JPH0658822A - Thermosensor - Google Patents

Thermosensor

Info

Publication number
JPH0658822A
JPH0658822A JP23148592A JP23148592A JPH0658822A JP H0658822 A JPH0658822 A JP H0658822A JP 23148592 A JP23148592 A JP 23148592A JP 23148592 A JP23148592 A JP 23148592A JP H0658822 A JPH0658822 A JP H0658822A
Authority
JP
Japan
Prior art keywords
medium
phase transition
electrolyte
conductivity
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23148592A
Other languages
Japanese (ja)
Inventor
Shiro Nishi
史郎 西
Morihiko Matsumoto
守彦 松本
Toshihiro Ichino
敏弘 市野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP23148592A priority Critical patent/JPH0658822A/en
Publication of JPH0658822A publication Critical patent/JPH0658822A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a thermosensor and a medium having switching property by making electric conductivity of the medium differ remarkably before and after a phase transition temperature of an electrolyte phase. CONSTITUTION:A medium of a temperature sensor is made up of an electrolyte and a support and as electric conductivity of the electrolyte changes significantly before and after a phase transition, the medium is preferably an electrolytic liquid containing a metal salt or polyether with excellent ion conductivity. The metal salt herein used, for example, is LiClO4, LiAlCl4 or LiBF4 and a solvent herein used, for example, is propylene carbonate, ethylene carbonate. gamma-butyrolacton. The phase transition temperature can be controlled optionally by mixing more than one different substance. A support herein used, for example, is polystyrene, polypropylene or polyisobuten. High polymer fine particles of these substances are 0.01-500mum in the diameter and a surfactant may be used for stabilizing the particles. The medium is so stable to allow the changing of the conductivity thereof significantly with better moldability thereby enabling utilization of the medium as switching element.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は温度制御素子に利用でき
る、スイッチング特性が良好で、安価かつ機械的強度に
優れた温度センサに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a temperature sensor which can be used as a temperature control element, has good switching characteristics, is inexpensive and has excellent mechanical strength.

【0002】[0002]

【従来の技術】接触形温度センサとしては、温度による
抵抗変化を利用したサーミスタ、ゼーベック効果を利用
した熱電対があるが、電流値や電圧値の微小な変化を検
知しているため微小変化量の検知回路や増幅回路、制御
素子として使用する場合はON−OFF作動するための
スイッチング回路等を必要としていた。そこで、任意の
温度で電流値や電圧値が急激に変化する媒体が求められ
ていた。イオン伝導度の温度依存性が相転移の前後で非
線形性をもつことが知られていたが、そのことを積極的
に利用しセンサ等に用いられた例はなかった。これは、
固体電解質に関してはイオン伝導体はイオン伝導度を大
きくするための研究が主流であり、そのため固体のイオ
ン伝導度を液体のイオン伝導度に近付ける努力がなされ
てきた。また、液体の電解質に関してはデンドライトの
発生を防ぐとか、液漏れをなくす支持体・パッケージ法
に関して研究が主としてなされており、高イオン伝導度
の温度範囲を広げることが主眼であった。また、液体の
電解質ではイオン伝導路と支持体が分離した構造につい
ては研究があまりなされていなかった。
2. Description of the Related Art Contact type temperature sensors include a thermistor that uses resistance change due to temperature and a thermocouple that uses the Seebeck effect. However, since a minute change in current value or voltage value is detected, a minute change amount is detected. When it is used as a detection circuit, an amplification circuit, or a control element, a switching circuit for ON-OFF operation is required. Therefore, there has been a demand for a medium whose current value and voltage value change rapidly at an arbitrary temperature. It was known that the temperature dependence of ionic conductivity had non-linearity before and after the phase transition, but there was no case where it was used positively for a sensor or the like. this is,
With respect to solid electrolytes, ionic conductors are mainly studied for increasing ionic conductivity, and therefore efforts have been made to bring the ionic conductivity of solids closer to that of liquids. Also, with respect to liquid electrolytes, research has been mainly conducted on a support / packaging method for preventing the generation of dendrites or eliminating liquid leakage, and the main objective was to widen the temperature range of high ionic conductivity. Also, in liquid electrolytes, there has been little research on the structure in which the ion conduction path and the support are separated.

