JPH0658891A - Dew point measuring apparatus - Google Patents

Dew point measuring apparatus

Info

Publication number
JPH0658891A
JPH0658891A JP20994292A JP20994292A JPH0658891A JP H0658891 A JPH0658891 A JP H0658891A JP 20994292 A JP20994292 A JP 20994292A JP 20994292 A JP20994292 A JP 20994292A JP H0658891 A JPH0658891 A JP H0658891A
Authority
JP
Japan
Prior art keywords
dew point
reflection surface
mirror
specular
specular reflection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20994292A
Other languages
Japanese (ja)
Inventor
Yukiko Nakashige
由紀子 中重
Noriaki Ishio
則明 石尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Renesas Semiconductor Engineering Corp
Mitsubishi Electric Corp
Original Assignee
Renesas Semiconductor Engineering Corp
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Renesas Semiconductor Engineering Corp, Mitsubishi Electric Corp filed Critical Renesas Semiconductor Engineering Corp
Priority to JP20994292A priority Critical patent/JPH0658891A/en
Publication of JPH0658891A publication Critical patent/JPH0658891A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To monitor dew point as continuous as possible by thermally evaporating water condensed on a mirror reflection surface through irradiation with microwave or infrared ray or through supply of heated sample gas thereby accelerating cooling-temperature rise cycle. CONSTITUTION:Sample gas is fed through a gas inlet 1, blown against the surface of a mirror 3, and then discharged through a gas outlet 2. Mirror 3 surface is cooled through a cooling head 5 thus condensing water in the sample gas. Consequently, the light from a light source 7 is scattered on the mirror 3 surface and detected at a light receiving section 8. A thermometer 4 indicates dew point temperature and the concentration of water in the gas is calculated. Immediately after measurement of dew point, microwave is projected from a microwave generator 10 through a waveguide 11 to condensed water on the mirror 3 in order to measure dew point again. Water evaporates upon irradiation with microwave. A decision is made that the condensed water has been removed thoroughly if the light receiving section 8 detects no scattering light and the mirror 3 surface is cooled again for the purpose of dew point measurement. Measurement of dew point and removal of condensed water are repeated alternately thus monitoring variation of dew point.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は露点計測装置に関し、
特に高純度ガス中の水分濃度を測定する光学式の露点計
測装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a dew point measuring device,
In particular, the present invention relates to an optical dew point measuring device for measuring the water concentration in high-purity gas.

【0002】[0002]

【従来の技術】図4は従来の光学式露点計測装置の構成
図である。図において、14は測定室16を収容する外
周容器であり、該外周容器14と測定室16との間は真
空排気ポート9により真空状態に保たれ、測定系の温度
が外の温度の影響を受けないよう断熱スペース15とな
っている。また1は測定対象となるサンプルガスが導入
されるガス入口、2は測定後のガスが排出されるガス出
口、3は測定室16内に配置されたミラー(鏡面体)、
4はミラー3の温度をモニターするための温度計、5は
ミラー3を冷却するための冷却機17の冷却ヘッドであ
る。また6はミラー3に結露した水分を除去するための
ヒータ、7はミラー3に観測光を出射する光源、8はミ
ラー3からの反射光を受光するための受光部である。
2. Description of the Related Art FIG. 4 is a block diagram of a conventional optical dew point measuring device. In the figure, 14 is an outer peripheral container that houses a measurement chamber 16, and a vacuum state is maintained between the outer peripheral container 14 and the measurement chamber 16 by a vacuum exhaust port 9, so that the temperature of the measurement system is affected by the outside temperature. It is a heat insulating space 15 so as not to receive it. Further, 1 is a gas inlet into which a sample gas to be measured is introduced, 2 is a gas outlet from which a gas after measurement is discharged, 3 is a mirror (mirror surface body) arranged in the measurement chamber 16,
Reference numeral 4 is a thermometer for monitoring the temperature of the mirror 3, and 5 is a cooling head of a cooler 17 for cooling the mirror 3. Further, 6 is a heater for removing water condensed on the mirror 3, 7 is a light source for emitting observation light to the mirror 3, and 8 is a light receiving portion for receiving reflected light from the mirror 3.

