的には超伝導−絶縁体−常伝導体(SIN
と略記する)接合からなっている。この例ではSIN接合
は2つであるが、必要に応じて3つ、4つの接合を直列
に接続することもある。
The storage element according to the present invention comprises an oxide superconductor layer, a thin film of an insulator and a metal as shown in FIG. 1 (d). In some cases, the insulator film between the oxide superconductor and the metal layer is It may not be provided. This element may not be provided with an insulator layer. This element is essentially a superconductor-insulator-normal conductor (SIN) with or without an insulating layer.
(Abbreviated as). In this example, there are two SIN junctions, but three or four junctions may be connected in series as needed.

次にこの素子の動作原理を説明する。この素子の超伝
導体の臨界温度以下の有限温度における電圧−電流特性
の概念図を第3図に示す。ここでΔは超伝導体のエネル
ギーギャップ(単位は電子ボルトev)、eは電気素量1.
6×10-19cである。SIN接合が1つの場合には、電流が立
ち上がるときの電圧の大きさはΔ/eであるが、この場合
にはSIN接合が2つあるのでその2倍の2Δ/eである。
もしなんらかの理由でエネルギーギャップが小さくなっ
たら、そのときの電圧−電流特性は第3図の破線のよう
になる。
Next, the operation principle of this element will be described. FIG. 3 shows a conceptual diagram of voltage-current characteristics at a finite temperature below the critical temperature of the superconductor of this element. Here, Δ is the energy gap of the superconductor (the unit is electron volt ev), and e is the elementary charge 1.
6 × 10 -19 c. When there is one SIN junction, the magnitude of the voltage when the current rises is Δ / e. In this case, since there are two SIN junctions, it is twice as large as 2Δ / e.
If the energy gap becomes smaller for some reason, the voltage-current characteristic at that time becomes as shown by the broken line in FIG.

さて、エネルギーギャップがΔという状態で素子にV
<2Δ/eなるバイアス電圧Vをかけたとしよう。このと
きのエネルギー準位は第2図(a)のようになる。第2
図は本発明のエネルギー準位を示す図であり、(22)は
超伝導体、(21)は常伝導体、Δはエネルギーギャッ
プ、Vはバイアス電圧を示す。
Now, when the energy gap is Δ, V
Suppose that a bias voltage V of <2Δ / e is applied. The energy level at this time is as shown in FIG. Second
The figure shows the energy levels of the present invention, where (22) is a superconductor, (21) is a normal conductor, Δ is an energy gap, and V is a bias voltage.

超伝導体(22)にはそのフェルミ面(23)を中心とし
て2Δだけエネルギー準位にギャップがある。矢印はト
ンネル電流を表す。光照射によるエネルギーギャップの
変化によってトンネル電流が観測される。) ここでそのエネルギーが2Δ/e以上の光が照射された
とする。超伝導キャリヤー対はこの光を吸収し、2つの
常伝導キャリヤーすなわち準粒子となって、ギャップの
上方に励起される。とともに、非平衡超伝導効果によっ
て、超伝導体のエネルギーギャップが狭められる。この
時のエネルギーギャップΔは、 Δ=Δ(0)−2nqp/N(0) (1) であらわされる。ここで、nqpは準粒子の量、Δ(0)
は絶対零度での超伝導エネルギーギャップであり、N
(0)は超伝導体の常伝導状態でのフェルミ面の状態密
度である。
The superconductor (22) has a gap in its energy level by 2Δ around its Fermi surface (23). Arrows indicate tunnel current. A tunnel current is observed due to a change in the energy gap due to light irradiation. Here, it is assumed that light having an energy of 2Δ / e or more is irradiated. The superconducting carrier pair absorbs this light and becomes two normal carriers or quasiparticles, which are excited above the gap. At the same time, the energy gap of the superconductor is narrowed by the non-equilibrium superconductivity effect. The energy gap Δ at this time is expressed as follows: Δ = Δ (0) −2n qp / N (0) (1) Where n qp is the amount of quasiparticles, Δ (0)
Is the superconducting energy gap at absolute zero, N
(0) is the state density of the Fermi surface in the normal state of the superconductor.

