JPH03269269A - Inverter device - Google Patents

Inverter device

Info

Publication number
JPH03269269A
JPH03269269A JP2067156A JP6715690A JPH03269269A JP H03269269 A JPH03269269 A JP H03269269A JP 2067156 A JP2067156 A JP 2067156A JP 6715690 A JP6715690 A JP 6715690A JP H03269269 A JPH03269269 A JP H03269269A
Authority
JP
Japan
Prior art keywords
capacitor
conversion circuit
temperature
inverter
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2067156A
Other languages
Japanese (ja)
Other versions
JP2960469B2 (en
Inventor
Osamu Matsumoto
修 松本
Motonobu Hattori
元信 服部
Katsuhiro Tamada
勝弘 玉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Hitachi Keiyo Engineering Co Ltd
Original Assignee
Hitachi Ltd
Hitachi Keiyo Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd, Hitachi Keiyo Engineering Co Ltd filed Critical Hitachi Ltd
Priority to JP2067156A priority Critical patent/JP2960469B2/en
Publication of JPH03269269A publication Critical patent/JPH03269269A/en
Application granted granted Critical
Publication of JP2960469B2 publication Critical patent/JP2960469B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/40Testing power supplies
    • G01R31/42AC power supplies
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/50Testing of electric apparatus, lines, cables or components for short-circuits, continuity, leakage current or incorrect line connections
    • G01R31/64Testing of capacitors

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Testing Electric Properties And Detecting Electric Faults (AREA)
  • Inverter Devices (AREA)

Abstract

PURPOSE:To facilitate a diagnosis of deterioration of a capacitor by diagnosing the deterioration from a central temperature estimated according to the ambient temperature and the state of operation of the capacitor. CONSTITUTION:An inverter main circuit is provided with a smoothing capacitor 3 and connected between a power rectifier 2 and a power inverter. The ambient temperature of the capacitor 3 is measured by a temperature detector 40, and a detecting circuit 9 measures each current and voltage of an inverter device 12. Herein a central temperature is estimated according to the ambient temperature is estimated according to the ambient temperature and the state of operation of the capacitor 3, and a microcomputer 7 which is an arithmetic means makes computation, using the central temperature, and diagnoses deterioration of the capacitor 3. Then, it estimates the time of deterioration in consideration of an operating temperature of the capacitor 3 and makes the computation without neglecting a ripple current even when it is small, and thereby the diagnosis of the deterioration can be performed easily and accurately.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、交流電源を受電し前記交流電源の周波数と異
なる周波数の電力を供給することのできるインバータ装
置に係り、特に主回路に使用される平滑用コンデンサー
の劣化の診断に関するものである。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to an inverter device capable of receiving an AC power source and supplying power with a frequency different from the frequency of the AC power source. This paper relates to the diagnosis of deterioration of smoothing capacitors.

[従来の技術] この種インバータ装置に使用される平滑用コンデンサー
の劣化の診断に関する従来の技術として、特開昭63−
117669号かある。この従来例では、コンデンサへ
のリップル電流を検出する電流検出器を設け、所定時間
内のこの電流の時間積分値が予め定められた値を超えた
とき、この積分値を積算していき、予め決められた所定
値と比較し、その値を超えたときに警報回路動作させる
ものであった。
[Prior Art] As a conventional technique for diagnosing the deterioration of smoothing capacitors used in this type of inverter device, Japanese Patent Application Laid-Open No. 63-1999
There is no. 117669. In this conventional example, a current detector is provided to detect the ripple current flowing into the capacitor, and when the time integral value of this current within a predetermined time exceeds a predetermined value, this integral value is integrated. It was compared with a predetermined value, and when the value exceeded, an alarm circuit was activated.

[発明が解決しようとする課題] 上記従来例では、コンデンサ劣化の直接の原因である温
度に関して配慮されておらず、コンデンサ劣化の予測と
して精度に問題があった。
[Problems to be Solved by the Invention] In the conventional example described above, no consideration was given to temperature, which is a direct cause of capacitor deterioration, and there was a problem with accuracy in predicting capacitor deterioration.

また、コンデンサの劣化は電流が流れなくても温度によ
って進行するが、従来例ではこれに対して考慮されてい
ない。すなわち電流値か予め定められた値より小さい場
合は、電流の時間積分がなされないので誤差が大きくな
ってしまうという欠点があった。さらに運転中のコンデ
ンサのリップル電流を検出するために新たに電流検出器
を設ける必要があった。
Further, deterioration of capacitors progresses depending on temperature even when no current flows, but this is not taken into account in the conventional example. That is, when the current value is smaller than a predetermined value, the current is not integrated over time, resulting in a large error. Furthermore, it was necessary to provide a new current detector to detect the ripple current of the capacitor during operation.

本発明は上記問題点を解決し、コンデンサの劣化診断及
び診断装置を容易に実現することにある。
The object of the present invention is to solve the above problems and easily realize a capacitor deterioration diagnosis and diagnosis device.

[課題を解決するための手段] 上記従来技術の課題を解決するために、コンデンサは温
度等の使用条件により、劣化する進行度が変わるという
点に着目し、コンデンサの劣化を診断するようにしたも
のである。
[Means for Solving the Problems] In order to solve the above-mentioned problems of the conventional technology, we focused on the fact that the degree of deterioration of capacitors changes depending on the usage conditions such as temperature, and started diagnosing the deterioration of capacitors. It is something.

