JPH0659080A - Reactor core flow measuring device - Google Patents

Reactor core flow measuring device

Info

Publication number
JPH0659080A
JPH0659080A JP4210257A JP21025792A JPH0659080A JP H0659080 A JPH0659080 A JP H0659080A JP 4210257 A JP4210257 A JP 4210257A JP 21025792 A JP21025792 A JP 21025792A JP H0659080 A JPH0659080 A JP H0659080A
Authority
JP
Japan
Prior art keywords
flow rate
core
pumps
reactor core
total
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4210257A
Other languages
Japanese (ja)
Inventor
Koji Fujimaki
耕二 藤巻
Fumihiko Fukuda
文彦 服田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Engineering Corp
Toshiba Corp
Original Assignee
Toshiba Engineering Corp
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Engineering Corp, Toshiba Corp filed Critical Toshiba Engineering Corp
Priority to JP4210257A priority Critical patent/JPH0659080A/en
Publication of JPH0659080A publication Critical patent/JPH0659080A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Monitoring And Testing Of Nuclear Reactors (AREA)

Abstract

PURPOSE:To precisely carry out reactor core flow measuring regardless of the condition of a recirculating pump, etc., by selecting a value approximate to a rough reactor core flow rate as a reactor core total flow rate out of adding and substracting values of the loop flow rate of the A system and the B system of a jet pump. CONSTITUTION:Difference of pressure at diffuser parts of A system and B system jet pumps (10 units each) 3, 4 and the bottom part of an atomic reactor pressure vessel 1 is detected. Each differential pressure is converted to an electrical signal by flow rate transmitters 7, 8, and after it is respectively linearly corrected by square root extraction computing parts 9, 10, the total amount of 10 units for each of recirculating pumps 5, 6 of the A system and the B system is added 11, 12, this added value is detected as a signal of each of loop flow rates 13, 14 and it is transmitted to a total flow rate computing part 30. To the computing part 30, a signal of a rough reactor core flow rate 25 due to differential pressure at a lower part grid plate 22 part of a reactor core 2 and the bottom part of the vessel 1 detected by a lower part grid plate differential pressure transmitter 23 is also input. The computing part 30 computes a value most approximate to the flow rate 25 out of values (13+14, 13-14, 14-13) reciprocally adding and substracting the flow rates 13, 14 and outputs it as a reactor core total flow rate 15.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、沸騰水型原子炉圧力容
器内における冷却材の循環流量の測定に係り、特に再循
環ポンプの停止時に際しても正確な炉心流量の測定を可
能とする炉心流量計測装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to measurement of a circulating flow rate of a coolant in a boiling water reactor pressure vessel, and particularly to a core capable of accurately measuring a core flow rate even when a recirculation pump is stopped. The present invention relates to a flow rate measuring device.

【0002】[0002]

【従来の技術】原子炉圧力容器内において冷却材は原子
炉の外周に設置された複数のジェットポンプにより炉心
に循環される。この複数のジェットポンプは原子炉圧力
容器外に設置された2台の再循環ポンプにより駆動され
ており、前記冷却材の循環流量は、ジェットポンプの流
量を計測することにより検出されている。
2. Description of the Related Art In a reactor pressure vessel, a coolant is circulated to the core by a plurality of jet pumps installed on the outer periphery of the reactor. The plurality of jet pumps are driven by two recirculation pumps installed outside the reactor pressure vessel, and the circulating flow rate of the coolant is detected by measuring the flow rate of the jet pumps.

【0003】従来の炉心流量計測装置は図3の系統構成
図に示すように、原子炉圧力容器1内には炉心2を包囲
するようにして、A系のジェットポンプ3およびB系の
ジェットポンプ4が夫々10基ずつ合計20基が設けられて
いる。これらA系およびB系ジェットポンプ3,4に対
応して、A系の再循環ポンプ5およびB系の再循環ポン
プ6が各1台で夫々10基のジェットポンプ3,4を駆動
している。
As shown in the system configuration diagram of FIG. 3, the conventional core flow rate measuring device is configured such that the reactor core 2 is surrounded by the reactor pressure vessel 1, and the A type jet pump 3 and the B type jet pump are provided. There are a total of 20 units, 10 for each 4 units. Corresponding to the A-system and B-system jet pumps 3 and 4, one A-system recirculation pump 5 and one B-system recirculation pump 6 drive 10 jet pumps 3 and 4, respectively. .

【0004】この炉心2における冷却材の炉心流量の計
測は、各ジェットポンプ3,4のディフューザ部と、原
子炉圧力容器1の底部での圧力の差を検出し、この差圧
を各ジェットポンプ3,4毎に設けた流量伝送器7,8
により電気的な差圧信号に変換し、夫々を各開平演算部
9,10で線形補正した後に、ジェットポンプ3,4を駆
動しているA系およびB系の再循環ポンプ5,6毎に10
基分を加算部11,12で加算し、この加算値をA系ループ
流量13およびB系ループ流量14の信号として検出する。
The core flow rate of the coolant in the core 2 is measured by detecting the pressure difference between the diffuser portions of the jet pumps 3 and 4 and the bottom portion of the reactor pressure vessel 1, and measuring the pressure difference between the jet pumps. Flow rate transmitters 7 and 8 provided for 3 and 4 respectively
Is converted into an electrical differential pressure signal by means of linear correction by the square root calculation units 9 and 10, respectively, and thereafter, for each of the A-system and B-system recirculation pumps 5 and 6 which drive the jet pumps 3 and 4. Ten
The bases are added by the adders 11 and 12, and the added value is detected as a signal of the A system loop flow rate 13 and the B system loop flow rate 14.

【0005】さらに、この2つのA系、B系ループ流量
13,14を加算した炉心流量を炉心総流量15として検出し
ている。なお、前記A系、B系ループ流量13,14の信号
は、夫々A系流量指示計16およびB系流量指示計17で、
また炉心総流量15の信号は記録指示計18により表示し監
視、記録される。
Furthermore, the flow rate of these two A and B loops
The core flow rate obtained by adding 13 and 14 is detected as the total core flow rate 15. The signals of the A-system and B-system loop flow rates 13 and 14 are obtained by the A-system flow indicator 16 and the B-system flow indicator 17, respectively.
The signal of the total core flow rate 15 is displayed, monitored and recorded by the recording indicator 18.