エネルギーギャップがV以下になったとき、トンネル
効果によって素子に電流が流れる(第2図(b))。と
ころが、左の常伝導体から超伝導体にながれてくるキャ
リャーは準粒子として振る舞う。電流が十分少なけれ
ば、式(1)からも明らかなようにΔの変化も小さく、
光の照射が終わればもとの超伝導状態に復帰するが、多
量の電流が流れていた場合には光が遮断されてΔがもと
の状態に復帰せず、したがって、定常的にトンネル電流
が流れるようになる(第2図(c))。すなわち、記憶
状態と見なせる。第3図で説明すると、バイアス電圧V
を印加しただけの状態のときはA点にある。これに光を
照射するとB点に移り、光が無くなってもその位置に留
まる。点Aから点Bへの移動はエネルギーギャップの変
化の速度によって決定されるが、この過程に要する時間
は1〜10psと考えられているため、極めて高速で動作可
能である。
When the energy gap becomes equal to or less than V, a current flows through the device due to a tunnel effect (FIG. 2B). However, carriers that flow from the left normal conductor to the superconductor behave as quasiparticles. If the current is sufficiently small, the change in Δ is also small, as is apparent from equation (1).
It returns to the original superconducting state when the light irradiation ends, but if a large amount of current is flowing, the light is shut off and Δ does not return to the original state. Flow (FIG. 2 (c)). That is, it can be regarded as a memory state. Referring to FIG. 3, the bias voltage V
Is at the point A when the state is just applied. When this is irradiated with light, it moves to point B, and remains at that position even when the light is gone. The movement from the point A to the point B is determined by the speed of change of the energy gap. However, since the time required for this process is considered to be 1 to 10 ps, the operation can be performed at an extremely high speed.

以上のように本発明の素子は超伝導体層、金属層とい
う接合(SN接合)もしくは超伝導体層、絶縁層、金属層
という接合(SIN接合)を直列に2つ以上有する素子
で、超伝導臨界温度以下の温度において、素子の両端に
nΔ/e(ただし、Δは超伝導体のエネルギーギャップ
(単位は電子ボルトev)、eは電気素量1.6×10-19c、
nは接合の数)以下の電圧をかけた状態で、超伝導体層
に光を照射することによって、トンネル電流を流し、こ
れが光を遮断した後も流れ続けることを用いて、書込
み、記憶することのできる素子である。
As described above, the element of the present invention is an element having two or more junctions of a superconductor layer and a metal layer (SN junction) or junctions of a superconductor layer, an insulating layer and a metal layer (SIN junction) in series. At a temperature below the conduction critical temperature, nΔ / e (where Δ is the energy gap of the superconductor (unit: electron volt ev), e is the elementary charge 1.6 × 10 -19 c,
(n is the number of junctions) Write and store data by applying a light to the superconductor layer while applying a voltage of less than or equal to the number of junctions, thereby causing a tunnel current to flow and continuing to flow even after the light is cut off. It is an element that can be used.

本発明に用いられる超伝導体としては低キャリヤー濃
度超伝導体として知られている、イットリウム(もしく
は他のランタノイド族元素)−バリウム−銅−酸素から
なる超伝導体、もしくは主としてビスマス−ストロンチ
ウム−カルシウム−銅−酸素からなる超伝導体、もしく
は主としてタリウム−バリウム−カルシウム−銅−酸素
からなる超伝導体、もしくはランタン−アルカリ土類金
属−銅−酸素からなる超伝導体、もしくはバリウム−カ
リウム−ビスマス−酸素からなる超伝導体、もしくはバ
リウム−ビスマス−鉛−酸素からなる超伝導体を用いる
ことができる。
The superconductor used in the present invention is a superconductor composed of yttrium (or another lanthanoid element) -barium-copper-oxygen, or mainly bismuth-strontium-calcium, which is known as a low carrier concentration superconductor. A superconductor composed of copper-oxygen, or a superconductor composed mainly of thallium-barium-calcium-copper-oxygen, or a superconductor composed of lanthanum-alkaline earth metal-copper-oxygen, or barium-potassium-bismuth A superconductor composed of oxygen or a superconductor composed of barium-bismuth-lead-oxygen can be used.

以下に実施例を示しさらに詳細に本発明を説明する。 Hereinafter, the present invention will be described in more detail with reference to Examples.

実施例 第1図に本発明の超伝導記憶素子の作製工程を示す。Embodiment FIG. 1 shows a manufacturing process of a superconducting memory element of the present invention.

酸化物超伝導体Bi2Sr2CaCu2O8薄膜(2)(膜厚は約
0.1μm)を通常のスパッタリング法によって酸化マグ
ネシウム単結晶(100)面基板(3)上に作製し、さら
にその上に厚さ約10nmの酸化アルミニウム薄膜(1)を
堆積した(第1図(a))。超伝導体膜(2)及び酸化
アルミニウム膜(1)は極めて平坦な膜であり、粒界ら
しきものは認められなかった。X線解析法によってこの
超伝導体膜はC軸が基板に対して垂直であることがわか
った。また、磁化率測定から、90K以下で超伝導を示す
ことがわかった。
Oxide superconductor Bi 2 Sr 2 CaCu 2 O 8 thin film (2) (thickness is about
0.1 μm) was formed on a magnesium oxide single crystal (100) plane substrate (3) by a usual sputtering method, and an aluminum oxide thin film (1) having a thickness of about 10 nm was further deposited thereon (FIG. 1 (a) )). The superconductor film (2) and the aluminum oxide film (1) were extremely flat films, and no grain boundary was observed. X-ray analysis revealed that the C-axis of this superconductor film was perpendicular to the substrate. In addition, the susceptibility measurement revealed that superconductivity was exhibited below 90K.