【0003】次に露点の測定方法について説明する。ガ
ス入口1より測定対象となるサンプルガス、例えば窒
素,アルゴン等を測定室16に導入し、ガス出口2より
順次排気しながらミラー3上に吹きつける。このミラー
3は下方に配置された冷却ヘッド5によって徐々に冷却
されていき、この時の温度が白金抵抗素子等の温度計4
でモニタされている。さらに上記ミラー3には上方から
光源7により観測光が入射されており、この反射光を受
光部8でモニタしている。そしてミラー3の面が測定対
象となるガスの飽和水分濃度以下の温度まで冷却された
時、ミラー3上に水分が結露する。この結露が生成する
と、ミラー3上に照射された光が散乱され受光部7にて
検出される。
Next, a method for measuring the dew point will be described. A sample gas to be measured, such as nitrogen or argon, is introduced into the measurement chamber 16 through the gas inlet 1 and is blown onto the mirror 3 while being sequentially exhausted through the gas outlet 2. The mirror 3 is gradually cooled by a cooling head 5 arranged below, and the temperature at this time is measured by a thermometer 4 such as a platinum resistance element.
Is being monitored by. Further, observation light is incident on the mirror 3 from above by the light source 7, and the reflected light is monitored by the light receiving unit 8. Then, when the surface of the mirror 3 is cooled to a temperature equal to or lower than the saturated moisture concentration of the gas to be measured, moisture is condensed on the mirror 3. When this dew condensation is generated, the light irradiated onto the mirror 3 is scattered and detected by the light receiving unit 7.

【0004】そしてこの散乱光が検出された時の温度を
温度計4で読み取り、このガスの露点温度とする。そし
てこの得られた露点から上記サンプルガス中に含まれる
水分濃度を算出することができる。ところで、導入され
てくるサンプルガスの露点は時間とともに変化している
ため、再度露点を測定するためには、結露したミラー3
面上の水分を一旦除去する必要がある。そこで、ヒータ
6でミラー3を含む測定室16全体の温度を上昇してミ
ラー3面に結露した水分を完全に除去する。そしてミラ
ー3面上の水分を除去した後、再度、冷却ヘッド5で徐
々にミラー3を冷却していき、結露する温度(露点)を
測定する。
Then, the temperature at which this scattered light is detected is read by the thermometer 4 and used as the dew point temperature of this gas. The concentration of water contained in the sample gas can be calculated from the obtained dew point. By the way, since the dew point of the sample gas introduced changes with time, in order to measure the dew point again, the dew point of the mirror 3
It is necessary to remove the water on the surface once. Therefore, the temperature of the entire measuring chamber 16 including the mirror 3 is raised by the heater 6 to completely remove the moisture condensed on the surface of the mirror 3. Then, after removing the water on the surface of the mirror 3, the cooling head 5 gradually cools the mirror 3 again, and the dew point (condensation temperature) is measured.

【0005】[0005]

【発明が解決しようとする課題】従来の露点計測装置は
以上のように構成されているので、時間とともに変化す
るガスの露点をモニタするためには、一旦結露した水分
を除去しなければならず、系全体をヒータで加熱するこ
とが必要で、多くのエネルギー(電力)と時間を要し、
また、一度結露した水分を除去するためには、露点温度
よりかなり高い温度まで昇温する必要があり、該温度上
昇後、再測定で露点まで冷却していく時間も長くなり、
このため、露点は約30分に1回程度の割合でしかモニ
タできないという問題点があった。
Since the conventional dew point measuring device is constructed as described above, in order to monitor the dew point of the gas, which changes with time, it is necessary to remove the dew condensation water. , It is necessary to heat the entire system with a heater, which requires a lot of energy (electric power) and time,
Further, in order to remove the water that has once condensed dew, it is necessary to raise the temperature to a temperature considerably higher than the dew point temperature, and after the temperature rise, the time for cooling to the dew point by remeasurement becomes long,
Therefore, there is a problem that the dew point can be monitored only about once every 30 minutes.

【0006】この発明は上記のような問題点を解消する
ためになされたもので、一度結露した水分を短時間かつ
系の温度上昇を低く抑えて蒸発させ、冷却−昇温サイク
ルを早めて、露点をできるかぎり連続的にモニタするこ
とができる露点計側装置を得ることを目的とする。
The present invention has been made in order to solve the above-mentioned problems, and evaporates water that has once condensed in a short time while keeping the temperature rise of the system low, and accelerates the cooling-heating cycle. It is an object of the present invention to obtain a dew point side device that can continuously monitor the dew point as much as possible.