【0006】若しも、この2台の再循環ポンプ5,6の
内の1台が停止した場合で、例えばA系再循環ポンプ5
が停止した場合には、A系ジェットポンプ3では流量が
一旦零となるが、その後運転側、すなわちB系ジェット
ポンプ4からの冷却材の押込み現象により、A系ジェッ
トポンプ3においては逆流状態となる。
If one of the two recirculation pumps 5 and 6 is stopped, for example, the A system recirculation pump 5
When the A-type jet pump 3 is stopped, the flow rate once becomes zero in the A-type jet pump 3, but after that, due to the phenomenon of pushing of the coolant from the operating side, that is, the B-type jet pump 4, the A-type jet pump 3 is in a reverse flow state. Become.

【0007】しかしながら、前記差圧検出による流量伝
送器7,8においては、このような逆流状態でもA系ル
ープ流量13の信号は、正流時と同様に逆流量に応じた差
圧による流量として検出されるため、炉心総流量15の算
出には、A系およびB系の再循環ポンプ5,6の運転状
態に応じて(A+B)加算19、(A−B)減算20、(B
−A)減算21の加減演算の切替えをする必要があった。
However, in the flow rate transmitters 7 and 8 based on the differential pressure detection, the signal of the A system loop flow rate 13 is a flow rate due to the differential pressure corresponding to the reverse flow rate as in the normal flow even in such a reverse flow state. Since it is detected, the total core flow rate 15 is calculated by adding (A + B) 19, subtracting (A−B) 20, (B) depending on the operating states of the A-system and B-system recirculation pumps 5 and 6.
-A) It was necessary to switch the addition / subtraction calculation of subtraction 21.

【0008】すなわち、A系、B系再循環ポンプ5,6
が共に運転されている場合の炉心総流量15の演算は、
(A+B)加算19の加算演算を行う。またA系再循環ポ
ンプ5が停止した場合には、(B−A)減算21に切替
え、B系再循環ポンプ6が停止した場合には、(A−
B)減算20に切替えて炉心総流量15を演算していた。
That is, the A-system and B-system recirculation pumps 5, 6
Calculation of total core flow rate 15 when
(A + B) Addition 19 is performed. When the A-system recirculation pump 5 is stopped, (BA) subtraction 21 is switched to, and when the B-system recirculation pump 6 is stopped, (A-
B) The total core flow rate 15 was calculated by switching to subtraction 20.

【0009】なお、この加減演算の切替えは、A系、B
系再循環ポンプ5,6を駆動する図示しない電動機の電
源回路に設けた電動機の運転・停止状態を検知するリレ
ーからの信号により行われていた。
It should be noted that this addition / subtraction calculation can be switched between A system and B system.
This is performed by a signal from a relay that detects the operating / stopped state of the electric motor provided in the power supply circuit of the electric motor (not shown) that drives the system recirculation pumps 5 and 6.

【0010】[0010]

【発明が解決しようとする課題】従来の炉心流量計測装
置においては、再循環ポンプ5,6の運転、停止状態を
再循環ポンプ5,6を駆動する電動機の電源部で検出
し、この検出結果により即座に加減演算19,20,21の切
替えを行っていた。
In the conventional core flow rate measuring device, the operation and stop states of the recirculation pumps 5 and 6 are detected by the power supply section of the electric motor that drives the recirculation pumps 5 and 6, and the detection result is detected. Due to this, the addition / subtraction calculation 19, 20, 21 was switched immediately.

【0011】しかしながら実際のジェットポンプ流量
は、再循環ポンプ5,6が停止しても流体の慣性によ
り、ある時間を経てから零となるために、再循環ポンプ
5,6の電動機の停止信号で即座に前記減演算20,21に
切替えた場合は、前記の慣性による流量値を減算してし
まうため、実際の炉心流量と一致せずに低い値を示す不
具合が生じる。
However, the actual jet pump flow rate becomes zero after a certain period of time due to the inertia of the fluid even if the recirculation pumps 5 and 6 are stopped. If the subtraction operations 20 and 21 are immediately switched to, the flow rate value due to the inertia is subtracted, so that there is a problem that the flow rate value does not match the actual core flow rate and shows a low value.

【0012】特に再循環ポンプ5,6の停止直後におい
ては、停止側ジェットポンプの流量が十分に低下してい
ないため、これを運転側ジェットポンプの流量から減算
することにより炉心総流量15の信号は一旦零近くまで低
下し、しかる後に停止側のジェットポンプの流量減少に
伴って上昇するという変化をする。
In particular, immediately after the recirculation pumps 5 and 6 are stopped, the flow rate of the jet pump on the stop side has not sufficiently decreased. Therefore, by subtracting this from the flow rate of the jet pump on the operation side, the signal of the total core flow rate of 15 is obtained. Changes to near zero and then rises as the flow rate of the jet pump on the stop side decreases.

【0013】この対策としては、再循環ポンプ5,6の
停止後における慣性による流量を見越して、前記加減演
算の切替えに時限を持たせる場合もあるが、この時限を
設定するためには再循環ポンプ5,6停止後におけるジ
ェットポンプ3,4流量の低下特性データを原子炉にお
ける実測により求める必要があり、この作業には多大の
時間と労力を要するという支障があった。
As a countermeasure for this, there is a case where a time limit is set for the switching of the addition / subtraction calculation in anticipation of the flow rate due to inertia after the recirculation pumps 5 and 6 are stopped. It is necessary to obtain the characteristic data for lowering the flow rates of the jet pumps 3 and 4 after the pumps 5 and 6 are stopped by actual measurement in the nuclear reactor, and this work has a problem that it requires a lot of time and labor.