【0003】[0003]

【発明が解決しようとする課題】本発明はこのような現
状にかんがみてなされたものであり、その目的は温度制
御素子などに適用できるのに十分なスイッチング特性を
もつ温度センサ及びその媒体を提供することにある。
SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and an object thereof is to provide a temperature sensor having a switching characteristic sufficient to be applied to a temperature control element and the like, and a medium thereof. To do.

【0004】[0004]

【課題を解決するための手段】本発明を概説すれば、本
発明の第1の発明は温度センサに関する発明であって、
イオン電解質とその支持体から構成される媒体からなる
温度センサにおいて、該媒体の電気伝導度が、電解質相
の相転移温度前後で著しく異なるものであることを特徴
とする。そして、本発明の第2の発明は、第1の発明の
温度センサを構成する媒体において電解質が金属塩を含
有む水、極性溶媒、ポリエーテル、又はこれらの混合物
であり、支持体が高分子マトリックスであることを特徴
とする。
The present invention will be summarized as follows. A first invention of the present invention relates to a temperature sensor,
A temperature sensor comprising a medium composed of an ionic electrolyte and its support is characterized in that the electrical conductivity of the medium is significantly different before and after the phase transition temperature of the electrolyte phase. A second invention of the present invention is that, in the medium constituting the temperature sensor of the first invention, the electrolyte is water containing a metal salt, a polar solvent, a polyether, or a mixture thereof, and the support is a polymer. It is characterized by being a matrix.

【0005】本発明者らは、イオン伝導性物質の研究を
進めてきたが高分子マトリックスに電解液を含浸して、
高イオン伝導度が得られることを明らかにしてきた。こ
れらの電気伝導度の温度特性を調べることにより電解液
相が固相から液相になるときに大きく電気伝導度が変化
することを見出した。この電気伝導度の大きな変化を利
用することにより温度センサに用いることができる。
The present inventors have been conducting research on ion-conducting substances, but by impregnating a polymer matrix with an electrolytic solution,
It has been clarified that high ionic conductivity can be obtained. By investigating the temperature characteristics of these electric conductivities, it was found that the electric conductivity greatly changes when the electrolytic solution phase changes from the solid phase to the liquid phase. It can be used for a temperature sensor by utilizing this large change in electrical conductivity.

【0006】本温度センサの媒体は、電解質と支持体か
ら構成される。電解質は相転移の前後で電気伝導度が大
幅に変わるものであれば何でもよく、金属塩を含有した
電解液やイオン伝導度の優れたポリエーテルが好適であ
る。ここで用いられる金属塩は、解離してイオンとなれ
ばどのような塩でも良いが、例えばリチウム塩として、
LiClO4 、LiAlCl4 、LiBF4 、LiPF
6 :LiAsF6 、LiNbF6 、LiSCN、LiC
l、Li(CF3 SO3 )、Li(C6 5 SO3 )等
及びこれらの混合物がある。
The medium of this temperature sensor is composed of an electrolyte and a support. Any electrolyte may be used as long as its electric conductivity largely changes before and after the phase transition, and an electrolytic solution containing a metal salt and a polyether having excellent ionic conductivity are preferable. The metal salt used here may be any salt as long as it dissociates into ions, but for example, as a lithium salt,
LiClO 4 , LiAlCl 4 , LiBF 4 , LiPF
6 : LiAsF 6 , LiNbF 6 , LiSCN, LiC
1, Li (CF 3 SO 3 ), Li (C 6 H 5 SO 3 ), etc. and mixtures thereof.

【0007】また、電解質には極性溶媒であるプロピレ
ンカーボネート、エチレンカーボネート、γ−ブチロラ
クトン、ジメチルカーボネート、ジメチルスルホキシ
ド、アセトニトリル、スルホラン、ジメチルホルムアミ
ド、ジメチルアセトアミド、1,2−ジエトキシエタ
ン、1,2−エトキシメトキシエタン、1,2−ジメト
キシエタン、テトラヒドロフラン、2−メチルテトラヒ
ドロフラン、ジオキソラン、メチルアセテート等の非プ
ロトン性溶媒、水、ポリエーテルではポリオキシメチレ
ン、ポリオキシエチレン、ポリオキシプロピレン、ポリ
オキシイソプレン等がある。これらの物質を単独、ある
いは混合物として用い、上記に述べた金属塩を含ませる
ことにより電解質が得られる。
In addition, polar solvents such as propylene carbonate, ethylene carbonate, γ-butyrolactone, dimethyl carbonate, dimethylsulfoxide, acetonitrile, sulfolane, dimethylformamide, dimethylacetamide, 1,2-diethoxyethane, 1,2- Aprotic solvents such as ethoxymethoxyethane, 1,2-dimethoxyethane, tetrahydrofuran, 2-methyltetrahydrofuran, dioxolane and methyl acetate, water, and polyethers such as polyoxymethylene, polyoxyethylene, polyoxypropylene and polyoxyisoprene. There is. An electrolyte can be obtained by using these substances alone or as a mixture and incorporating the above-mentioned metal salt.

【0008】電解質相の相転移温度は物質によって異な
るため、適当な物質を選ぶことにより任意の温度で相転
移を引起すことができる。また、相転移温度の異なる2
種類以上の物質を混合することにより、各々の純物質の
相転移温度の間で自由に制御できる。例えば、エチレン
カーボネートとプロピレンカーボネートの組合せで、3
6〜−49℃の間で相変化温度が設定でき、γ−ブチロ
ラクトンと1,2−エトキシメトキシエタンの組合せで
−42〜−130℃の間で相変化温度が設定できる。
Since the phase transition temperature of the electrolyte phase differs depending on the substance, it is possible to induce the phase transition at any temperature by selecting an appropriate substance. In addition, 2 having different phase transition temperatures
By mixing two or more kinds of substances, it is possible to freely control the phase transition temperature of each pure substance. For example, in the combination of ethylene carbonate and propylene carbonate, 3
The phase change temperature can be set between 6 and −49 ° C., and the phase change temperature can be set between −42 and −130 ° C. by the combination of γ-butyrolactone and 1,2-ethoxymethoxyethane.

【0009】支持体としては、高分子マトリックスが好
適であり、高分子微粒子を用いてシート上に成形できる
高分子エマルジョンを用いることができる。高分子微粒
子の成分としては、汎用で安価なものでも良く、例えば
ポリスチレン、ポリプロピレン、ポリイソブテン、ポリ
ブタジエン、ポリイソプレン、ポリ(α−メチルスチレ
ン)、ポリブチルメタクリレート、ポリブチルアクリレ
ート、ポリ(2−ヘキシルアクリレート)、ポリブチル
フタレート、ポリビニルブチルエーテル、ポリビニルブ
チラール、ポリビニルホルマール、ポリジメチルシロキ
サン、ポリジフェニルシロキサン、ポリメチルフェニル
シロキサン等の低極性高分子、ポリアクリロニトリル、
ポリ(フッ化ビニリデン)、ポリオキシエチレン、ポリ
オキシプロピレン、ポリ塩化ビニル、ポリメチルメタク
リレート、ポリメチルアクリレート、ポリメタクリル酸
(及び金属塩)、ポリアクリル酸(及び金属塩)、ポリ
ビニルアルコール、ポリ塩化ビニリデン、ポリエチレン
イミン、ポリメタクリロニトリル、ポリビニルアセテー
ト等の極性高分子及びこれらの共重合体がある。また、
微粒子は単独だけでなく混合して用いても良い。微粒子
の直径は0.01μm〜500μmのものが好適に用い
られる。
As the support, a polymer matrix is preferable, and a polymer emulsion which can be molded on a sheet using polymer particles can be used. The component of the polymer fine particles may be a general-purpose and inexpensive one, for example, polystyrene, polypropylene, polyisobutene, polybutadiene, polyisoprene, poly (α-methylstyrene), polybutyl methacrylate, polybutyl acrylate, poly (2-hexyl acrylate). ), Polybutyl phthalate, polyvinyl butyl ether, polyvinyl butyral, polyvinyl formal, polydimethyl siloxane, polydiphenyl siloxane, polymethylphenyl siloxane, and other low polar polymers, polyacrylonitrile,
Poly (vinylidene fluoride), polyoxyethylene, polyoxypropylene, polyvinyl chloride, polymethyl methacrylate, polymethyl acrylate, polymethacrylic acid (and metal salts), polyacrylic acid (and metal salts), polyvinyl alcohol, polychlorination There are polar polymers such as vinylidene, polyethyleneimine, polymethacrylonitrile and polyvinyl acetate, and copolymers thereof. Also,
The fine particles may be used not only alone but also as a mixture. Particles having a diameter of 0.01 μm to 500 μm are preferably used.

【0010】高分子微粒子を安定させるために安定剤を
使用してもよく、これには界面活性剤が好適に用いられ
る。界面活性剤には、例えば、脂肪酸金属塩、アルキル
ベンゼンスルホン酸金属塩、アルキル硫酸金属塩、ジオ
クチルスルホコハク酸金属塩、ポリオキシエチレンノニ
ルフェニルエーテル、ポリオキシエチレンステアリン酸
エステル、ポリオキシエチレンソルビタンモノラウリン
酸エステル、ポリオキシエチレン、ポリオキシエチレン
−ポリオキシプロピレン共重合体、ポリエーテル変性シ
リコーンオイル等が挙げられる。
A stabilizer may be used for stabilizing the polymer fine particles, and a surfactant is preferably used for this. Examples of the surfactant include fatty acid metal salts, alkylbenzenesulfonic acid metal salts, alkylsulfate metal salts, dioctylsulfosuccinic acid metal salts, polyoxyethylene nonylphenyl ethers, polyoxyethylene stearic acid esters, polyoxyethylene sorbitan monolauric acid esters. , Polyoxyethylene, polyoxyethylene-polyoxypropylene copolymer, polyether modified silicone oil, and the like.

【0011】また、高分子微粒子を安定させるため、イ
オン解離基を高分子成分に共有結合で組込んでもよい。
この場合のイオン解離基としては、例えば、カルボキシ
ル基、水酸基、スルホン基、アンモニウム基、及びこれ
らの金属塩置換基が挙げられる。
In order to stabilize the polymer fine particles, an ionic dissociative group may be incorporated into the polymer component by a covalent bond.
Examples of the ion dissociative group in this case include a carboxyl group, a hydroxyl group, a sulfone group, an ammonium group, and metal salt substituents thereof.

【0012】媒体の作製法としては、高分子エマルジョ
ンを濃縮し、固形分濃度が50%以上になったらフィル
ムアプリケータでフィルム上に成形し加熱や減圧乾燥等
をすることにより揮発成分を取り除き、金属塩やポリエ
ーテルを含む電解液を含浸させる方法、高分子エマルジ
ョンに金属塩やポリエーテルを加えたものを乾燥してシ
ートを得、その後電解液を含浸させる方法などがある。
The medium is prepared by concentrating the polymer emulsion and, when the solid content concentration reaches 50% or more, forming the film on the film with a film applicator and heating or drying under reduced pressure to remove volatile components, There are a method of impregnating an electrolytic solution containing a metal salt and a polyether, a method of obtaining a sheet by drying a polymer emulsion to which a metal salt and a polyether are added, and then impregnating the electrolytic solution.

【0013】他の媒体の作製法としては、先に例示した
ような極性高分子に金属塩やポリエーテルを含む電解液
と架橋剤を加えゾル状にした後、紫外線や放射線、熱等
を与えることによりゲルにする方法もある。
As another method for producing a medium, an electrolysis solution containing a metal salt or polyether and a cross-linking agent are added to the polar polymer as described above to form a sol, and then ultraviolet rays, radiation or heat is applied. There is also a method of forming a gel.

【0014】[0014]

【実施例】以下、本発明を実施例により更に具体的に説
明するが、本発明はこれら実施例に限定されない。
EXAMPLES The present invention will now be described in more detail with reference to examples, but the present invention is not limited to these examples.