すなわち、前記コンデンサの中心温度による前記コンデ
ンサ劣化の予測診断に関して、前記コンデンサの内部又
は表面又は周囲の温度を測る温度検出手段と、 前記インバータ回路の出力状態及び制御内容から前記コ
ンデンサの中心温度を算出し、 このときの実運転時間を、 この算出された中心温度で運転したときにコンデンサの
劣化が進行する程度と、予め定めた基準条件で運転した
場合にコンデンサの劣化が進行する程度が同一になるよ
うな基準条件での等価時間に変換して累積し、 予め定めた基準値を超えた場合にコンデンサが劣化した
と判定するようにし、異常処理または警報を発するよう
にしたものである。
That is, regarding the predictive diagnosis of the deterioration of the capacitor based on the center temperature of the capacitor, the center temperature of the capacitor is calculated from the temperature detection means that measures the temperature inside, on the surface, or around the capacitor, and from the output state and control content of the inverter circuit. Then, the actual operating time at this time is determined so that the extent to which the deterioration of the capacitor progresses when operating at this calculated center temperature is the same as the extent to which the deterioration of the capacitor progresses when operating under the predetermined standard conditions. The capacitor is converted into an equivalent time under the standard conditions and accumulated, and when it exceeds a predetermined standard value, it is determined that the capacitor has deteriorated, and abnormality processing or an alarm is issued.

また前記コンデンサの中心温度が前記コンデンサの許容
使用温度を越えた場合に異常処理または警報を発するこ
とができるようにしたものである。
Further, if the center temperature of the capacitor exceeds the allowable operating temperature of the capacitor, abnormality processing or an alarm can be issued.

[作用] 前記コンデンサの前記運転時間は、前記コンデンサの温
度等の使用条件によって前記等価時間に変換され逐次加
算累積し予め定められた値を越えた時に警報信号を発生
するので、異常を知らせることが出来る。
[Function] The operating time of the capacitor is converted into the equivalent time depending on the usage conditions such as the temperature of the capacitor, and is successively added and accumulated. When a predetermined value is exceeded, an alarm signal is generated, so that an abnormality is not notified. I can do it.

さらに、前記コンデンサの中心温度が前記コンデンサの
許容使用温度を越えた場合に警報信号を発生、あるいは
異常処理するので、前記コンデンサの異常を知らせたり
、前記インバータ回路の出力を抑えることにより前記コ
ンデンサの温度を下げるようにすることが出来る。
Further, if the center temperature of the capacitor exceeds the allowable operating temperature of the capacitor, an alarm signal is generated or an abnormality is processed, so that the capacitor is notified of an abnormality or the output of the inverter circuit is suppressed. It is possible to lower the temperature.

[実施例] 第1図は、本発明の一実施例を示したもので、交流電動
機を駆動するインバータ装置を示している。
[Embodiment] FIG. 1 shows an embodiment of the present invention, and shows an inverter device that drives an AC motor.

交流電源1と、この交流電源1に接続され、この交流電
源1の交流電力を直流電源に変換する順変換器2、前記
直流電源を任意の可変電圧・可変周波数をもつ交流に変
換する逆変換器5、前記順変換器2と前記逆変換器5の
中間に接続され前記順変換器2の出力を平滑する役目を
する平滑用コンデンサ3を備えたインバータ主回路、お
よびインバータ装置12を制御するマイクロコンピュー
タ7(以下マイコン7と呼ぶ)、マイコンマのソフトウ
ェア又は諸データを記憶する記憶回路8、インバータ装
置12の各電流・電圧等を測定する検出回路9、インバ
ータ装置12の状態を表示・出力する表示回路又は信号
出力回路10、1 2 逆変換器5を駆動するベース回路11の制御装置を備え
たインバータ装置12を示している。
An AC power source 1, a forward converter 2 connected to the AC power source 1 and converting the AC power of the AC power source 1 into DC power, and an inverse converter 2 that converts the DC power into AC having arbitrary variable voltage and variable frequency. 5, an inverter main circuit including a smoothing capacitor 3 connected between the forward converter 2 and the inverse converter 5 and serving to smooth the output of the forward converter 2, and an inverter device 12. A microcomputer 7 (hereinafter referred to as microcomputer 7), a memory circuit 8 that stores software or various data of the microcomputer, a detection circuit 9 that measures each current, voltage, etc. of the inverter device 12, and displays and outputs the status of the inverter device 12. An inverter device 12 is shown that includes a control device for a base circuit 11 that drives a display circuit or signal output circuit 10, 1 2 inverter 5 .

また20はコンデンサ3の電圧信号を示す。Further, 20 indicates a voltage signal of the capacitor 3.

ここで平滑用コンデンサ3は、本発明における劣化の診
断の対象になるのもである。
Here, the smoothing capacitor 3 is the subject of deterioration diagnosis in the present invention.

15はインバータ装置の出力電流検出器でありコンデン
サ3と逆変換器15の間に設定して直流電源側の電流検
出を行ってもよい。40はコンデンサ3の周囲温度の検
出器である。
Reference numeral 15 denotes an output current detector of the inverter device, which may be set between the capacitor 3 and the inverter 15 to detect the current on the DC power supply side. 40 is a detector for the ambient temperature of the capacitor 3.

第2図に動作フローチャートを示す。サンプリング時間
(t8)毎に、平均化された次の諸デタを読み込む(ス
テップ401)。
FIG. 2 shows an operation flowchart. At each sampling time (t8), the following averaged data is read (step 401).

電流検出器15による値     ・・・・・・・・・
I。
Value determined by current detector 15...
I.

コンデンサ3の電圧値20    ・・・・旧・・VD
温度検出器40の値41     ・・・・・・・・・
T8インバータ装置の出力周波数   ・・・・・・・
・・F。
Voltage value of capacitor 3 20...Old...VD
Value 41 of temperature detector 40...
Output frequency of T8 inverter device...
...F.

インバータ装置のキャリア周波数 ・・・・・・・・・
F、。
Carrier frequency of inverter device ・・・・・・・・・
F.

次にコンデンサ3のリップル電流■、を検出する為に直
接電流検出を設置しても良いが、上記諸データから算出
(ステップ402)する為次式を使用する。
Next, direct current detection may be installed to detect the ripple current (2) of the capacitor 3, but the following equation is used to calculate it from the above data (step 402).

1、=F□(10,V、、 Fo、 F、)上記式の関
係は実験からも求められるが、簡単化して次式とするこ
とが出来る。但し、■(□は比例定数とする。
1,=F□(10,V,, Fo, F,) The relationship in the above equation can also be obtained from experiments, but it can be simplified to the following equation. However, ■(□ is a constant of proportionality.

1、彎に、・I。1, 彎に・I.

この場合第1図に示した電圧信号20は省略することが
できる。
In this case, the voltage signal 20 shown in FIG. 1 can be omitted.

次に、」−記リップル電流値(Ir)から、コンデンサ
3の中心温度(Tj)とコンデンサの温度検出器40の
温度(Ta)との差(△Tja)を算出(ステップ40
3)する。
Next, the difference (△Tja) between the center temperature (Tj) of the capacitor 3 and the temperature (Ta) of the capacitor temperature detector 40 is calculated from the ripple current value (Ir) (step 40).
3) Do.

△Tj、=F2 (Tr、  1.、 Vd、 Fo、
 F、)上記式の関係は実験からも求められるが、簡単
に次式とすることが出来る。但し、K2は比例定数とす
る。
△Tj,=F2 (Tr, 1., Vd, Fo,
F,) The relationship in the above equation can also be obtained from experiments, but it can be easily expressed as the following equation. However, K2 is a proportionality constant.

△Tj、 = K2・I、2 次に、コンデンサ3の中心温度Tjを算出(ステップ4
0/])する。
△Tj, = K2・I, 2 Next, calculate the center temperature Tj of the capacitor 3 (step 4
0/]).

T、=Ta+八TjA 次に、」二記諸データからサンプリング時間t、。T,=Ta+8TjA Next, from the data listed in Section 2, the sampling time t.

をコンデンサの基準中心温度Tt、基準電圧V、及び基
準周波数F、て運転していた場合に相当する時間t、、
′に次式を用いて変換(ステップ4o7)する。
The time t corresponding to when the capacitor is operated at the reference center temperature Tt, reference voltage V, and reference frequency F,
' is converted using the following equation (step 4o7).

t s’ = t、 ・F a (T J 、V a 
、F 0. F C,T r 、 V t 、F r 
)上記式の関係は実験からも求められるが、簡単に次式
とすることが出来る。
t s' = t, ・F a (T J , V a
, F 0. F C, T r , V t , F r
) The relationship in the above equation can also be obtained from experiments, but it can be easily expressed as the following equation.

α   Tx   Tr t、、’ =t、−に3− (VD/Vf)−2(IQ
  )次に上記で算出した変換時間t8′の累積Σt8
(ステップ408)を行う。
α Tx Tr t,,' =t, -to 3- (VD/Vf)-2(IQ
) Next, the cumulative Σt8 of the conversion time t8' calculated above
(Step 408) is performed.

ΣtIl′←ΣtIl′+t11 コンデンサ3の劣化予測時間(11)は、上記の基準中
心温度T t 、基準電圧V、及び基準周波数Ftて運
転した場合に、コンデンサ3が劣化すると予測される運
転時間の累積値である。
ΣtIl'←ΣtIl'+t11 The predicted deterioration time (11) of the capacitor 3 is the operating time during which the capacitor 3 is predicted to deteriorate when operating at the above reference center temperature T t , reference voltage V, and reference frequency Ft. It is a cumulative value.

従って次の段階として、上記で求めた変換時間t8′の
累積時間Σt6′と、上記の劣化予測時間1tを比較し
、累計時間Σt3′が大きい場合はコンデンサ劣化と判
断し、警報信号出力等の異常処理(ステップ410)を
行い異常を知らせることができる。なお、上記ステップ
404で算出したコンデンサの中心温度は、検出器をコ
ンデンサに埋め込んで直接検出することも出来る。
Therefore, the next step is to compare the cumulative time Σt6' of the conversion time t8' obtained above with the predicted deterioration time 1t, and if the cumulative time Σt3' is large, it is determined that the capacitor has deteriorated, and the alarm signal output etc. Abnormality processing (step 410) can be performed to notify the abnormality. Note that the center temperature of the capacitor calculated in step 404 above can also be directly detected by embedding a detector in the capacitor.

また、上記で算出あるいは直接検出された中心温度Tj
または上記コンデンサ温度Taと、コンデンサ3の許容
温度Ttaとを比較(ステップ405)し、どちらかが
許容温度を越えた場合、警告信号を発生して異常停止し
たりあるいは中心温度Tjが許容温度Tt以下になるよ
うにインバータの出力電流1oを下げるなとの異常処理
(ステップ406)を行うことも出来る。
In addition, the center temperature Tj calculated or directly detected above
Alternatively, the capacitor temperature Ta is compared with the allowable temperature Tta of the capacitor 3 (step 405), and if either exceeds the allowable temperature, a warning signal is generated and an abnormal stop is performed, or the center temperature Tj is lower than the allowable temperature Tt. It is also possible to perform abnormality processing (step 406) such that the output current 1o of the inverter is not lowered so as to be as follows.

以上のステップ401〜410を上記サンプリング時間
毎に繰り返し実行する。これにより、コンデンサの劣化
の予測を行い、かつコンデンサの劣化が上記劣化予測時
間11より早く進みコンデンサ温度が上昇した場合も検
出てき、安全性が高くなる。
The above steps 401 to 410 are repeatedly executed at each sampling time. As a result, the deterioration of the capacitor can be predicted, and even if the deterioration of the capacitor progresses earlier than the predicted deterioration time 11 and the capacitor temperature rises, it can be detected, thereby increasing safety.

ところで、コンデンサの劣化は数年以上の長期間 5 6 に渡って進行するので、コンデンサの周囲温度を測定す
る方法では、平均的な温度を設定することにより周囲温
度検出手段を省略することができる。
Incidentally, since deterioration of a capacitor progresses over a long period of time (several years or more), in the method of measuring the ambient temperature of a capacitor, the ambient temperature detection means can be omitted by setting an average temperature. .

この場合1年の平均あるいは1年を季節に分けて温度を
設定する等すればよい。コンデンサの周囲温度は、盤内
温度であることが多い。したがってこの場合は気温に盤
内温度上昇分を加えたものをコンデンサの周囲温度とす
ればよい。なおコンデンサの劣化はインバータ装置の運
転停止中でも周囲温度の影響で進行するので、稼動時間
の割合が高い場合は、運転停止中の時間積分をしなくて
も十分精度が確保されるが、稼動時間の割合が低い場合
は制御装置の電源を別系統にして制御装置のみを動作さ
せるか、またはコンデンサ劣化診断回路部の電源を別系
統にしておけば、インバータ装置の停止中においても温
度を加味した時間を積算できるのでより精度の高い診断
ができる。
In this case, the temperature may be set as an average for one year or for each season of the year. The ambient temperature of the capacitor is often the temperature inside the panel. Therefore, in this case, the ambient temperature of the capacitor can be determined by adding the increase in temperature inside the panel to the air temperature. Note that deterioration of the capacitor progresses due to the influence of ambient temperature even when the inverter is not operating, so if the operating time is high, sufficient accuracy can be ensured without integrating the time during the operating If the percentage of Since time can be accumulated, more accurate diagnosis can be made.

あるいはバッテリバックアップされた時計を持っている
場合は電源を別系統としなくとも電源投入時にインバー
タ運転停止中の温度を加味した変換時間を足し込むこと
により、より精度の高い診断ができる。この場合には、
温度を季節により予め決められた値に設定しておくなど
により、運転停止中の演算を実行しなくても済む。
Alternatively, if you have a battery-backed clock, you can perform a more accurate diagnosis by adding the conversion time that takes into account the temperature while the inverter is stopped when the power is turned on, without using a separate power source. In this case,
By setting the temperature to a predetermined value depending on the season, there is no need to perform calculations while the operation is stopped.

この場合は、運転停止中インバータ装置全体の電源を遮
断てきるので省電力化がはかれる。
In this case, the power to the entire inverter device is cut off while the operation is stopped, resulting in power savings.

以上、本発明の方法をインバータ装置に内蔵したものと
して説明してきたが、上記の方法は容易に外部で検出装
置として組み立てることか可能であり、既存のインバー
タ装置で上記の診断機能の無いものに関しても容易に追
加又は利用出来るまた本発明のうち平滑コンデンサの温
度による劣化診断の方法はインバータ装置などの制御回
路搭載基板に実装される制御電源電圧平滑用コンデンサ
に適用することもできる。この場合温度センサを制御回
路搭載基板上に実装し、また制御電源電圧平滑用コンデ
ンサの動作電流は負荷状態によらず、はぼ一定している
ので予め測定などして決めた値を設定して演算に使用す
ることができる。
Although the method of the present invention has been described above as being built into an inverter device, the above method can be easily assembled as a detection device externally, and is applicable to existing inverter devices that do not have the above diagnostic function. Furthermore, the method of diagnosing deterioration due to temperature of a smoothing capacitor according to the present invention can also be applied to a control power supply voltage smoothing capacitor mounted on a control circuit mounting board of an inverter device or the like. In this case, the temperature sensor is mounted on the control circuit board, and since the operating current of the control power supply voltage smoothing capacitor is approximately constant regardless of the load condition, it is set to a value determined in advance by measurement. Can be used for calculations.

[発明の効果コ 本発明によれば、コンデンサの動作温度を考慮して劣化
時間を推定し、さらに従来に対しコンデンサのリップル
電流が小さくても無視することなく演算処理するので従
来に対しより正確に診断することが出来、インバータ装
置の異常や事故を未然に防くことが出来る。
[Effects of the Invention] According to the present invention, the deterioration time is estimated taking into consideration the operating temperature of the capacitor, and furthermore, even if the ripple current of the capacitor is small, calculation processing is performed without ignoring it, making it more accurate than before. It is possible to diagnose and prevent inverter equipment abnormalities and accidents.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例のブロック図、第2図は動作
フローチャー1・である。 符号の説明 1・・・・・・交流電源、2・・・・・・順変換器、3
・・・・・・コンデンサ、5・・・・・・逆変換器、6
・・・・・・交流機、7・・・・・・マイクコンピュー
タ、8・・・・・・記憶回路、9・・・・・・検出回路
、10・・・・・・表示回路または警報信号出力回路、
11・・・・・・ヘース回路、12・・・・・・インバ
ータ装置、15・・・・・・電流検出器、40・・・・
・・温度検出器、41・・・・・・温度検出器40の出
力信号 9 75
FIG. 1 is a block diagram of an embodiment of the present invention, and FIG. 2 is an operational flowchart 1. Explanation of symbols 1... AC power supply, 2... Forward converter, 3
... Capacitor, 5 ... Inverse converter, 6
...Alternator, 7...Microphone computer, 8...Memory circuit, 9...Detection circuit, 10...Display circuit or alarm signal output circuit,
11...Heas circuit, 12...Inverter device, 15...Current detector, 40...
...Temperature detector, 41...Output signal of temperature detector 40 9 75

Claims (1)

【特許請求の範囲】 1、直流電源の平滑用としてコンデンサを備えた制御装
置において、 前記コンデンサの周囲温度と動作状態に応じて、前記コ
ンデンサの中心温度を推定し、 該中心温度推定値に応じ、所定の演算により前記コンデ
ンサの劣化を診断する演算手段を備えたことを特徴とす
る制御装置。 2、前記コンデンサは、 制御回路搭載基板に実装されたコンデンサであることを
特徴とする請求項1記載の制御装置。 3、前記コンデンサは、 インバータ主回路の直流電圧を平滑するコンデンサであ
ることを特徴とする請求項1記載の制御装置。 4、交流電源を直流電源に変換する順変換回路と、前記
順変換回路の出力部に接続され前記出力部の直流電圧を
平滑するコンデンサと、前記順変換回路の出力部に接続
され前記直流電源を可変周波数電源に変換する逆変換回
路と、前記逆変換回路の出力周波数を可変制御する制御
装置を備えたインバータ装置に接続された劣化診断装置
において、 前記コンデンサの周囲温度を検出する温度検出手段と、 前記逆変換回路の出力電流または前記順変換回路の出力
電流または前記順変換回路の入力電流または前記コンデ
ンサの電流の少なくとも1つを検出する電流検出手段と
、 前記温度検出手段と前記電流検出手段の出力に基づいて
前記コンデンサの中心温度を推定し、当該推定値を演算
した時刻が属する演算周期の時間を、所定の演算により
前記推定値に応じた等価時間に変換して累積し、その累
積値が予め定められた範囲を超えた場合にコンデンサが
劣化したと判定する演算手段を備えたことを特徴とする
劣化診断装置。 5、温度検出手段に代えて平均周囲温度を記憶する記憶
手段を備えたことを特徴とする請求項4記載の劣化診断
装置。 6、交流電源を直流電源に変換する順変換回路と、前記
順変換回路の出力部に接続され前記出力部の直流電圧を
平滑するコンデンサと、前記順変換回路の出力部に接続
され前記直流電源を可変周波数電源に変換する逆変換回
路と、前記逆変換回路の出力周波数を可変制御する制御
装置を備えたインバータ装置に接続された劣化診断装置
において、 前記コンデンサの内部温度を検出する手段と、前記内部
温度をサンプリングした時刻が属するサンプリング周期
の時間を、前記コンデンサの内部温度検出手段の出力に
応じた等価時間に、所定の演算により変換して累積し、
その累積値が予め定められた範囲を超えた場合にコンデ
ンサが劣化したと判定する演算手段を備えたことを特徴
とする劣化診断装置。 7、少なくともインバータが運転停止中にも制御電源を
連続して供給できるように構成されていることを特徴と
する請求項4〜請求項6記載のいずれかの劣化診断装置
。 8、前記累積手段は、バテリーバックアップされた時計
を備え、電源投入時において、前記インバータ装置の電
源が遮断されていた時間を、前記予め定められたコンデ
ンサ周囲温度の平均設定温度に応じた等価時間に変換し
、電源遮断前の等価時間の累積値に加算するようにした
ことを特徴とする請求項4〜請求項6記載のいずれかの
劣化診断装置。 9、前記コンデンサが劣化したと診断した前記演算制御
部の出力により警報を発する警報手段、または前記イン
バータ装置を運転停止するように異常処理を行う異常処
理手段の少なくとも1つを備えたことを特徴とする請求
項4〜請求項8記載のいずれかの劣化診断装置。 10、交流電源を直流電源に変換する順変換回路と、前
記順変換回路の出力部に接続され前記出力部の直流電圧
を平滑するコンデンサと、前記順変換回路の出力部に接
続され前記直流電源を可変周波数電源に変換する逆変換
回路と、前記逆変換回路の出力周波数を可変制御する制
御装置を備えたインバータ装置において、 前記コンデンサの温度と動作状態に応じて、当該コンデ
ンサの中心温度を推定し、該推定値により所定の演算に
より当該コンデンサの劣化を診断する演算手段を備えた
ことを特徴とするインバータ装置。 11、交流電源を直流電源に変換する順変換回路と、前
記順変換回路の出力部に接続され前記出力部の直流電圧
を平滑するコンデンサと、前記順変換回路の出力部に接
続され前記直流電源を可変周波数電源に変換する逆変換
回路と、前記逆変換回路の出力周波数を可変制御する制
御装置を備えたインバータ装置において、 前記コンデンサの周囲温度を検出する温度検出手段と、 前記逆変換回路の出力電流または前記順変換回路の出力
電流または前記順変換回路の入力電流または前記コンデ
ンサの電流の少なくとも1つを検出する電流検出手段と
、 前記温度検出手段と前記電流検出手段の出力に基づいて
前記コンデンサの中心温度を推定し、当該推定値を演算
した時刻が属する演算周期の時間を、所定の演算により
、前記推定値に応じた等価時間に変換して累積し、その
累積値が予め定められた範囲を超えた場合にコンデンサ
が劣化したと判定する演算手段を備えたことを特徴とす
るインバータ装置。 12、温度検出手段に代えて平均周囲温度を記憶する記
憶手段を備えたことを特徴とする請求項11記載のイン
バータ装置。 13、交流電源を直流電源に変換する順変換回路と、前
記順変換回路の出力部に接続され前記出力部の直流電圧
を平滑するコンデンサと、前記順変換回路の出力部に接
続され前記直流電源を可変周波数電源に変換する逆変換
回路と、前記逆変換回路の出力周波数を可変制御する制
御装置を備えたインバータ装置において、 前記コンデンサの内部温度を検出する内部温度検出手段
と、 前記内部温度をサンプリングした時刻が属するサンプリ
ング周期の時間を、前記コンデンサの前記内部温度検出
手段の出力に応じた等価時間に所定の演算により変換し
て累積し、その累積値が予め定められた範囲を超えた場
合にコンデンサが劣化したと判定する演算手段を備えた
ことを特徴とするインバータ装置。 14、前記コンデンサの内部温度を検出する温度検出手
段は、前記コンデンサの中心温度を検出することを特徴
とする請求項13記載のインバータ装置 15、前記コンデンサの中心温度の推定値または、前記
コンデンサの内部温度を検出する温度検出手段の出力が
、予め定められた範囲を超えた場合に警報を発する警報
手段、または前記コンデンサの温度上昇を抑えるための
異常処理手段の少なくとも1つを備えたことを特徴とす
る請求項10〜請求項14記載のいずれかのインバータ
装置。 16、前記異常処理手段は、前記インバータ装置の出力
を低減することまたは運転を停止することを特徴とする
請求項15記載のインバータ装置。 17、少なくともインバータが運転停止中にも制御電源
を連続して供給できるように構成されていることを特徴
とする請求項10〜請求項16記載のいずれかのインバ
ータ装置。 18、前記累積手段は、 バテリーバックアップされた時計を備え、 電源投入時において、前記インバータ装置の電源が遮断
されていた時間を前記予め定められたコンデンサ周囲温
度の平均設定温度に応じた等価時間に変換し、電源遮断
前の等価時間の累積値に加算するようにしたことを特徴
とする請求項10〜請求項16記載のいずれかのインバ
ータ装置。
[Claims] 1. In a control device equipped with a capacitor for smoothing a DC power supply, the center temperature of the capacitor is estimated according to the ambient temperature and the operating state of the capacitor, and the center temperature of the capacitor is estimated according to the estimated value of the center temperature. . A control device comprising a calculation means for diagnosing deterioration of the capacitor by a predetermined calculation. 2. The control device according to claim 1, wherein the capacitor is a capacitor mounted on a control circuit mounting board. 3. The control device according to claim 1, wherein the capacitor is a capacitor that smoothes the DC voltage of the inverter main circuit. 4. A forward conversion circuit that converts an AC power source into a DC power source, a capacitor that is connected to the output section of the forward conversion circuit and smoothes the DC voltage of the output section, and a capacitor that is connected to the output section of the forward conversion circuit and the DC power source. In a deterioration diagnosis device connected to an inverter device comprising an inverter converting circuit that converts a power source into a variable frequency power source and a control device that variably controls an output frequency of the inverter circuit, the deterioration diagnosis device includes a temperature detecting means for detecting an ambient temperature of the capacitor. and current detection means for detecting at least one of the output current of the inverse conversion circuit, the output current of the forward conversion circuit, the input current of the forward conversion circuit, or the current of the capacitor; the temperature detection means and the current detection The center temperature of the capacitor is estimated based on the output of the means, and the time of the calculation cycle to which the estimated value is calculated is converted into an equivalent time according to the estimated value by a predetermined calculation and accumulated. A deterioration diagnosing device comprising a calculation means for determining that a capacitor has deteriorated when a cumulative value exceeds a predetermined range. 5. The deterioration diagnosis device according to claim 4, further comprising storage means for storing average ambient temperature in place of the temperature detection means. 6. A forward conversion circuit that converts an AC power source into a DC power source, a capacitor that is connected to the output section of the forward conversion circuit and smoothes the DC voltage of the output section, and a capacitor that is connected to the output section of the forward conversion circuit and the DC power source. In a deterioration diagnosis device connected to an inverter device comprising an inverter converting circuit that converts a power source into a variable frequency power source, and a control device variably controlling an output frequency of the inverter circuit, the deterioration diagnosing device includes: means for detecting an internal temperature of the capacitor; Converting the time of the sampling period to which the time of sampling the internal temperature belongs to an equivalent time according to the output of the internal temperature detection means of the capacitor by a predetermined calculation and accumulating it;
A deterioration diagnosing device characterized by comprising a calculation means for determining that a capacitor has deteriorated when the cumulative value exceeds a predetermined range. 7. The deterioration diagnosis device according to any one of claims 4 to 6, characterized in that the device is configured so that control power can be continuously supplied even when at least the inverter is stopped. 8. The accumulation means is equipped with a battery-backed clock, and when the power is turned on, the time during which the power supply of the inverter device is cut off is calculated as an equivalent time according to the predetermined average set temperature of the capacitor ambient temperature. 7. The deterioration diagnosing device according to claim 4, wherein the deterioration diagnosing device converts the converted time into a cumulative value of the equivalent time before the power is cut off. 9. The device is characterized by comprising at least one of an alarm unit that issues an alarm based on the output of the arithmetic control unit that has diagnosed that the capacitor has deteriorated, and an abnormality processing unit that performs abnormality processing to stop the operation of the inverter device. The deterioration diagnostic device according to any one of claims 4 to 8. 10. A forward conversion circuit for converting AC power into DC power; a capacitor connected to the output section of the forward conversion circuit to smooth the DC voltage of the output section; and a capacitor connected to the output section of the forward conversion circuit and the DC power supply. In an inverter device that includes an inverse conversion circuit that converts into a variable frequency power source, and a control device that variably controls the output frequency of the inverse conversion circuit, the center temperature of the capacitor is estimated according to the temperature and operating state of the capacitor. An inverter device comprising: a calculation means for diagnosing deterioration of the capacitor by performing a predetermined calculation based on the estimated value. 11. A forward conversion circuit that converts an AC power source into a DC power source, a capacitor that is connected to the output section of the forward conversion circuit and smoothes the DC voltage of the output section, and a capacitor that is connected to the output section of the forward conversion circuit and that is the DC power source. An inverter device comprising: an inverse conversion circuit that converts the output frequency of the inverse conversion circuit into a variable frequency power source; and a control device that variably controls the output frequency of the inverse conversion circuit; current detection means for detecting at least one of an output current, an output current of the forward conversion circuit, an input current of the forward conversion circuit, or a current of the capacitor; The center temperature of the capacitor is estimated, and the time of the calculation cycle to which the estimated value is calculated is converted into an equivalent time according to the estimated value by a predetermined calculation and accumulated, and the cumulative value is determined in advance. An inverter device characterized by comprising a calculation means for determining that a capacitor has deteriorated when the capacitor exceeds a certain range. 12. The inverter device according to claim 11, further comprising storage means for storing average ambient temperature in place of the temperature detection means. 13. A forward conversion circuit for converting AC power into DC power; a capacitor connected to the output section of the forward conversion circuit to smooth the DC voltage of the output section; and a capacitor connected to the output section of the forward conversion circuit and the DC power supply. An inverter device comprising an inverse conversion circuit that converts the output frequency into a variable frequency power supply, and a control device that variably controls the output frequency of the inverse conversion circuit, the inverter device comprising: an internal temperature detection means that detects the internal temperature of the capacitor; If the time of the sampling period to which the sampled time belongs is converted into an equivalent time according to the output of the internal temperature detection means of the capacitor by a predetermined calculation and accumulated, and the cumulative value exceeds a predetermined range. An inverter device characterized by comprising a calculation means for determining that a capacitor has deteriorated. 14. The inverter device 15 according to claim 13, wherein the temperature detection means for detecting the internal temperature of the capacitor detects the center temperature of the capacitor. The capacitor includes at least one of an alarm means for issuing an alarm when the output of the temperature detection means for detecting the internal temperature exceeds a predetermined range, and an abnormality processing means for suppressing the temperature rise of the capacitor. The inverter device according to any one of claims 10 to 14. 16. The inverter device according to claim 15, wherein the abnormality processing means reduces the output of the inverter device or stops operation of the inverter device. 17. The inverter device according to any one of claims 10 to 16, wherein the inverter device is configured to be able to continuously supply control power even when at least the inverter is stopped. 18. The accumulation means is equipped with a battery-backed clock, and when the power is turned on, the time during which the power supply of the inverter device is cut off is converted into an equivalent time according to the predetermined average setting temperature of the capacitor ambient temperature. The inverter device according to any one of claims 10 to 16, characterized in that the converted value is converted and added to the cumulative value of the equivalent time before the power is shut off.
JP2067156A 1990-03-19 1990-03-19 Inverter device Expired - Lifetime JP2960469B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2067156A JP2960469B2 (en) 1990-03-19 1990-03-19 Inverter device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2067156A JP2960469B2 (en) 1990-03-19 1990-03-19 Inverter device