【0014】また実際の運転においては、1台の再循環
ポンプ5,6が停止した際に、この異常対策として運転
側の他の再循環ポンプ5,6を手動操作により速度を低
下させて炉心流量を低減させる作業を実施するが、この
時に運転側再循環ポンプの速度低下に伴う運転側ジェッ
トポンプの流量の減少から、停止側ジェットポンプにお
ける押込みによる逆流が減少してゆき、更にある程度以
上運転側再循環ポンプの速度が下がると、前記停止側ジ
ェットポンプの流れは逆流から正流に戻る。
In actual operation, when one of the recirculation pumps 5 and 6 is stopped, as a countermeasure against this abnormality, the other recirculation pumps 5 and 6 on the operation side are manually operated to reduce the speed to reduce the core. The work to reduce the flow rate is carried out.At this time, the flow rate of the operating side jet pump decreases due to the decrease in the speed of the operating side recirculation pump. When the speed of the side recirculation pump decreases, the flow of the stop side jet pump returns from the reverse flow to the forward flow.

【0015】従って、この時に逆流補正演算を継続して
いると正流分の流量値を減算しまうことになり、実際の
炉心流量と一致しなくなるという問題があった。ここ
で、特にこの現象が運転中の再循環ポンプ5,6の速度
を低下させる手動操作によってもたらされるものである
ことから、逆流から正流に戻る時期や、変化のパターン
が必ずしも予測して一律に決められるのもでないという
特殊性があった。
Therefore, at this time, if the backflow correction calculation is continued, the flow rate value for the normal flow is subtracted, and there is a problem that it does not match the actual core flow rate. Here, in particular, since this phenomenon is brought about by the manual operation of reducing the speed of the recirculation pumps 5 and 6 during operation, the time when the reverse flow returns to the normal flow and the pattern of change are always predicted and uniform. There was a peculiarity that it was not decided by.

【0016】本発明の目的とするところは、ジェットポ
ンプのA系ループ流量とB系ループ流量の加減算による
各炉心流量と、原子炉圧力容器の下部格子板部で求めた
概略炉心流量を比較し、概略炉心流量に近似の加減演算
のものをジェットポンプの状態と同じと判別し、この加
減演算による炉心流量を炉心総流量として選択出力し、
再循環ポンプおよびジェットポンプの状態にかかわりな
く正確な炉心流量計測が可能な炉心流量計測装置を提供
することにある。
The object of the present invention is to compare the respective core flow rates by the addition and subtraction of the A system loop flow rate and the B system loop flow rate of the jet pump with the approximate core flow rate obtained at the lower lattice plate part of the reactor pressure vessel. , It is judged that the addition / subtraction calculation approximate to the approximate core flow rate is the same as the jet pump state, and the core flow rate by this addition / subtraction calculation is selected and output as the total core flow rate,
An object of the present invention is to provide a core flow rate measuring device capable of performing accurate core flow rate measurement regardless of the states of the recirculation pump and the jet pump.

【0017】[0017]

【課題を解決するための手段】沸騰水型原子炉の原子炉
圧力容器内で炉心外周に複数設置されたジェットポンプ
を駆動して冷却材を強制循環する2台の再循環ポンプ
と、前記複数のジェットポンプの夫々の流量を計測伝送
する流量伝送器および開平演算部と前記再循環ポンプ毎
に前記複数のジェットポンプを半数ずつ区分してA系ル
ープ流量およびB系ループ流量として前記開平演算部か
らの信号を加算する流量加算部からなる炉心流量計測装
置において、炉心下部格子板部と原子炉圧力容器底部の
差圧を計測して概略炉心流量に変換する差圧伝送器およ
び変換器と、前記流量加算部で加算されたA系ループ流
量およびB系ループ流量の相互を加減算して各炉心流量
を演算すると共に夫々を前記概略炉心流量と比較して最
小差である演算結果を炉心総流量として選択出力する総
流量演算部を具備したことを特徴とする。
Two recirculation pumps for forcibly circulating a coolant by driving a plurality of jet pumps installed on the outer periphery of a core in a reactor pressure vessel of a boiling water reactor. Flow rate transmitters and square root calculation units for measuring and transmitting the respective flow rates of the jet pumps, and half the plurality of jet pumps for each recirculation pump, and the square root calculation unit as the A system loop flow rate and the B system loop flow rate. In the core flow rate measuring device consisting of a flow rate adding section for adding signals from, a differential pressure transmitter and a converter for measuring the differential pressure between the lower core lattice plate section and the bottom of the reactor pressure vessel and converting it to a rough core flow rate, The core flow rate is calculated by adding and subtracting the A-system loop flow rate and the B-system loop flow rate added by the flow rate adding section to each other and the calculation result showing the minimum difference by comparing each with the rough core flow rate. Characterized by comprising a total flow rate calculation unit which selectively outputs as the core total flow.

【0018】[0018]

【作用】A,B系の再循環ポンプで駆動されるA,B系
ジェットポンプの各流量の信号を夫々A系,B系流量加
算部で加算して、A系ループ流量およびB系ループ流量
の信号とする。このA系の流量AとB系の流量Bの他に
炉心下部格子板部で検出した概略炉心流量Cを総流量演
算部に入力し、(A+B),(A−B),(B−A)の
加減演算をすると共に、夫々を概略炉心流量Cと比較す
る下記の式(1) 〜(3) の演算をして、この中でどの式に
よるものが概略炉心流量Cと近似の最小となるかを検出
する。
[Function] The signals of the respective flow rates of the A and B system jet pumps driven by the A and B system recirculation pumps are added by the A system and B system flow rate adding units, respectively, to obtain the A system loop flow rate and the B system loop flow rate. Signal. In addition to the flow rate A of the A system and the flow rate B of the B system, the approximate core flow rate C detected in the lower grid plate of the core is input to the total flow rate calculation unit, and (A + B), (AB), (BA) ) Is added and subtracted, and the following equations (1) to (3) for comparing each with the approximate core flow rate C are calculated, and which of these equations is the approximate approximation to the approximate core flow rate C. Detect if

【0019】 [0019]

【0020】この結果、式(1) が最小となる場合は、
(A+B)の加算による流量を、式 (2)が最小となる場
合は、(A−B)の減算による流量、また式(3) が最小
となる場合は、(B−A)の減算による流量を選択して
炉心流量として出力する。
As a result, when the equation (1) becomes the minimum,
The flow rate obtained by the addition of (A + B) is the flow rate obtained by the subtraction of (AB) when the equation (2) is the minimum, and the flow rate obtained by the subtraction of the (BA) when the equation (3) is the minimum. Select the flow rate and output as the core flow rate.