この絶縁層(1)及び酸化物超伝導体薄膜(2)を通
常のフォトリソグラフィー法によってエッチングし、一
辺の長さ5μmの正方形に加工した(第1図(b))。
さらにその上に第1図(c)のように酸化アルミニュウ
ムの厚さ約0.1μmの薄膜(5)をマスク(4)を用い
て真空蒸着法によって形成した。最後にやはりマスクを
用いて真空蒸着法によって金の薄膜(6)(厚さ約0.1
μm)を堆積し、SIN接合とした。この金の薄膜(6)
が素子の電極も兼ねる。2つのSIN接合の間隔は約2μ
mであった。
The insulating layer (1) and the oxide superconductor thin film (2) were etched by ordinary photolithography to form a square having a side of 5 μm (FIG. 1 (b)).
Further, as shown in FIG. 1 (c), a thin film (5) of aluminum oxide having a thickness of about 0.1 μm was formed thereon by a vacuum deposition method using a mask (4). Finally, a gold thin film (6) (thickness of about 0.1
μm) to form a SIN junction. This gold thin film (6)
Serves also as an electrode of the element. The spacing between two SIN junctions is about 2μ
m.

このようにして作製した素子の特性を調べた。素子を
液体窒素で冷却し、バイアス電圧として10mvを印加し
た。この状態でパルス幅約10nsのNd:YAGレーザー光(波
長1.06μm)を照射した。0.1mJ/cm2以上の光の照射に
よって素子が記憶状態になることがわかった。このとき
素子に流れる電流の大きさは約5μAであった。
The characteristics of the device manufactured in this manner were examined. The device was cooled with liquid nitrogen, and 10 mv was applied as a bias voltage. In this state, Nd: YAG laser light (wavelength 1.06 μm) having a pulse width of about 10 ns was irradiated. It was found that the element was brought into a memory state by irradiation with light of 0.1 mJ / cm 2 or more. At this time, the magnitude of the current flowing through the element was about 5 μA.

〔発明の効果〕〔The invention's effect〕

本発明によれば、従来から知られていた超伝導体(特
に低キャリヤー濃度超伝導体)、および近年発見された
液体窒素温度を超える臨界温度を超える臨界温度を有す
る酸化物高温超伝導体を本発明の記憶素子に適用でき
る。本発明の記憶素子は、その書込みに要する時間が極
めて短くてすみ、かつジョセフソン接合が無いため構造
及び作製方法が簡単である。本発明の記憶素子は、超伝
導体素子を使用したコンピュータや半導体を使用したコ
ンピュータの記憶素子として幅広く使用されうる。
According to the present invention, a conventionally known superconductor (particularly, a low carrier concentration superconductor) and an oxide high-temperature superconductor having a critical temperature exceeding a critical temperature exceeding a liquid nitrogen temperature recently discovered have been obtained. It can be applied to the storage element of the present invention. The storage element of the present invention requires only a very short time for writing and has a simple structure and manufacturing method because there is no Josephson junction. The storage element of the present invention can be widely used as a storage element of a computer using a superconductor element or a computer using a semiconductor.

本発明によれば、量産性・再現性に優れた酸化物超伝
導体を使用した記憶素子ができるようになった。この記
憶素子は、液体窒素温度でも十分動作する超伝導体素子
であるため、従来の金属系超伝導体を用いた超伝導体素
子よりも運転コストが安くできる。またジョセフソン接
合を用いないので構造が簡単で、作製が容易である。
According to the present invention, a memory element using an oxide superconductor excellent in mass productivity and reproducibility can be obtained. Since this storage element is a superconductor element that operates sufficiently even at the temperature of liquid nitrogen, the operating cost can be lower than that of a conventional superconductor element using a metal-based superconductor. Also, since no Josephson junction is used, the structure is simple and the fabrication is easy.

本発明によれば、超伝導体層を作製した後、絶縁体層
あるいは常伝導体層は、室温で簡単な装置で作製できる
ため、作製が容易になった。
According to the present invention, after the superconductor layer is manufactured, the insulator layer or the normal conductor layer can be manufactured with a simple device at room temperature, which facilitates the manufacturing.