Publications (2)

Publication Number Publication Date
JPH03269269A true JPH03269269A (en) 1991-11-29
JP2960469B2 JP2960469B2 (en) 1999-10-06

Family

ID=13336755

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2067156A Expired - Lifetime JP2960469B2 (en) 1990-03-19 1990-03-19 Inverter device

Country Status (1)

Country Link
JP (1) JP2960469B2 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08322141A (en) * 1995-05-25 1996-12-03 Fuji Electric Co Ltd Lifetime alarm for electrolytic capacitor
FR2768228A1 (en) * 1997-09-08 1999-03-12 Univ Claude Bernard Lyon METHOD AND DEVICE FOR DETERMINING THE AGING CONDITION OF A CAPACITOR
JPH11289752A (en) * 1998-03-31 1999-10-19 Fuji Electric Co Ltd Device for advance noticing of capacitor end of life to power conversion device
FR2797345A1 (en) * 1999-08-04 2001-02-09 Univ Claude Bernard Lyon METHOD AND DEVICE FOR INDIVIDUALLY DETERMINING THE AGING CONDITION OF A CAPACITOR
JP2006284605A (en) * 2006-06-23 2006-10-19 Omron Corp Temperature detection structure and electronic equipment
JP2008161054A (en) * 2008-02-15 2008-07-10 Hitachi Industrial Equipment Systems Co Ltd Inverter apparatus
JP2008164453A (en) * 2006-12-28 2008-07-17 Mitsubishi Electric Corp Device for determining smoothing capacitor lifetime for inverter device
EP2177923A1 (en) * 2008-10-17 2010-04-21 Panasonic Electric Works Co., Ltd. Discharge lamp lighting device and illumination fixture with end of life detection
JP5197897B1 (en) * 2012-06-05 2013-05-15 三菱電機株式会社 Electric motor control device
JP2015089172A (en) * 2013-10-29 2015-05-07 株式会社デンソー Power conversion device
JP2015106961A (en) * 2013-11-29 2015-06-08 ダイキン工業株式会社 Power conversion device
WO2020183540A1 (en) * 2019-03-08 2020-09-17 三菱電機株式会社 Control device for air conditioner
JPWO2021186670A1 (en) * 2020-03-19 2021-09-23
WO2024096055A1 (en) * 2022-11-04 2024-05-10 株式会社Gsユアサ Remote diagnosis device, remote diagnosis system, and computer program for power supply equipment