【0021】これにより、2台の再循環ポンプの運転中
はもとより、この内の1台が停止し、A系ループ流量お
よびB系ループ流量の変化や、停止側ジェットポンプの
流れ方向変化および運転側再循環ポンプの手動操作によ
る速度低下を実施した場合等の炉心流量の状態変化の際
にもA系,B系ジェットポンプの状態と合致した加減演
算が選定されて正確な炉心流量の計測ができる。
As a result, one of the two recirculation pumps is stopped not only during the operation of the recirculation pumps, but also the A system loop flow rate and the B system loop flow rate change, the flow direction change and operation of the stop side jet pump. Even when the core flow rate changes, such as when the speed is reduced by manual operation of the side recirculation pump, the addition / subtraction calculation that matches the state of the A system and B system jet pumps is selected, and accurate core flow rate measurement is performed. it can.

【0022】[0022]

【実施例】本発明の一実施例について図面を参照して説
明する。なお、上記した従来技術と同じ構成部分には同
一符号を付して詳細な説明を省略する。図1の系統構成
図に示すように、原子炉圧力容器1内には炉心2を包囲
するようにして、A系ジェットポンプ3およびB系ジェ
ットポンプ4が夫々10基ずつ、合計20基設けられてい
る。これらA系およびB系ジェットポンプ3,4に対応
して、原子炉圧力容器1外部に設置されたA系再循環ポ
ンプ5およびB系再循環ポンプ6が夫々1台で10基の前
記A系およびB系ジェットポンプ3,4を駆動してい
る。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described with reference to the drawings. It should be noted that the same components as those of the above-described conventional technique are designated by the same reference numerals, and detailed description thereof will be omitted. As shown in the system configuration diagram of FIG. 1, a reactor pressure vessel 1 is surrounded by a core 2, and 10 A-type jet pumps 3 and 10 B-type jet pumps 4 are provided, for a total of 20 units. ing. Corresponding to the A-system and B-system jet pumps 3 and 4, each of the A-system recirculation pump 5 and the B-system recirculation pump 6 installed outside the reactor pressure vessel 1 has 10 units of the A-system. And the B system jet pumps 3 and 4 are driven.

【0023】炉心流量の計測はA系およびB系ジェット
ポンプ3,4の夫々のディフューザ部と原子炉圧力容器
1の底部における圧力の差を検出し、この差圧を各流量
伝送器7,8により電気的な差圧信号に変換し、夫々を
各開平演算部9,10で線形補正した後に、駆動されてい
るA系およびB系再循環ポンプ5,6毎に10基分を加算
部11,12で加算し、この加算値をA系ループ流量13およ
びB系ループ流量14の信号として検出する。
The core flow rate is measured by detecting the pressure difference between the diffusers of the A and B system jet pumps 3 and 4 and the bottom of the reactor pressure vessel 1, and measuring the pressure difference with the flow rate transmitters 7 and 8. Is converted into an electrical differential pressure signal by means of each of the square root calculation units 9 and 10 and linearly corrected by the square root calculation units 9 and 10, respectively, and 10 units are added to each of the driven A system and B system recirculation pumps 5 and 6. , 12 are added, and the added value is detected as a signal of the A system loop flow rate 13 and the B system loop flow rate 14.

【0024】なお、このA系、B系ループ流量13,14の
信号は、総流量演算部30に伝達されて総流量演算部30に
て演算の結果、炉心総流量15として出力される。この炉
心総流量15の信号は指示記録計18により監視、記録され
る。また前記A系、B系ループ流量13,14の信号は、夫
々A系流量指示計16とB系流量指示計17により表示され
る。
The signals of the A-system and B-system loop flow rates 13 and 14 are transmitted to the total flow rate calculation section 30 and calculated as the total flow rate calculation section 30 and output as the core total flow rate 15. The signal of the total core flow rate 15 is monitored and recorded by the indicator recorder 18. The signals of the A-system and B-system loop flow rates 13 and 14 are displayed by the A-system flow indicator 16 and the B-system flow indicator 17, respectively.

【0025】次に、原子炉圧力容器1内に設置された炉
心下部格子板22部における圧力を検出し、前記原子炉圧
力容器1の底部における圧力と共に入力する下部格子板
差圧伝送器23と炉心流量変換器24を設けて、この出力を
前記総流量演算部30に伝達する。
Next, a lower lattice plate differential pressure transmitter 23 for detecting the pressure in the lower core lattice plate 22 installed in the reactor pressure vessel 1 and inputting it together with the pressure in the bottom portion of the reactor pressure vessel 1 A core flow rate converter 24 is provided and its output is transmitted to the total flow rate calculation unit 30.

【0026】下部格子板差圧伝送器23は、炉心下部格子
板22部と原子炉圧力容器1の底部における圧力の差を検
出し、この差圧を電気的な差圧信号に変換する。この差
圧信号はさらに炉心流量変換器24において概略炉心流量
25に変換して、この概略炉心流量25の信号を総流量演算
部30に出力するように構成されている。
The lower grid plate differential pressure transmitter 23 detects the pressure difference between the core lower grid plate 22 and the bottom of the reactor pressure vessel 1 and converts this differential pressure into an electrical differential pressure signal. This differential pressure signal is further applied to the approximate core flow rate in the core flow rate converter 24.
It is configured to be converted into 25 and output the signal of the approximate core flow rate 25 to the total flow rate calculation unit 30.