以上のことから明らかなように、本発明は、工業上有
益な発明である。
As is clear from the above, the present invention is an industrially useful invention.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の記憶素子の作製方法を示す図 第2図は本発明の記憶素子のエネルギー準位図 第3図は本発明の記憶素子における電流−電圧特性を示
す図 (実線は光を照射しないとき、破線は光を照射したと
き、及びその後) 1……絶縁層(酸化アルミニウム) 2……超伝導体層(Bi2Sr2CaCu2O8) 3……基板(酸化マグネシウム) 4……マスク 5……絶縁膜(酸化アルミニウム) 6……常伝導体膜(金)
FIG. 1 is a diagram showing a method for manufacturing a memory device of the present invention. FIG. 2 is an energy level diagram of the memory device of the present invention. FIG. 3 is a diagram showing current-voltage characteristics of the memory device of the present invention. when not irradiated, when the broken line is irradiated with light, and thereafter) 1 ...... insulating layer (aluminum oxide) 2 ...... superconductor layer (Bi 2 Sr 2 CaCu 2 O 8) 3 ...... substrate (magnesium oxide) 4 Mask 5 Insulating film (aluminum oxide) 6 Normal conductor film (gold)

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】超伝導体層−金属層接合もしくは超伝導体
層−絶縁層−金属層接合を有する超伝導記憶素子におい
て、 前記超伝導記憶素子に書き込みまたは記憶をするため
に、前記超伝導体層に光を照射することを特徴とする超
伝導記憶素子。
1. A superconducting memory element having a superconductor layer-metal layer junction or a superconductor layer-insulating layer-metal layer junction, wherein said superconducting memory element is written or stored in said superconducting memory element. A superconducting storage element characterized in that a body layer is irradiated with light.
JP2077784A 1990-03-27 1990-03-27 Superconducting storage element Expired - Fee Related JP2921697B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2077784A JP2921697B2 (en) 1990-03-27 1990-03-27 Superconducting storage element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2077784A JP2921697B2 (en) 1990-03-27 1990-03-27 Superconducting storage element

Publications (2)

Publication Number Publication Date
JPH03276776A JPH03276776A (en) 1991-12-06
JP2921697B2 true JP2921697B2 (en) 1999-07-19

Family

ID=13643600

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2077784A Expired - Fee Related JP2921697B2 (en) 1990-03-27 1990-03-27 Superconducting storage element

Country Status (1)

Country Link
JP (1) JP2921697B2 (en)

Also Published As

Publication number Publication date
JPH03276776A (en) 1991-12-06

Similar Documents

Publication Publication Date Title
Matisoo The tunneling cryotron—A superconductive logic element based on electron tunneling
Cardwell et al. Handbook of superconducting materials
KR910002311B1 (en) A superconductor device
US6753546B2 (en) Trilayer heterostructure Josephson junctions
US5278140A (en) Method for forming grain boundary junction devices using high Tc superconductors
JPH06500669A (en) Grain boundary bonding in high-temperature superconductor films
JPH07126836A (en) Superconducting element
US20080146449A1 (en) Electrical device and method of manufacturing same
JP2921697B2 (en) Superconducting storage element
EP0493258B1 (en) Superconducting quantum interference device formed of oxide superconductor thin film
Chaudhari et al. Critical current measurements in single crystals and single-grain boundaries in YBa 2 Cu 3 O 7 films
Kobayashi et al. Three terminal YBaCuO Josephson device with quasi-particle injection gate
US5480859A (en) Bi-Sr-Ca-Cu-O superconductor junction through a Bi-Sr-Cu-O barrier layer
Rowell The status, recent progress and promise of superconducting materials for practical applications
EP0482198B1 (en) Superconducting tunnel junction element comprising a magnetic oxide material and its use
Beasley et al. Josephson junction electronics: materials issues and fabrication techniques
MacVicar Amorphous carbon films: Conduction across metal/carbon/metal sandwiches
USH2066H1 (en) Superconductor and noble metal composite films
Kato et al. Fabrication of a ${\rm Bi} _ {2}{\rm Sr} _ {2}{\rm CaCu} _ {2}{\rm O} _ {8+ x} $ Intrinsic DC-SQUID With a Shunt Resistor
JP3000166B2 (en) Superconducting switching element
JP3076503B2 (en) Superconducting element and method of manufacturing the same
JP3026482B2 (en) Superconducting element, method of manufacturing and operating method
JP3085492B2 (en) Micro-bridge type Josephson device and stacked type Josephson device
Hohenwarter et al. Closed system fabrication of Josephson tunnel junctions
Li et al. Inductance Investigation of YBa2Cu3O Nano-Slit SQUIDs Fabricated With A Focused Helium Ion Beam

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080430

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090430

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees