JPH0658829A - Optical tactile sensor - Google Patents

Optical tactile sensor

Info

Publication number
JPH0658829A
JPH0658829A JP23281092A JP23281092A JPH0658829A JP H0658829 A JPH0658829 A JP H0658829A JP 23281092 A JP23281092 A JP 23281092A JP 23281092 A JP23281092 A JP 23281092A JP H0658829 A JPH0658829 A JP H0658829A
Authority
JP
Japan
Prior art keywords
tactile sensor
optical
light
fibers
force
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23281092A
Other languages
Japanese (ja)
Inventor
Akihiro Nomura
章博 野村
Yuji Arinaga
雄司 有永
Hidenori Hasegawa
長谷川秀法
Masao Matono
正生 的野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yaskawa Electric Corp
Original Assignee
Yaskawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yaskawa Electric Corp filed Critical Yaskawa Electric Corp
Priority to JP23281092A priority Critical patent/JPH0658829A/en
Publication of JPH0658829A publication Critical patent/JPH0658829A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To enable the computing and detecting of a force working on the tactile sensor sections accurately by varying the attenuation factors of light rays with optical fibers with respect to the tactile pressure of the sensor sections. CONSTITUTION:Light rays from light sources 1a and 1b are admitted through one end of optical fibers 2. The light rays admitted into the fibers 2 are transmitted through a tactile sensor section 5 and received with photosensors 3a and 3b provided at other ends of the fibers 2. Optical fiber pressing jigs 6 and 6 (6 for upper one and 6' for lower one) have areas enough to press the optical fibers and for all varying pressing thereof. Therefore, when the same force works, possible deformation of the fibers 2 is varies. The attenuation ratio of light has a value varying at tactile sensor sections 5 of the respective fibers 2. Even when the clad thickness of the fibers is changed at the sensor sections 5, the attenuation factor of the light for the force is varied in value for the fibers 2 and enables the detection of a force distribution faithfully likewise.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、触覚センサに係わり、
特に産業用ロボットのハンドなどに適用して物体を掴ん
だときその物体の接触位置及び接触圧を同時に測定する
分布形の光学式触覚センサに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a tactile sensor,
In particular, the present invention relates to a distributed optical tactile sensor that is applied to a hand of an industrial robot and simultaneously measures the contact position and contact pressure of an object when the object is grasped.

【0002】[0002]

【従来の技術】従来、触覚センサとして光ファイバを格
子状に配置し、光ファイバの片端から光を入射し、光フ
ァイバの交点を触覚センサ部となしそこに加わる力によ
る光ファイバの変形による光の減衰量を各光ファイバ毎
に設けた光検出器でモニタし、各減衰量から、対象物体
が接触する位置及びその接触圧を測定する方式が提案さ
れている(例えば、特願 平3−3440274)。図
5は、このような従来の触覚センサの構成を示したもの
である。1a・1bはLED・レーザ・放電管などの光
源である。2は光ファイバであり、上層と下層の格子状
に配置される。その交点が触覚センサ部5となる。3a
・3bは光センサで、光の強度を検出する。4は演算処
理装置である。各光源1a・1bからの光は、各光ファ
イバ2の片端から入射される。この各光ファイバに入射
した光は触覚センサ部5を透過し、各光ファイバ2の他
端に配置された光センサ3a・3bで受光される。対象
物が触覚センサ部5に接触圧力を加えるとき交点をなす
各光ファイバはそれぞれ変形を受ける。その結果光ファ
イバを透過する光の全反射の条件が崩れ触覚センサ部5
に加わった力に応じた光の漏れが起きる。その結果対象
物体がふれた触覚センサ部の光ファイバ中の光量は減少
する。各々の光センサ3a・3bからの光強度信号から
演算処理装置4において各触覚センサ部5における光の
減衰を求めて対象物体との触覚位置及び接触圧力を得る
事ができる。
2. Description of the Related Art Conventionally, as a tactile sensor, optical fibers are arranged in a grid pattern, light is incident from one end of the optical fiber, an intersection of the optical fibers is used as a tactile sensor portion, and light is generated by deformation of the optical fiber due to a force applied thereto. A method has been proposed in which the amount of attenuation of the object is monitored by a photodetector provided for each optical fiber, and the position where the target object contacts and the contact pressure are measured from each amount of attenuation (for example, Japanese Patent Application No. 3440274). FIG. 5 shows a configuration of such a conventional tactile sensor. 1a and 1b are light sources such as LEDs, lasers, and discharge tubes. Reference numeral 2 is an optical fiber, which is arranged in a lattice pattern of an upper layer and a lower layer. The intersection serves as the tactile sensor unit 5. 3a
3b is an optical sensor that detects the intensity of light. 4 is an arithmetic processing unit. Light from each of the light sources 1a and 1b enters from one end of each optical fiber 2. The light that has entered each of the optical fibers passes through the tactile sensor unit 5 and is received by the optical sensors 3a and 3b arranged at the other end of each of the optical fibers 2. When the object applies a contact pressure to the tactile sensor unit 5, each optical fiber forming the intersection is deformed. As a result, the condition of total reflection of light transmitted through the optical fiber is broken, and the tactile sensor unit 5
Leakage of light occurs according to the force applied to. As a result, the amount of light in the optical fiber of the tactile sensor unit touching the target object decreases. It is possible to obtain the tactile position and the contact pressure with the target object by calculating the light attenuation in each tactile sensor unit 5 in the arithmetic processing unit 4 from the light intensity signals from the respective optical sensors 3a and 3b.

【0003】[0003]

【発明が解決しようとする課題】しかし、従来技術では
触覚センサ部をなす2本の光ファイバにおける減衰は同
じであるため加わる力の総和が等しい二つの状態すなわ
ち格子の対角成分のみに力が加わった状態(図6
(a))とそれを対角線とする四角形の各点に力が加わ
った状態(図6(b))を区別できない。すなわち、各
触覚センサ部に加わる力による光の減衰量は、図4に示
すようにx方向の光の減衰量p1・p2、y方向の光の
減衰量q1・q2を計測しただけでは区別する事ができ
ない。本発明では、この問題点を解決し、2つの状態を
区別し各計測点に加わる力を正確に演算・検出できる光
学式触覚センサを提案するものである。
However, in the prior art, since the two optical fibers forming the tactile sensor section have the same attenuation, the force applied is only in two states in which the total sum of the applied forces is equal, that is, the diagonal components of the lattice. Added state (Fig. 6)
It is impossible to distinguish between (a)) and a state in which a force is applied to each point of a quadrangle having the diagonal line (FIG. 6 (b)). That is, the amount of light attenuation due to the force applied to each tactile sensor unit is distinguished only by measuring the amount of light attenuation p1 · p2 in the x direction and the amount of light attenuation q1 · q2 in the y direction as shown in FIG. I can't do it. The present invention solves this problem and proposes an optical tactile sensor capable of distinguishing two states and accurately calculating and detecting the force applied to each measurement point.

【0004】[0004]

【課題を解決するための手段】上記課題を解決するた
め、本発明は光ファイバを格子状に配置してその交点を
触覚センサ部となし、各光ファイバの一方端から光を入
射し他端において光量を検出し、各光ファイバの光量の
減衰量から各触覚センサ部に加わる力を演算・検出する
光学式触覚センサにおいて、前記触覚センサ部の触覚圧
に対する光減衰率を各触覚センサ部の各ファイバで可変
にすることにより各触覚センサ部に加わる力を演算・検
出するものである。上記減衰率を変える第1の方法は、
触覚センサ部の光ファイバを押しつける面積を変える事
である。上記減衰率を変化させる第2の方法は、触覚セ
ンサ部に於いて光ファイバの特性を変える事である。
In order to solve the above-mentioned problems, the present invention arranges optical fibers in a grid pattern and forms intersections thereof with a tactile sensor portion, and allows light to enter from one end of each optical fiber and the other end. In the optical tactile sensor for detecting and detecting the light amount in the optical fiber, and calculating and detecting the force applied to each tactile sensor unit from the attenuation amount of the light amount of each optical fiber, the light attenuation rate with respect to the tactile pressure of the tactile sensor unit is calculated as follows. By varying each fiber, the force applied to each tactile sensor unit is calculated and detected. The first method of changing the attenuation rate is
This is to change the area of the tactile sensor unit that presses the optical fiber. The second method of changing the attenuation factor is to change the characteristics of the optical fiber in the tactile sensor unit.

【0005】[0005]

【作用】上記手段により、同じ総和の力が加わっても、
各触覚センサ部のファイバ押しつけ面積が異なるため同
じ力に対する光ファイバの変形量は異なるものとなり、
力に対する光の減衰率分布が生じる。又触覚センサ部に
おいて光ファイバの特性(減衰率)が異なるとやはり同
じ力が働いたときの光の減衰は異なったものとなり、力
に対する光の減衰率分布が生じる。各触覚センサ部にお
いて、力に対する光の減衰率分布が生じると、同じ総和
の力が加わっても、加わる力の分布が変われば、観測さ
れる光ファイバ光の減衰は異なったものとなる。
By the above means, even if the same total force is applied,
Since the fiber pressing area of each tactile sensor is different, the deformation amount of the optical fiber for the same force will be different.
An attenuation factor distribution of light with respect to force occurs. Further, if the characteristics (attenuation rate) of the optical fiber in the tactile sensor section are different, the attenuation of light when the same force is applied is also different, and an attenuation rate distribution of light with respect to the force is generated. When a light attenuation rate distribution with respect to force occurs in each tactile sensor unit, even if the same total force is applied, if the distribution of the applied force changes, the observed attenuation of the optical fiber light will be different.

【0006】[0006]

【実施例】以下、本発明の実施例を図に基づいて説明す
る。図1は、本発明の第1の実施例を示す構成図であ
る。図において6、6’は光ファイバ押しつけ治具(6
は上、6’は下)である。各光ファイバを押しつける押
しつけ治具の面積は、すべて異なる面積を持つ。そのた
め同じ力が働いた時、光ファイバの受ける変形は異なっ
たものとなり、光の減衰率は各光ファイバの各触覚セン
サ部において異なる値を持つ。図2をもとに各触覚セン
サ部に働く力と光減衰率の関係を説明する。(a)は各
触覚センサ部に働く力の分布、(b)は上層ファイバの
光減衰率分布、(c)は下層ファイバの光減衰率分布を
示す。ここで、 a22>a21>a12>a11>b11>b12>b
21>b22 および、 a11+b11=a12+b12=a21+b21=a
22+b22=2 となるように光減衰率が与えられているとする。モデル
として力が整数値をとる場合を考える。上層に対して光
の減衰は、 a11*f11+a12*f12=p1 a21*f21+a22*f22=p2 下層に対して b11*f11+b21*f21=q1 b12*f12+b22*f22=q2 観測される光の減衰p1,p2,q1,q2に以下のア
ルゴリズムを適用して加わった力の分布を演算・検出す
る。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a configuration diagram showing a first embodiment of the present invention. In the figure, 6 and 6 ′ are optical fiber pressing jigs (6
Is up and 6'is down). The pressing jigs for pressing each optical fiber have different areas. Therefore, when the same force is applied, the deformations of the optical fibers are different, and the light attenuation rate has different values in the tactile sensor units of the optical fibers. The relationship between the force acting on each tactile sensor unit and the light attenuation rate will be described with reference to FIG. (A) shows the distribution of the force acting on each tactile sensor unit, (b) shows the optical attenuation factor distribution of the upper layer fiber, and (c) shows the optical attenuation factor distribution of the lower layer fiber. Here, a22>a21>a12>a11>b11>b12> b
21> b22 and a11 + b11 = a12 + b12 = a21 + b21 = a
It is assumed that the light attenuation rate is given so that 22 + b22 = 2. Consider the case where the force takes an integer value as a model. The light attenuation for the upper layer is a11 * f11 + a12 * f12 = p1 a21 * f21 + a22 * f22 = p2 for the lower layer b11 * f11 + b21 * f21 = q1 b12 * f12 + b22 * f22 = q2 Observed light attenuation p1, p2 , Q1, q2 are applied to the following algorithm to calculate and detect the distribution of the applied force.

【0007】アルゴリズム (ステップ1)・・・各触覚センサ部の初期値を与え
る。 fij(0)=INT{((p1+p2+q1+q2)*pi*qj)/ (2*(p1+p2)*(q1+q2))} (i,j=1,2) 式(1) ここで、INTは少数点以下を4捨5入する演算を表
す。 (ステップ2) ri(n)=ai1*fi1(n)+ai2*fi2
(n),(i=1,2) sj(n)=b1j*f1j(n)+b2j*f2j
(n),(j=1,2) をそれぞれ計算する。ここで、下記数式1ならば列の間
で移動を行う。
Algorithm (Step 1) ... Gives initial values of each tactile sensor unit. fij (0) = INT {((p1 + p2 + q1 + q2) * pi * qj) / (2 * (p1 + p2) * (q1 + q2))} (i, j = 1, 2) Formula (1) Here, INT is a decimal point or less. Represents the operation of rounding off. (Step 2) ri (n) = ai1 * fi1 (n) + ai2 * fi2
(N), (i = 1, 2) sj (n) = b1j * f1j (n) + b2j * f2j
Calculate (n) and (j = 1, 2), respectively. Here, if the following mathematical expression 1 is used, movement is performed between columns.

【0008】[0008]

【数1】 [Equation 1]

【0009】すなわち、q1−s1(n)>0ならば f11(n+1)=f11(n)−1 f21(n+1)=f21(n)+1 q1−s1(n)<0ならば f11(n+1)=f11(n)+1 f21(n+1)=f21(n)−1 q2−s2(n)>0ならば f12(n+1)=f12(n)−1 f22(n+1)=f22(n)+1 q2−s2(n)<0ならば f12(n+1)=f12(n)+1 f22(n+1)=f22(n)−1That is, if q1-s1 (n)> 0, then f11 (n + 1) = f11 (n) -1 f21 (n + 1) = f21 (n) +1 If q1-s1 (n) <0 then f11 (n + 1) = F11 (n) +1 f21 (n + 1) = f21 (n) -1 q2-s2 (n)> 0, then f12 (n + 1) = f12 (n) -1 f22 (n + 1) = f22 (n) +1 q2- If s2 (n) <0, f12 (n + 1) = f12 (n) +1 f22 (n + 1) = f22 (n) -1

【0010】[0010]

【数2】 [Equation 2]

【0011】数式2ならば行の間で同様の移動を行う。According to the equation (2), similar movement is performed between rows.

【数3】 数式2を繰り返して数式3が最小となるときのfij
(n)が求める解となる。図3(b)はa11、a1
2、a21、a22、(c)はb11、b12、b2
1、b22に具体的な値をいれた例を示す。このような
触覚センサに (1)の場合として(f11,f12,f21,f2
2)=(4,0,0,4) (2)の場合として(f11,f12,f21,f2
2)=(2,2,2,2) の力が働いた場合を考える(図4)。この2つの場合
は、従来の光ファイバ触覚センサではどちらも同じ光の
減衰値を観測し2つを区別する事はできない。本発明を
適用する場合観測される光の減衰は、 (1)の場合(p1,p2,q1,q2)=(4.4,
5.6,3.6,2.4) (2)の場合(p1,p2,q1,q2)=(4.6,
5.4,3.2,2.8)と違った観測値を与える。こ
れを上述のアルゴリズムに従って検出する。 (1)の場合 (ステップ1)・・・各触覚センサ部の初期値を与え
る。
[Equation 3] Fij when Equation 2 is repeated and Equation 3 becomes the minimum
(N) is the solution to be obtained. FIG. 3B shows a11 and a1.
2, a21, a22, (c) are b11, b12, b2
An example in which specific values are entered in 1 and b22 is shown. In such a tactile sensor, (f11, f12, f21, f2
2) = (4,0,0,4) In the case of (2), (f11, f12, f21, f2
Consider the case where the force of 2) = (2,2,2,2) acts (Fig. 4). In these two cases, the conventional optical fiber tactile sensor cannot observe the same light attenuation value and distinguish between the two. When the present invention is applied, the observed light attenuation is (p1, p2, q1, q2) = (4.4, in the case of (1).
5.6, 3.6, 2.4) In the case of (2), (p1, p2, q1, q2) = (4.6,
It gives observation values different from 5.4, 3.2, 2.8). This is detected according to the algorithm described above. In the case of (1) (Step 1) ... Initial values of each tactile sensor unit are given.

【0012】[0012]

【数4】 [Equation 4]

【0013】(ステップ2) n=1 r1(0)=3.4,r2(0)=6.7 s1(0)=3.9,s2(0)=2.0 |p1−r1(0)|+|p2−r2(0)|=2.1 |q1−s1(0)|+|q2−s2(0)|=0.7 よって列の間で移動を行う。(Step 2) n = 1 r1 (0) = 3.4, r2 (0) = 6.7 s1 (0) = 3.9, s2 (0) = 2.0 | p1-r1 (0 ) | + | P2-r2 (0) | = 2.1 | q1-s1 (0) | + | q2-s2 (0) | = 0.7 Therefore, movement is performed between columns.

【0014】[0014]

【数5】 [Equation 5]

【0015】n=2 r1(1)=3.3,r2(1)=6.8 s1(1)=4.1,s2(1)=1.8 |p1−r1(1)|+|p2−r2(1)|=2.3 |q1−s1(1)|+|q2−s2(1)|=1.1 よって列の間で移動を行う。N = 2 r1 (1) = 3.3, r2 (1) = 6.8 s1 (1) = 4.1, s2 (1) = 1.8 | p1-r1 (1) | + | p2-r2 (1) | = 2.3 | q1-s1 (1) | + | q2-s2 (1) | = 1.1 Therefore, movement is performed between columns.

【0016】[0016]

【数6】 [Equation 6]

【0017】n=3 r1(2)=4.4,r2(2)=5.5 s1(2)=4.3,s2(2)=1.8 |p1−r1(2)|+|p2−r2(2)|=0 |q1−s1(2)|+|q2−s2(2)|=0.1 よって行の間で移動を行う。N = 3 r1 (2) = 4.4, r2 (2) = 5.5 s1 (2) = 4.3, s2 (2) = 1.8 │p1-r1 (2) │ + │ p2-r2 (2) | = 0 | q1-s1 (2) | + | q2-s2 (2) | = 0.1 Therefore, movement is performed between rows.

【0018】[0018]

【数7】 [Equation 7]

【0019】数式7となり、加わった力は検出される。 (2)の場合 (ステップ1)・・・各触覚センサ部の初期値を与え
る。
## EQU6 ## The applied force is detected. In the case of (2) (step 1) ... Initial values of each tactile sensor unit are given.

【0020】[0020]

【数8】 [Equation 8]

【0021】数式8となり、2つの場合とも検出され
る。図4に本発明の第2の実施例を示す。NxN個の触
覚センサ部を持つ場合も、2x2個の場合と同様に押し
つけ治具の面積を変えることにより、各光ファイバの力
に対する光減衰率を変化させ、第1の実施例と同様なア
ルゴリズムにより各触覚センサ部に加わる力を検出する
ことができる。本発明の第3の実施例として、各触覚セ
ンサ部において光ファイバのクラッドの厚さを変える
と、力に対する光の減衰率は各光ファイバにおいて異な
る値を持ち、第1の実施例と同様なアルゴリズムにより
各触覚センサ部に加わる力を検出することが出来る。
Equation 8 is obtained, and both cases are detected. FIG. 4 shows a second embodiment of the present invention. Also in the case of having NxN tactile sensor units, the optical attenuation factor with respect to the force of each optical fiber is changed by changing the area of the pressing jig as in the case of 2x2, and the same algorithm as in the first embodiment is used. Thus, the force applied to each tactile sensor unit can be detected. As a third embodiment of the present invention, when the thickness of the clad of the optical fiber in each tactile sensor unit is changed, the light attenuation rate with respect to the force has a different value in each optical fiber, which is the same as in the first embodiment. The force applied to each tactile sensor unit can be detected by the algorithm.

【0022】[0022]

【発明の効果】以上説明したように、本発明によれば各
触覚センサ部の光ファイバの力に対する光の減衰率を変
化させているので、従来の触覚センサにおいては区別不
可能であった同じ総和でも力分布が異なる状態を区別す
ることができ、力分布を忠実に検出できる光学式触覚セ
ンサを形成できるという効果がある。
As described above, according to the present invention, since the attenuation rate of light with respect to the force of the optical fiber of each tactile sensor unit is changed, the same tactile sensor cannot distinguish the same. There is an effect that states having different force distributions can be distinguished from each other even by the total sum, and an optical tactile sensor that can faithfully detect the force distribution can be formed.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施例を示す構成図。FIG. 1 is a configuration diagram showing a first embodiment of the present invention.

【図2】本発明の第1の実施例における検出方法を説明
するための図。
FIG. 2 is a diagram for explaining a detection method according to the first embodiment of the present invention.

【図3】図2の減衰率の具体的な値の図。FIG. 3 is a diagram of specific values of the attenuation rate of FIG.

【図4】本発明の第2の実施例を示す構成図。FIG. 4 is a configuration diagram showing a second embodiment of the present invention.

【図5】従来の触角センサを示す構成図。FIG. 5 is a configuration diagram showing a conventional tactile sensor.

【図6】図5の減衰率の具体的な値の図FIG. 6 is a diagram of specific values of the attenuation rate of FIG.

【符号の説明】[Explanation of symbols]

1a、1b 光源 2 光ファイバ 3a、3b 光センサ 4 演算処理装置 5 触覚センサ部 6、6’ 押しつけ治具 1a, 1b Light source 2 Optical fiber 3a, 3b Optical sensor 4 Arithmetic processing device 5 Tactile sensor part 6, 6'Pressing jig

───────────────────────────────────────────────────── フロントページの続き (72)発明者 的野 正生 福岡県北九州市八幡西区黒崎城石2番1号 株式会社安川電機内 ─────────────────────────────────────────────────── ─── Continued Front Page (72) Inventor Masao Matono 2-1, Kurosaki Shiroishi, Hachimansai-ku, Kitakyushu, Fukuoka Prefecture Yasukawa Electric Co., Ltd.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 光ファイバを格子状に配置してその交点
を触覚センサ部となし、各光ファイバの一方端から光を
入射し他端において光量を検出し、各光ファバの光量の
減衰量から各触覚センサ部に加わる力を演算・検出する
光学式触覚センサにおいて、前記触覚センサ部の触覚圧
に対する光減衰率を各触覚センサ部の各ファイバで可変
にすることにより各触覚センサ部に加わる力を演算・検
出する光学式触覚センサ。
1. An optical fiber is arranged in a grid pattern, and the intersection is used as a tactile sensor part. Light is incident from one end of each optical fiber and the light amount is detected at the other end, and the attenuation amount of the light amount of each optical fiber is detected. In an optical tactile sensor that calculates and detects the force applied to each tactile sensor unit from each of the tactile sensor units, by varying the optical attenuation rate for the tactile pressure of the tactile sensor unit with each fiber of each tactile sensor unit An optical tactile sensor that calculates and detects force.
【請求項2】 触覚センサ部のファイバ押しつけ治具の
面積を変化させることにより各ファイバの触覚圧に対す
る光減衰率を変化させる請求項1記載の光学式触覚セン
サ。
2. The optical tactile sensor according to claim 1, wherein the optical attenuation factor with respect to the tactile pressure of each fiber is changed by changing the area of the fiber pressing jig of the tactile sensor unit.
【請求項3】 触覚センサ部の光ファイバのクラッド厚
を変化させることにより各ファイバの触覚圧に対する光
減衰率を変化させる請求項1記載の光学式触覚センサ。
3. The optical tactile sensor according to claim 1, wherein the optical attenuation factor with respect to the tactile pressure of each fiber is changed by changing the clad thickness of the optical fiber of the tactile sensor section.
JP23281092A 1992-08-08 1992-08-08 Optical tactile sensor Pending JPH0658829A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23281092A JPH0658829A (en) 1992-08-08 1992-08-08 Optical tactile sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23281092A JPH0658829A (en) 1992-08-08 1992-08-08 Optical tactile sensor

Publications (1)

Publication Number Publication Date
JPH0658829A true JPH0658829A (en) 1994-03-04

Family

ID=16945126

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23281092A Pending JPH0658829A (en) 1992-08-08 1992-08-08 Optical tactile sensor

Country Status (1)

Country Link
JP (1) JPH0658829A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003034625A1 (en) * 2001-10-12 2003-04-24 Cellcross Corporation Communication apparatus, communication device, substrate mounting method, and touch sensor
JP2006343195A (en) * 2005-06-08 2006-12-21 Saitama Prefecture Sliding/rolling detection system using flexible sensor portion and detection method
CN103968980A (en) * 2014-05-20 2014-08-06 山东大学 Novel optical fiber touch sensor array and manufacturing method thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003034625A1 (en) * 2001-10-12 2003-04-24 Cellcross Corporation Communication apparatus, communication device, substrate mounting method, and touch sensor
JP2006343195A (en) * 2005-06-08 2006-12-21 Saitama Prefecture Sliding/rolling detection system using flexible sensor portion and detection method
CN103968980A (en) * 2014-05-20 2014-08-06 山东大学 Novel optical fiber touch sensor array and manufacturing method thereof
CN103968980B (en) * 2014-05-20 2016-02-03 山东大学 Novel optical fiber tactile array sensor and method for making

Similar Documents

Publication Publication Date Title
JPS63292030A (en) Flat tactile sensor
Vaziri et al. Etched fibers as strain gauges
JPH04223217A (en) Method for automatically testing or retesting measurement of physical quantity
EP4151971A1 (en) Touch sensing device, electronic device, earphones, and watch
JPH0658829A (en) Optical tactile sensor
JPH05149809A (en) Optical type tactile sensor
KR900002194A (en) Optical computer system and optical conversion method thereof
KR880010360A (en) Method and apparatus for performing optical logic or arithmetic
JPS63163150A (en) Printed circuit board inspecting device
CN110515482B (en) Infrared touch screen pressure sensing method based on surface deformation
Eghtedari et al. A novel tactile sensor for robot applications
KR20190030064A (en) Three dimensional control device utilizing highly sensitive and stretchable strain sensor and system having that
US4961096A (en) Semiconductor image position sensitive device with primary and intermediate electrodes
JP3815628B2 (en) Optical inspection system for workpieces
JPH06102114A (en) Distribution type touch sensor
Eghtedari et al. Model of a slip sensor
JPS6034699B2 (en) hardness tester
TW202004445A (en) Sensing method of a touch recognition device and sensing module thereof to determine that the sensing electrode with the point measurement value is abnormal when the variance value is above or below the threshold value
JP2005172619A (en) Moment detection device and multi-component force detection device
JPH04133123A (en) X-y coordinate input device
KR0157363B1 (en) Driving capacity detecting apparatus and method for cell
JPS62127604A (en) Optical position detecting device
RU2272247C1 (en) Method for adjusting photo-detectors row and device for realization of said method
Heo et al. Temperature sensor array for tactile sensation using FBG sensors
JPS59216003A (en) Method and device for measuring gap amount