【0027】次に上記構成による作用について説明す
る。炉心流量の計測は、A系およびB系ジェットポンプ
3,4のディフューザ部と原子炉圧力容器1の底部にお
ける圧力の差を検出し、この差圧を流量伝送器7,8に
より電気的な差圧信号に変換し、夫々を開平演算部9,
10で線形補正した後に、ジェットポンプ3,4を駆動し
ているA系およびB系の再循環ポンプ5,6毎に10基分
を加算部11,12で加算し、この加算値をA系およびB系
のループ流量13,14の信号として検出し、総流量演算部
30に伝達する。
Next, the operation of the above configuration will be described. The core flow rate is measured by detecting the difference in pressure between the diffuser parts of the A system and B system jet pumps 3 and 4 and the bottom part of the reactor pressure vessel 1, and measuring this difference pressure by the flow rate transmitters 7 and 8. Converted into pressure signals, each square root calculation unit 9,
After linear correction in 10, the addition units 11 and 12 add 10 units for each of the A system and B system recirculation pumps 5 and 6 that drive the jet pumps 3 and 4, and the added value is the A system. And the loop flow rate of system B 13 and 14 are detected, and the total flow rate calculation unit
Propagate to 30.

【0028】またA系、B系ループ流量13,14は、夫々
A系流量指示計16とB系流量指示計17により監視する。
総流量演算部30には、別途、下部格子板差圧伝送器23で
検出された炉心下部格子板22部と原子炉圧力容器1の底
部における差圧による概略炉心流量25の信号も入力され
る。
The A system and B system loop flow rates 13 and 14 are monitored by an A system flow indicator 16 and a B system flow indicator 17, respectively.
A signal of the approximate core flow rate 25 due to the differential pressure between the core lower grid plate 22 detected by the lower grid plate differential pressure transmitter 23 and the bottom of the reactor pressure vessel 1 is also separately input to the total flow rate calculation unit 30. .

【0029】図2の演算論理ブロック図は前記総流量演
算部30の演算内容を示すもので、この総流量演算部30は
加算論理19と、減算論理20,21,31〜33、絶対信号論理
34〜36、および低値選択回路37と切替スイッチ38〜40で
構成されていて、前記A系、B系ループ流量13,14を相
互に加減算したものと、別途検出した概略炉心流量25と
で、下記の式(1) 〜(3) の演算をする。
The operation logic block diagram of FIG. 2 shows the operation contents of the total flow rate operation unit 30. The total flow rate operation unit 30 has an addition logic 19, subtraction logics 20, 21, 31 to 33, and an absolute signal logic.
34 to 36, a low value selection circuit 37, and changeover switches 38 to 40. The A system and B system loop flow rates 13 and 14 are added and subtracted from each other, and a separately detected rough core flow rate 25. , Calculate the following equations (1) to (3).

【0030】 [0030]

【0031】上記の式(1) 〜(3) の演算は、加算論理19
と減算論理20,21,31〜33、および絶対信号論理34〜36
により行われ、この演算結果から最小のものは概略炉心
流量25に近似し、従って、現在のA系,B系ジェットポ
ンプ3,4の運転状態に合致した状態であると判断し
て、低値選択回路37からの出力信号により、該当する切
替スイッチ38,39,40の閉路と、閉路した以外の切替ス
イッチの開路切替えをする。
The operations of the above equations (1) to (3) are performed by the addition logic 19
And subtraction logic 20, 21, 31 to 33, and absolute signal logic 34 to 36
Based on this calculation result, the minimum value approximates to the approximate core flow rate 25, and therefore, it is judged that the current operation state of the A-system and B-system jet pumps 3 and 4 is met, and the low value According to the output signal from the selection circuit 37, the corresponding switches 38, 39, 40 are closed and the switches other than the closed switches are opened.

【0032】この結果、加算論理19(A系ループ流量13
+B系ループ流量14)と、減算論理20(A系ループ流量
13−B系ループ流量14)、および減算論理21(B系ルー
プ流量14−A系ループ流量13)の演算による流量の内の
1つを、正しい炉心流量として炉心総流量15の出力をす
る。
As a result, the addition logic 19 (A system loop flow rate 13
+ B loop flow 14) and subtraction logic 20 (A loop flow)
13-B system loop flow rate 14) and one of the flow rates calculated by the subtraction logic 21 (B system loop flow rate 14-A system loop flow rate 13) is output as the core total flow rate 15 as the correct core flow rate.

【0033】すなわち、上記の式(1) 〜(3) から、先ず
式(1) が判別された場合は、A系ループ流量13、B系ル
ープ流量14共に正流である状態であり、切替スイッチ38
がONされて加算論理19より、A系ループ流量13とB系
ループ流量14を加算した流量が炉心総流量15として出力
される。この時に切替スイッチ39,40はOFFされる。
That is, when the equation (1) is first discriminated from the above equations (1) to (3), both the A-system loop flow rate 13 and the B-system loop flow rate 14 are in the positive flow, and the switching is performed. Switch 38
Is turned on, and the addition logic 19 outputs a flow rate obtained by adding the A system loop flow rate 13 and the B system loop flow rate 14 as the core total flow rate 15. At this time, the changeover switches 39 and 40 are turned off.

【0034】次に式(2) の場合は、A系ループ流量13が
正流で、B系ループ流量14が逆流である状態であり、切
替スイッチ39をONして、減算論理20よりA系ループ流
量13からB系ループ流量14を減じた流量を炉心総流量15
として出力される。なお、切替スイッチ38,40はOFF
されている。
Next, in the case of the formula (2), the A system loop flow rate 13 is a positive flow and the B system loop flow rate 14 is a reverse flow, the changeover switch 39 is turned ON, and the subtraction logic 20 causes the A system to flow. The flow rate obtained by subtracting the B system loop flow rate 14 from the loop flow rate 13 is the total core flow rate 15
Is output as. The changeover switches 38 and 40 are OFF
Has been done.

【0035】また式(3) の場合には、B系ループ流量14
が正流で、A系ループ流量13が逆流の状態であり、切替
スイッチ40をONし、減算論理21よりB系ループ流量14
からA系ループ流量13を減じた流量が炉心総流量15とし
て出力される。このとき切替スイッチ38,39はOFFさ
れる。以上により求められた炉心総流量15は記録指示計
18に伝達され、記録および指示がされる。
In the case of the formula (3), the B system loop flow rate is 14
Is the normal flow, the A system loop flow rate 13 is in the reverse flow state, the changeover switch 40 is turned ON, and the subtraction logic 21 causes the B system loop flow rate 14
The flow rate obtained by subtracting the A system loop flow rate 13 from is output as the total core flow rate 15. At this time, the changeover switches 38 and 39 are turned off. The total core flow rate of 15 determined as above is recorded by the indicator.
It is transmitted to 18 and recorded and instructed.

【0036】原子炉運転中に前記加算論理19および減算
論理20,21による夫々(A系ループ流量13+B系ループ
流量14)、(A系ループ流量13−B系ループ流量14)、
(B系ループ流量14−A系ループ流量13)の流量演算を
実施し、A系またはB系再循環ポンプ5,6の停止に際
して、A系およびB系ジェットポンプ3,4のA系およ
びB系ループ流量13,14から、A系およびB系ジェット
ポンプ3,4における流量と正逆方向を判別し、常にA
系,B系ジェットポンプ3,4の状態に対応した炉心流
量を選択して炉心総流量15として出力する。
During the reactor operation, the addition logic 19 and the subtraction logics 20 and 21 (A system loop flow rate 13 + B system loop flow rate 14), (A system loop flow rate 13-B system loop flow rate 14), respectively,
(B system loop flow rate 14-A system loop flow rate 13) is performed, and when the A system or B system recirculation pumps 5, 6 are stopped, the A system and B system jet pumps 3, 4 From the system loop flow rates 13 and 14, the flow rates in the A and B system jet pumps 3 and 4 and the forward and reverse directions are discriminated, and A
The core flow rate corresponding to the states of the system and B system jet pumps 3 and 4 is selected and output as the total core flow rate 15.

【0037】例えば、A系再循環ポンプ5が停止した場
合を仮定すると、A系再循環ポンプ5の停止直後では慣
性により停止側のA系ジェットポンプ3の流量が十分に
低下していないため、加算論理19(A系ループ流量13+
B系ループ流量14)による流量値と概略炉心流量25との
差が小さいことから、低値選択回路37はA系,B系再循
環ポンプ5,6の2台が運転されていた場合と同様に、
切替スイッチ38をONし、加算論理19からの(A系ルー
プ流量13+B系ループ流量14)の炉心流量を選択する。
従って、切替え当初の炉心総流量15の信号が大きく変化
する現象は発生しない。
For example, assuming that the A-system recirculation pump 5 is stopped, immediately after the A-system recirculation pump 5 is stopped, the flow rate of the A-side jet pump 3 on the stop side is not sufficiently reduced due to inertia. Addition logic 19 (A system loop flow rate 13+
Since the difference between the flow rate value due to the B system loop flow rate 14) and the approximate core flow rate 25 is small, the low value selection circuit 37 is the same as when the two A system and B system recirculation pumps 5 and 6 were operating. To
The changeover switch 38 is turned on, and the core flow rate (A system loop flow rate 13 + B system loop flow rate 14) from the addition logic 19 is selected.
Therefore, the phenomenon that the signal of the total core flow rate 15 at the time of switching is largely changed does not occur.

【0038】この時に、減算論理20による流量値は(A
系ループ流量13−B系ループ流量14)で、また減算論理
21による流量値は(B系ループ流量14−A系ループ流量
13)となり、いずれも大幅に小さく、従って、未だ定格
流量に近い概略炉心流量25との差は大きい。
At this time, the flow rate value by the subtraction logic 20 is (A
System loop flow rate 13-B system loop flow rate 14) and subtraction logic
The flow rate value according to 21 is (B system loop flow rate 14-A system loop flow rate
13), both of which are significantly small, and therefore the difference from the approximate core flow rate 25, which is still close to the rated flow rate, is large.

【0039】次に、停止側のA系ジェットポンプ3の流
量減少に伴ない、B系ジェットポンプ4から逆流が流れ
る。この時の炉心流量はB系ジェットポンプ4の流量か
らA系ジェットポンプ3の流量が減算されるため低下
し、概略炉心流量25も低下する。この時点においては、
加算論理19ではA系ジェットポンプ3の逆流分をB系ジ
ェットポンプ4の流量に加算するため、この流量値と概
略炉心流量25との差は大きくなる。
Next, as the flow rate of the A side jet pump 3 on the stop side decreases, a backflow flows from the B type jet pump 4. The core flow rate at this time decreases because the flow rate of the A system jet pump 3 is subtracted from the flow rate of the B system jet pump 4, and the approximate core flow rate 25 also decreases. At this point,
Since the addition flow 19 adds the backflow of the A system jet pump 3 to the flow rate of the B system jet pump 4, the difference between this flow rate value and the approximate core flow rate 25 becomes large.

【0040】一方、減算論理20では(A系ループ流量13
−B系ループ流量14)で、A系ジェットポンプ3の逆流
分より運転側B系ジェットポンプ4の流量を減算する演
算を行うため、その流量値は大きく現れる。しかるに減
算論理21では(B系ループ流量14−A系ループ流量13)
で、運転側B系ジェットポンプ4の流量からA系ジェッ
トポンプ3の逆流分を減算するという、現状に合致した
演算が行われるため、その流量値と概略炉心流量25との
差は小さい。
On the other hand, the subtraction logic 20 (A system loop flow rate 13
In the −B system loop flow rate 14), the flow rate of the operating side B system jet pump 4 is subtracted from the backflow amount of the A system jet pump 3, so that the flow rate value becomes large. However, the subtraction logic 21 (B system loop flow rate 14-A system loop flow rate 13)
Then, since the calculation that matches the current situation, that is, the reverse flow amount of the A system jet pump 3 is subtracted from the flow rate of the operating side B system jet pump 4, the difference between the flow rate value and the approximate core flow rate 25 is small.

【0041】従って、前記低値選択回路37は切替スイッ
チ40をONし、切替スイッチ38,39をOFFして、概略
炉心流量25に近い減算論理21からの炉心流量を選択し、
停止側のA系ジェットポンプ3における逆流状態を考慮
した正しい炉心流量を炉心総流量15として出力する。
Therefore, the low value selection circuit 37 turns on the changeover switch 40 and turns off the changeover switches 38 and 39 to select the core flow rate from the subtraction logic 21 close to the approximate core flow rate 25,
The correct core flow rate in consideration of the backflow state in the A side jet pump 3 on the stop side is output as the total core flow rate 15.

【0042】さらに、運転側B系ジェットポンプ4の流
量が低下して、停止側A系ジェットポンプ3への押込み
がなくなり、A系ジェットポンプ3の流れ方向が前記逆
流から正流に変化した場合は、炉心流量は前記逆流時と
異なり、A系ジェットポンプ3の流量が運転側B系ジェ
ットポンプ4の流量に加算される。このため前記の減算
論理21(B系ループ流量14−A系ループ流量13)の状態
では、概略炉心流量25との比較で大きな差が生ずる。
Furthermore, when the flow rate of the operating side B-system jet pump 4 is reduced and the stopping side A-type jet pump 3 is not pushed, the flow direction of the A-side jet pump 3 is changed from the reverse flow to the forward flow. The core flow rate is different from that in the reverse flow, and the flow rate of the A system jet pump 3 is added to the flow rate of the operating side B system jet pump 4. Therefore, in the state of the subtraction logic 21 (B system loop flow rate 14-A system loop flow rate 13), a large difference occurs in comparison with the approximate core flow rate 25.

【0043】また減算論理20でも、(A系ループ流量13
−B系ループ流量14)の減算演算をするため、概略炉心
流量25との差は大きい。しかしながら、加算論理19によ
る流量値は(A系ループ流量13−B系ループ流量14)
で、B系ジェットポンプ4の流量とA系ジェットポンプ
3の正流とを加算して、A系,B系ジェットポンプ3,
4の状態に合致した演算で、その流量値と概略炉心流量
25との差が小さいことから、低値選択回路37は切替スイ
ッチ38をONし、切替スイッチ39,40をOFFして、加
算論理19による炉心流量を炉心総流量15として出力す
る。
In addition, the subtraction logic 20 also shows that (A system loop flow rate 13
The difference from the approximate core flow rate 25 is large because the B system loop flow rate 14) is subtracted. However, the flow rate value by the addition logic 19 is (A system loop flow rate 13-B system loop flow rate 14)
Then, the flow rate of the B system jet pump 4 and the positive flow of the A system jet pump 3 are added to obtain the A system and B system jet pumps 3,
The flow rate value and the approximate core flow rate are calculated in accordance with the state of 4
Since the difference from 25 is small, the low value selection circuit 37 turns on the changeover switch 38, turns off the changeover switches 39 and 40, and outputs the core flow rate by the addition logic 19 as the total core flow rate 15.

【0044】以上によりA系,B系再循環ポンプ5,6
の2台が運転される通常時は勿論のこと、A系,B系再
循環ポンプ5,6の内1台が突然停止した異常時におい
て、A系,B系ジェットポンプ3,4における冷却材の
流れの状態、および、この異常に対処して正常側再循環
ポンプの手動操作による速度低下作業時においても、常
にA系,B系ジェットポンプ3,4における状態変化に
対応して総流量演算部30は、適切な加減算論理と炉心流
量の選定により正確な炉心流量を測定することができ
る。
As described above, the A and B system recirculation pumps 5, 6
Of the A system and B system recirculation pumps 5 and 6 suddenly stopped, as well as the normal operation of the two system Flow condition, and the total flow rate calculation always responding to the status change in the A system and B system jet pumps 3 and 4 even when the speed is reduced by manually operating the normal side recirculation pump in response to this abnormality. The unit 30 can measure an accurate core flow rate by selecting an appropriate addition / subtraction logic and core flow rate.

【0045】[0045]

【発明の効果】以上本発明によれば、沸騰水型原子力発
電プラントにおける2台の再循環ポンプの運転状態がど
の様に変化しても、これにより駆動される複数のジェッ
トポンプによる原子炉圧力容器内の炉心流量を正確に監
視、把握できるので、原子力発電プラント運転の信頼性
と安全性が向上する効果がある。
As described above, according to the present invention, no matter how the operating states of the two recirculation pumps in the boiling water nuclear power plant change, the reactor pressure by the plurality of jet pumps driven by the pumps can be changed. Since the core flow rate in the vessel can be accurately monitored and grasped, there is an effect that reliability and safety of operation of the nuclear power plant are improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る一実施例の炉心流量計測装置の系
統構成図。
FIG. 1 is a system configuration diagram of a core flow rate measuring device according to an embodiment of the present invention.

【図2】本発明に係る一実施例の総流量演算部の演算論
理ブロック図。
FIG. 2 is a calculation logic block diagram of a total flow rate calculation unit according to an embodiment of the present invention.

【図3】従来の炉心流量計測装置の系統構成図。FIG. 3 is a system configuration diagram of a conventional core flow rate measuring device.

【符号の説明】[Explanation of symbols]

1…原子炉圧力容器、2…炉心、3…A系ジェットポン
プ、4…B系ジェットポンプ、5…A系再循環ポンプ、
6…B系再循環ポンプ、7,8…流量伝送器、9,10…
開平演算部、11,12…加算部、13…A系ループ流量、14
…B系ループ流量、15…炉心総流量、16…A系流量指示
計、17…B系流量指示計、18…記録指示計、19…加算論
理、20,21,31〜33…減算論理、22…炉心下部格子板、
23…下部格子板差圧伝送器、24…炉心流量変換器、25…
概略炉心流量、30…総流量演算部、34〜36…絶対信号論
理、37…低値選択回路、38〜40…切替スイッチ。
1 ... Reactor pressure vessel, 2 ... Reactor core, 3 ... A system jet pump, 4 ... B system jet pump, 5 ... A system recirculation pump,
6 ... B system recirculation pump, 7, 8 ... Flow rate transmitter, 9, 10 ...
Square root calculation unit, 11, 12 ... Addition unit, 13 ... A system loop flow rate, 14
... B system loop flow rate, 15 ... Core flow rate, 16 ... A system flow rate indicator, 17 ... B system flow rate indicator, 18 ... Recording indicator, 19 ... Addition logic, 20, 21, 31-33 ... Subtraction logic, 22 ... Lower core lattice plate,
23 ... Lower grid plate differential pressure transmitter, 24 ... Core flow converter, 25 ...
Approximate core flow rate, 30 ... Total flow rate calculation section, 34-36 ... Absolute signal logic, 37 ... Low value selection circuit, 38-40 ... Changeover switch.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 沸騰水型原子炉の原子炉圧力容器内で炉
心外周に複数設置されたジェットポンプを駆動して冷却
材を強制循環する2台の再循環ポンプと、前記複数のジ
ェットポンプの夫々の流量を計測伝送する流量伝送器お
よび開平演算部と前記再循環ポンプ毎に前記複数のジェ
ットポンプを半数ずつ区分してA系ループ流量およびB
系ループ流量として前記開平演算部からの信号を加算す
る流量加算部からなる炉心流量計測装置において、炉心
下部格子板部と原子炉圧力容器底部の差圧を計測して概
略炉心流量に変換する差圧伝送器および変換器と、前記
流量加算部で加算されたA系ループ流量およびB系ルー
プ流量の相互を加算および減算して各炉心流量を演算す
ると共に夫々を前記概略炉心流量と比較して最小差であ
る演算結果を炉心総流量として選択出力する総流量演算
部を具備したことを特徴とする炉心流量計測装置。
1. A pair of recirculation pumps for forcibly circulating a coolant by driving a plurality of jet pumps installed on the outer periphery of a core in a reactor pressure vessel of a boiling water reactor, and the plurality of jet pumps. Half of the plurality of jet pumps for each recirculation pump and a flow rate transmitter and square root calculation unit for measuring and transmitting each flow rate are divided into A system loop flow rate and B
In the core flow rate measuring device consisting of a flow rate addition section that adds the signal from the square root calculation section as a system loop flow rate, the difference that measures the differential pressure between the lower grid plate section of the core and the bottom of the reactor pressure vessel and converts it into a rough core flow rate The core transmitters are calculated by adding and subtracting the pressure transmitter and the converter and the A-system loop flow and the B-system loop flow added by the flow adder to each other and compare each with the rough core flow. A core flow rate measuring device comprising a total flow rate calculation unit for selectively outputting a calculation result having a minimum difference as a core total flow rate.
JP4210257A 1992-08-06 1992-08-06 Reactor core flow measuring device Pending JPH0659080A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4210257A JPH0659080A (en) 1992-08-06 1992-08-06 Reactor core flow measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4210257A JPH0659080A (en) 1992-08-06 1992-08-06 Reactor core flow measuring device

Publications (1)

Publication Number Publication Date
JPH0659080A true JPH0659080A (en) 1994-03-04

Family

ID=16586395

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4210257A Pending JPH0659080A (en) 1992-08-06 1992-08-06 Reactor core flow measuring device

Country Status (1)

Country Link
JP (1) JPH0659080A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2520432A (en) * 2013-11-15 2015-05-20 Caltec Ltd A system for production boosting and measuring flow rate in a pipeline
CN113432680A (en) * 2021-06-08 2021-09-24 中广核工程有限公司 Nuclear power plant reactor coolant system flow calibration method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2520432A (en) * 2013-11-15 2015-05-20 Caltec Ltd A system for production boosting and measuring flow rate in a pipeline
CN113432680A (en) * 2021-06-08 2021-09-24 中广核工程有限公司 Nuclear power plant reactor coolant system flow calibration method
CN113432680B (en) * 2021-06-08 2023-09-01 中广核工程有限公司 Nuclear power plant reactor coolant system flow calibration method

Similar Documents

Publication Publication Date Title
US8353676B2 (en) Method for determining faults during the operation of a pump unit
EP1772960B1 (en) Load monitor
US5691611A (en) Abnormality detecting system and abnormality detecting method for rotor position detection means, and motor control system
JP6945728B2 (en) Diagnostic device for motors
US6112156A (en) Apparatus and method for detecting abnormality of motor
JPH03269269A (en) Inverter device
JPH0659080A (en) Reactor core flow measuring device
US5077507A (en) Servo control apparatus
US3962694A (en) Method and apparatus for monitoring an electrically actuated tool
JP5985158B2 (en) Electrical equipment quality diagnosis system
JPH04326094A (en) Core flow measurement device
JPH05288885A (en) Measuring equipment of core flow rate
JPH05297182A (en) Reactor core flow rate measuring device
JPH05107386A (en) Reactor core flow measuring apparatus
JP3108487B2 (en) Reactor operating area monitoring device
JP2509166B2 (en) Transformer operation monitoring device
US20240072701A1 (en) Electric motor control device
JP3265811B2 (en) Servo motor control device
WO2023084625A1 (en) Device for diagnosing electric motor, method for diagnosing electric motor, and device for inferring indication of abnormality in electric motor
JPS59164987A (en) Reactivity monitoring device of fast reactor
US10288696B2 (en) Intelligent diagnosis system for power module and method thereof
JPH0631774B2 (en) Recirculation flow controller
JPS6319599A (en) Core flow measuring device
JPH02303387A (en) Motor controller
JPH01160317A (en) Power source monitor