【0007】[0007]

【課題を解決するための手段】この発明に係る露点計測
装置は、鏡面反射面に結露した水分を、マイクロ波また
は赤外線を照射する、あるいはガス導入管に設けられた
加熱器により加熱したサンプルガスを供給することによ
り加熱蒸発させる水分除去手段を備えたものである。
A dew point measuring device according to the present invention is a sample gas in which moisture condensed on a specular reflection surface is irradiated with microwaves or infrared rays, or heated by a heater provided in a gas introduction pipe. It is provided with a water removing means for heating and evaporating by supplying.

【0008】[0008]

【作用】この発明においては、鏡面反射面に結露した水
分のみに選択的にエネルギーを与えて加熱が行われるた
め、短時間で、かつ系全体の温度上昇を低くおさえて上
記鏡面反射面に結露した水分を除去することができる。
In the present invention, since only the water condensed on the specular reflection surface is selectively heated to heat it, dew condensation on the specular reflection surface can be achieved in a short time while keeping the temperature rise of the entire system low. The generated water can be removed.

【0009】[0009]

【実施例】以下、この発明の一実施例による露点計測装
置を図1に基づいて説明する。図1において、図4と同
一符号は同一または相当部分を示し、10は外周容器1
4外部に設けられたマイクロ波発生器、11はマイクロ
波発生器10の出力を測定室16内に供給するための導
波管である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A dew point measuring device according to an embodiment of the present invention will be described below with reference to FIG. In FIG. 1, the same reference numerals as those in FIG.
4 A microwave generator provided outside, 11 is a waveguide for supplying the output of the microwave generator 10 into the measurement chamber 16.

【0010】次に動作について説明する。従来と同様に
してガス入口1より例えば窒素,アルゴン等のサンプル
ガスを供給し、ミラー3面上に吹きつけ、ガス出口2よ
りサンプルガスが排出される。このときミラー面3は冷
却ヘッド5で冷却され、その時の温度が白金抵抗素子等
からなる温度計4でモニタされている。そしてミラー面
3がサンプルガス中の飽和水蒸気温度以下に冷却された
時、ミラー面3上にサンプルガス中に含まれる水分が結
露する。この結露によって、光源8からミラー3面上に
照射されていた光が散乱され、受光部で検出される。こ
の時の温度を上記サンプルガスの露点温度として表示
し、これから上記サンプルガスに含まれる水分濃度を算
出する。
Next, the operation will be described. Sample gas such as nitrogen and argon is supplied from the gas inlet 1 and blown onto the surface of the mirror 3 in the same manner as in the conventional case, and the sample gas is discharged from the gas outlet 2. At this time, the mirror surface 3 is cooled by the cooling head 5, and the temperature at that time is monitored by the thermometer 4 including a platinum resistance element or the like. Then, when the mirror surface 3 is cooled to a temperature equal to or lower than the saturated water vapor temperature in the sample gas, moisture contained in the sample gas is condensed on the mirror surface 3. Due to this dew condensation, the light emitted from the light source 8 onto the surface of the mirror 3 is scattered and detected by the light receiving portion. The temperature at this time is displayed as the dew point temperature of the sample gas, and the concentration of water contained in the sample gas is calculated from this.

【0011】次に時間とともに変化するサンプルガスの
露点を測定するために再度、露点を測定するためには、
ミラー面3上に結露した水分を一旦除去する必要があ
る。そこで、上記露点が測定された直後、マイクロ波発
生器10より導波管11を通してミラー面3上の結露し
た水分にマイクロ波を照射する。照射されたマイクロ波
は選択的に水分に吸収されて熱に変換され、水分は蒸発
するため、系全体の温度上昇は従来の系全体を加熱する
ものに比べて少ない。そして受光部8に散乱光が検出さ
れなくなった時に、結露された水分は完全に除去された
と判断し、再度,露点測定のために、ミラー3面が冷却
されていく。以降この冷却による水分の結露温度(露
点)の測定と結露した水分の除去を交互に繰り返しなが
ら、連続的にサンプルガスの露点変化をモニタしてい
く。
Next, in order to measure the dew point of the sample gas again, which changes with time,
It is necessary to once remove the moisture that has condensed on the mirror surface 3. Therefore, immediately after the dew point is measured, microwaves are radiated from the microwave generator 10 to the condensed water on the mirror surface 3 through the waveguide 11. The irradiated microwaves are selectively absorbed by moisture and converted into heat, and the moisture evaporates, so that the temperature rise of the entire system is smaller than that of the conventional system that heats the entire system. Then, when the scattered light is no longer detected by the light receiving unit 8, it is determined that the condensed water is completely removed, and the surface of the mirror 3 is cooled again for the dew point measurement. Thereafter, the dew point change of the sample gas is continuously monitored by alternately repeating the measurement of the dew point of dew point of the water and the removal of the dewed water by the cooling.

【0012】次に本発明の第2の実施例による露点計測
装置を図2に基づいて説明する。この実施例では、ミラ
ー3上の結露した水分を選択的に蒸発させる方法として
光を用いて行うようようにしたものである。すなわち図
2に示すように、12はレンズまたはミラー光学系を用
いてミラー面3上に集光し、結露した水分を除去するよ
うに配置された赤外線照射器であり、露点測定のため冷
却時には赤外光はカットまたはオフにする。
Next, a dew point measuring device according to a second embodiment of the present invention will be described with reference to FIG. In this embodiment, light is used as a method for selectively evaporating the condensed water on the mirror 3. That is, as shown in FIG. 2, reference numeral 12 denotes an infrared irradiator which is arranged so as to focus light on the mirror surface 3 by using a lens or a mirror optical system and remove condensed water. Infrared light should be cut or turned off.

【0013】次に本発明の第3の実施例による露点計測
装置を図3に基づいて説明する。この実施例では、ミラ
ー3上の結露した水分を選択的に加熱する方法として加
熱されたサンプルガスを用いるようにしたものである。
すなわち図3に示すように、13はガス入口1周辺のガ
ス配管を加熱する加熱コイルであり、該コイル13によ
り加熱されたサンプルガスは飽和水蒸気量が多くなり、
これをミラー3に噴射することで素早くミラー上の結露
した水分を蒸発除去させることができる。なおこの場合
も露点測定のため冷却時には、加熱コイル13をオフに
する。
Next, a dew point measuring device according to a third embodiment of the present invention will be described with reference to FIG. In this embodiment, a heated sample gas is used as a method for selectively heating the condensed water on the mirror 3.
That is, as shown in FIG. 3, 13 is a heating coil for heating the gas pipe around the gas inlet 1, and the sample gas heated by the coil 13 has a large amount of saturated steam,
By spraying this on the mirror 3, the condensed water on the mirror can be quickly evaporated and removed. In this case as well, the heating coil 13 is turned off during cooling for dew point measurement.

【0014】以上のように第1ないし第3の実施例によ
れば、従来約30分に1回程度の割合でしか露点をモニ
タできなかったものが、冷却−昇温サイクルが半分以下
(15分)に短縮されるため、約倍の速度で連続的に露
点をモニタすることができる。
As described above, according to the first to third embodiments, the dew point can be monitored only once in about 30 minutes, but the cooling-heating cycle is less than half (15). The dew point can be continuously monitored at about double the speed.

【0015】なお上記各実施例では、ヒータ6を使用し
なかったが、ミラー3面に結露した水分を除去する際に
補助的な昇温手段として用いるようにしてもよい。
Although the heater 6 is not used in each of the above-mentioned embodiments, it may be used as an auxiliary temperature raising means when removing the moisture condensed on the surface of the mirror 3.

【0016】[0016]

【発明の効果】以上のように、この発明に係る露点計測
装置によれば、鏡面反射面に結露した水分を、マイクロ
波,赤外線または加熱したサンプルガスを鏡面反射面に
与えて、選択的にこれを加熱するようにしたので、結露
した水分の除去を迅速に行うことができ、かつ系全体の
温度上昇を低く抑えることができ、再度露点を測定する
際の冷却時間が短縮され、従来よりもより連続的な露点
測定を行うことができるという効果がある。
As described above, according to the dew point measuring device of the present invention, the moisture condensed on the specular reflection surface is selectively applied to the specular reflection surface by applying microwave, infrared rays or heated sample gas to the specular reflection surface. Since this is heated, the dew condensation water can be removed quickly, the temperature rise of the entire system can be suppressed to a low level, and the cooling time for measuring the dew point again can be shortened. Also has the effect of enabling more continuous dew point measurement.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の第1の実施例による露点計測装置の
断面図である。
FIG. 1 is a sectional view of a dew point measuring device according to a first embodiment of the present invention.

【図2】この発明の第2の実施例による露点計測装置の
断面図である。
FIG. 2 is a sectional view of a dew point measuring device according to a second embodiment of the present invention.

【図3】この発明の第3の実施例による露点計測装置の
断面図である。
FIG. 3 is a sectional view of a dew point measuring device according to a third embodiment of the present invention.

【図4】従来の露点計測装置を示す断面図である。FIG. 4 is a sectional view showing a conventional dew point measuring device.

【符号の説明】[Explanation of symbols]

1 ガス入口 2 ガス出口 3 ミラー 4 温度計 5 冷却ヘッド 6 ヒータ 7 光源 8 受光部 9 真空排気ポート 10 マイクロ波発生器 11 導波管 12 加熱光源(赤外線) 13 加熱コイル 14 外周容器 15 断熱スペース 16 測定室 1 Gas Inlet 2 Gas Outlet 3 Mirror 4 Thermometer 5 Cooling Head 6 Heater 7 Light Source 8 Light Receiving Section 9 Vacuum Evacuation Port 10 Microwave Generator 11 Waveguide 12 Heating Light Source (Infrared) 13 Heating Coil 14 Outer Container 15 Insulation Space 16 Measurement room

───────────────────────────────────────────────────── フロントページの続き (72)発明者 石尾 則明 兵庫県伊丹市瑞原4丁目1番地 三菱電機 株式会社エル・エス・アイ研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Noriaki Ishio 4-1-1 Mizuhara, Itami City, Hyogo Prefecture Mitsubishi Electric Corp.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 鏡面体と、これを冷却する機構とを有
し、前記鏡面体の鏡面反射面上にサンプルガスを噴射
し、該鏡面反射面への入射光の散乱により鏡面反射面で
の結露状態を検出し、この検出時の温度を上記サンプル
ガスに含まれる水分の露点として計測する露点計側装置
において、 上記鏡面体の鏡面反射面上にサンプルガスを噴射するガ
ス導入管と、 上記鏡面反射面に観測光を照射する光源及び鏡面反射面
からの反射光を受光する受光器からなる光学系と、 上記鏡面体の温度を測定する温度センサと、 上記鏡面反射面に結露した水分を、これにマイクロ波ま
たは赤外線を照射して加熱蒸発させる水分除去手段とを
備えたことを特徴とする露点計測装置。
1. A specular body and a mechanism for cooling the specular body, sample gas is jetted onto the specular reflection surface of the specular body, and scattering of incident light on the specular reflection surface causes the specular reflection surface to scatter. In the dew point side device for detecting the dew condensation state and measuring the temperature at the time of detection as the dew point of the moisture contained in the sample gas, a gas introduction pipe for injecting the sample gas onto the specular reflection surface of the mirror body, An optical system consisting of a light source that irradiates the specular reflection surface with observation light and a light receiver that receives the reflected light from the specular reflection surface, a temperature sensor that measures the temperature of the specular surface, and water that has condensed on the specular reflection surface. A dew point measuring apparatus comprising: a moisture removing unit that irradiates microwaves or infrared rays to heat and evaporate the dew point.
【請求項2】 鏡面体と、これを冷却する機構とを有
し、前記鏡面体の鏡面反射面上にサンプルガスを噴射
し、該鏡面反射面への入射光の散乱により鏡面反射面で
の結露状態を検出し、この検出時の温度を上記サンプル
ガスに含まれる水分の露点として計測する露点計側装置
において、 上記鏡面体の鏡面反射面上にサンプルガスを噴射するガ
ス導入管と、 上記鏡面反射面に観測光を照射する光源及び鏡面反射面
からの反射光を受光する受光器からなる光学系と、 上記鏡面体の温度を測定する温度センサと、 上記鏡面反射面に結露した水分を、上記ガス導入管に設
けられた加熱器により上記鏡面体の鏡面反射面上に加熱
されたサンプルガスを供給して除去する水分除去手段と
を備えたことを特徴とする露点計測装置。
2. A specular body and a mechanism for cooling the specular body, the sample gas is jetted onto the specular reflection surface of the specular body, and scattering of incident light on the specular reflection surface causes the specular reflection surface to scatter. In the dew point side device for detecting the dew condensation state and measuring the temperature at the time of detection as the dew point of the moisture contained in the sample gas, a gas introduction pipe for injecting the sample gas onto the specular reflection surface of the mirror body, An optical system consisting of a light source that irradiates the specular reflection surface with observation light and a light receiver that receives the reflected light from the specular reflection surface, a temperature sensor that measures the temperature of the specular surface, and water that has condensed on the specular reflection surface. A dew point measuring device, comprising: a water removing unit that supplies and removes the heated sample gas onto the specular reflection surface of the specular body by a heater provided in the gas introduction pipe.
JP20994292A 1992-08-06 1992-08-06 Dew point measuring apparatus Pending JPH0658891A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20994292A JPH0658891A (en) 1992-08-06 1992-08-06 Dew point measuring apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20994292A JPH0658891A (en) 1992-08-06 1992-08-06 Dew point measuring apparatus