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002165357A (en) 2000-11-27 2002-06-07 Canon Inc Power converter and its control method, and power generating system
KR101507985B1 (en) 2014-08-08 2015-04-07 주식회사 두크 Booster pump inverter dc link capacitor replacement cycle notification device

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08322141A (en) * 1995-05-25 1996-12-03 Fuji Electric Co Ltd Lifetime alarm for electrolytic capacitor
FR2768228A1 (en) * 1997-09-08 1999-03-12 Univ Claude Bernard Lyon METHOD AND DEVICE FOR DETERMINING THE AGING CONDITION OF A CAPACITOR
WO1999013348A1 (en) * 1997-09-08 1999-03-18 Universite Claude Bernard Lyon I Method and device for determining a capacitor ageing condition
JPH11289752A (en) * 1998-03-31 1999-10-19 Fuji Electric Co Ltd Device for advance noticing of capacitor end of life to power conversion device
FR2797345A1 (en) * 1999-08-04 2001-02-09 Univ Claude Bernard Lyon METHOD AND DEVICE FOR INDIVIDUALLY DETERMINING THE AGING CONDITION OF A CAPACITOR
WO2001011377A1 (en) * 1999-08-04 2001-02-15 Universite Claude Bernard Lyon I Method and device for individually determining the ageing condition of a capacitor
JP2006284605A (en) * 2006-06-23 2006-10-19 Omron Corp Temperature detection structure and electronic equipment
JP4508163B2 (en) * 2006-06-23 2010-07-21 オムロン株式会社 Temperature detection structure and electronic equipment
JP2008164453A (en) * 2006-12-28 2008-07-17 Mitsubishi Electric Corp Device for determining smoothing capacitor lifetime for inverter device
JP2008161054A (en) * 2008-02-15 2008-07-10 Hitachi Industrial Equipment Systems Co Ltd Inverter apparatus
EP2177923A1 (en) * 2008-10-17 2010-04-21 Panasonic Electric Works Co., Ltd. Discharge lamp lighting device and illumination fixture with end of life detection
WO2013183118A1 (en) * 2012-06-05 2013-12-12 三菱電機株式会社 Electric motor control device
CN104335470B (en) * 2012-06-05 2017-03-08 三菱电机株式会社 Control device of electric motor
CN104335470A (en) * 2012-06-05 2015-02-04 三菱电机株式会社 Electric motor control device
JP5197897B1 (en) * 2012-06-05 2013-05-15 三菱電機株式会社 Electric motor control device
TWI485970B (en) * 2012-06-05 2015-05-21 Mitsubishi Electric Corp Apparatus for controlling motor
US9397593B2 (en) 2012-06-05 2016-07-19 Mitsubishi Electric Corporation Motor control device
JP2015089172A (en) * 2013-10-29 2015-05-07 株式会社デンソー Power conversion device
JP2015106961A (en) * 2013-11-29 2015-06-08 ダイキン工業株式会社 Power conversion device
WO2020183540A1 (en) * 2019-03-08 2020-09-17 三菱電機株式会社 Control device for air conditioner
JPWO2020183540A1 (en) * 2019-03-08 2021-11-18 三菱電機株式会社 Air conditioner control device
JPWO2021186670A1 (en) * 2020-03-19 2021-09-23
WO2021186670A1 (en) * 2020-03-19 2021-09-23 三菱電機株式会社 Outdoor unit for air conditioning device
US12025328B2 (en) 2020-03-19 2024-07-02 Mitsubishi Electric Corporation Outdoor unit of air-conditioning apparatus
WO2024096055A1 (en) * 2022-11-04 2024-05-10 株式会社Gsユアサ Remote diagnosis device, remote diagnosis system, and computer program for power supply equipment

Also Published As

Publication number Publication date
JP2960469B2 (en) 1999-10-06

Similar Documents

Publication Publication Date Title
JPH03269269A (en) Inverter device
US8303171B2 (en) Cooling capacity measurement method for inverter device
WO2009148160A1 (en) Capacitor's remaining lifetime diagnosing device, and electric power compensating device having the remaining lifetime diagnosing device
US10649035B2 (en) Method for estimating the current and the state of charge of a battery pack or cell, without direct detection of current under operating conditions
EP2088417A1 (en) Engine life predication apparatus and refrigerator
JPH0627175A (en) Life calculating device for capacitor
JPH03269268A (en) Diagnostic apparatus of deterioration of capacitor
JPH1084688A (en) Sensor for detecting abnormality in motor and its method
JP2007288955A (en) Power conversion device
JP2005016958A (en) Motor driving device
JP2008172938A (en) Abnormality diagnosing equipment for cooler
JP2001141795A (en) Insulation degradation detection device for compressor in air conditioner
JPH1169834A (en) Life alarm device of aluminum electrolytic capacitor for inverter device
JP2002221559A (en) Vehicle battery diagnostic device
JP2009033909A (en) Power converter in set parallel configuration and elevator system using the same
JP6457589B2 (en) Abnormality diagnosis apparatus and abnormality diagnosis method
JP4069373B2 (en) Capacitor life diagnosis apparatus and capacitor life diagnosis method
JPH09140175A (en) Motor controller
JP2000104666A (en) Load measuring diagnosis device in air compressor and air compressor equipped therewith
JP2000131362A (en) Method and apparatus for diagnosis of degradation of electrolytic capacitor
JPH06233475A (en) Power supply
JP2009131125A (en) Control unit for electric vehicle
JP4777289B2 (en) Servo amplifier and diagnostic device
JPH09264913A (en) Continuous diagnosing device of dc stabilizing supply
US20240297355A1 (en) Battery failure determination device

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080730

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080730

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090730

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090730

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100730

Year of fee payment: 11

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100730

Year of fee payment: 11