Publications (1)

Publication Number Publication Date
JPH0658891A true JPH0658891A (en) 1994-03-04

Family

ID=16581218

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20994292A Pending JPH0658891A (en) 1992-08-06 1992-08-06 Dew point measuring apparatus

Country Status (1)

Country Link
JP (1) JPH0658891A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007192715A (en) * 2006-01-20 2007-08-02 Yamatake Corp Mirror surface cooling-type dew-point hygrometer
US20120055273A1 (en) * 2009-04-28 2012-03-08 Murata Manufacturing Co., Ltd. Dew formation testing device and dew formation testing method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007192715A (en) * 2006-01-20 2007-08-02 Yamatake Corp Mirror surface cooling-type dew-point hygrometer
JP4504318B2 (en) * 2006-01-20 2010-07-14 株式会社山武 Mirror surface dew point meter
US20120055273A1 (en) * 2009-04-28 2012-03-08 Murata Manufacturing Co., Ltd. Dew formation testing device and dew formation testing method
US8763480B2 (en) * 2009-04-28 2014-07-01 Espec Corp. Dew formation testing device and dew formation testing method

Similar Documents

Publication Publication Date Title
Vorobyev et al. Brighter light sources from black metal: significant increase in emission efficiency of incandescent light sources
JP4056091B2 (en) Dermatological treatment method and apparatus
US7068370B2 (en) Optical inspection equipment for semiconductor wafers with precleaning
Mosbacher et al. A comparison of ns and ps steam laser cleaning of Si surfaces
US20170122810A1 (en) Method and device for the photothermic investigation of a sample
JPH0658891A (en) Dew point measuring apparatus
JPH11509628A (en) Processing method of work material sample and light and weather resistance inspection device
JP2574458B2 (en) Fingerprint detection method
EP1302758A3 (en) Temperature measuring method and apparatus
JP2638311B2 (en) Heating temperature measuring device in microwave high electric field
JP6576823B2 (en) Method for cleaning solid-state imaging device and radiation detection apparatus
US6365899B1 (en) Process for determination of blackening of a lamp
JP2004085407A (en) Ozone gas concentration measurement method and apparatus for the same
JP3046205B2 (en) Particle counting device
JP2002122543A (en) Elementary analysis device and method
JPH1131599A (en) Preheating method for plasma-processing device, and plasma-processing device
JP2002277327A (en) Temperature measuring method in fusion furnace and temperature-gas concentration simultaneous measuring method
JP3362587B2 (en) Inspection method for pipe deposits
Utaka et al. Unsteady measurement of condensate film thickness for solutal Marangoni condensation
Foissac et al. Comparison of Pyrex plate and spectroscopic temperature measurements for gas temperature monitoring in a nitrogen afterglow
JPH09210909A (en) Measuring device using laser beam
JP2010216915A (en) Method and device for continuously monitoring molten steel
JPH11101721A (en) Pipe-cooling structure of pre-treatment device of gas analyzer
JPH04121643A (en) Non-contact measuring method and device of mass of deposit on object
JPH0450734A (en) Noncontact heating device for surface of body accompanied by temperature measurement