【0015】実施例1 界面活性剤及び自己架橋成分を含む高分子微粒子分散液
として、日本ゼオン製スチレン・ブタジエン系ラテック
ス(商品名Nipol LX 432A)10gをとり、95℃で
加熱し、固形分が70重量%になるまで乾燥した後、塗
布厚さ100μmのフィルムアプリケータでシート状に
引伸ばした。これを100℃で1時間乾燥した。更に1
10℃、0.1Torrで20時間乾燥することにより高分
子マトリックスフィルムを得た。過塩素酸リチウムを1
mol/l溶かしたエチレンカーボネートに高分子マトリッ
クスフィルムを60℃で24時間浸漬させ、媒体を得
た。この媒体に電極をつけ、電気伝導度の温度依存性を
調べた結果相転移の前後で電気伝導度が大きく変化し
た。
Example 1 As a polymer fine particle dispersion containing a surfactant and a self-crosslinking component, 10 g of styrene-butadiene latex (trade name Nipol LX 432A made by Nippon Zeon) was taken and heated at 95 ° C. to obtain a solid content. After drying to 70% by weight, it was stretched into a sheet with a film applicator having a coating thickness of 100 μm. This was dried at 100 ° C. for 1 hour. 1 more
A polymer matrix film was obtained by drying at 10 ° C. and 0.1 Torr for 20 hours. 1 lithium perchlorate
The polymer matrix film was immersed in mol / l dissolved ethylene carbonate at 60 ° C. for 24 hours to obtain a medium. An electrode was attached to this medium, and the temperature dependence of the electrical conductivity was examined. As a result, the electrical conductivity changed significantly before and after the phase transition.

【0016】実施例2 過塩素酸リチウムを1mol/l溶かしたエチレンカーボネ
ート/プロピレンカーボネート混合溶媒(容積比80/
20)に実施例1と同じ様に作製した高分子マトリック
スを浸漬し媒体を得た。この媒体に電極をつけ、電気伝
導度の温度依存性を調べた結果相転移の前後で電気伝導
度が大きく変化した。
Example 2 Ethylene carbonate / propylene carbonate mixed solvent in which 1 mol / l of lithium perchlorate was dissolved (volume ratio 80 /
A polymer matrix prepared in the same manner as in Example 1 was immersed in 20) to obtain a medium. An electrode was attached to this medium, and the temperature dependence of the electrical conductivity was examined. As a result, the electrical conductivity changed significantly before and after the phase transition.

【0017】実施例3 過塩素酸リチウムを1mol/l溶かしたエチレンカーボネ
ート/プロピレンカーボネート混合溶媒(容積比60/
40)に実施例1と同じ様に作製した高分子マトリック
スを浸漬し媒体を得た。この媒体に電極をつけ、電気伝
導度の温度依存性を調べた結果相転移の前後で電気伝導
度が大きく変化した。
Example 3 Ethylene carbonate / propylene carbonate mixed solvent in which 1 mol / l of lithium perchlorate was dissolved (volume ratio 60 /
40) was immersed in a polymer matrix prepared in the same manner as in Example 1 to obtain a medium. An electrode was attached to this medium, and the temperature dependence of the electrical conductivity was examined. As a result, the electrical conductivity changed significantly before and after the phase transition.

【0018】実施例4 過塩素酸リチウムを1mol/l溶かしたエチレンカーボネ
ート/プロピレンカーボネート混合溶媒(容積比40/
60)に実施例1と同じ様に作製した高分子マトリック
スを浸漬し媒体を得た。この媒体に電極をつけ、電気伝
導度の温度依存性を調べた結果相転移の前後で電気伝導
度が大きく変化した。
Example 4 Ethylene carbonate / propylene carbonate mixed solvent in which 1 mol / l of lithium perchlorate was dissolved (volume ratio 40 /
A polymer matrix prepared in the same manner as in Example 1 was immersed in 60) to obtain a medium. An electrode was attached to this medium, and the temperature dependence of the electrical conductivity was examined. As a result, the electrical conductivity changed significantly before and after the phase transition.

【0019】実施例5 過塩素酸リチウムを1mol/l溶かしたエチレンカーボネ
ート/プロピレンカーボネート混合溶媒(容積比20/
80)に実施例1と同じ様に作製した高分子マトリック
スを浸漬し媒体を得た。この媒体に電極をつけ、電気伝
導度の温度依存性を調べた結果相転移の前後で電気伝導
度が大きく変化した。
Example 5 Ethylene carbonate / propylene carbonate mixed solvent in which 1 mol / l of lithium perchlorate was dissolved (volume ratio 20 /
The polymer matrix prepared in the same manner as in Example 1 was immersed in 80) to obtain a medium. An electrode was attached to this medium, and the temperature dependence of the electrical conductivity was examined. As a result, the electrical conductivity changed significantly before and after the phase transition.

【0020】実施例6 過塩素酸リチウムを1mol/l溶かしたプロピレンカーボ
ネートに実施例1と同じ様に作製した高分子マトリック
スを浸漬し媒体を得た。この媒体に電極をつけ、電気伝
導度の温度依存性を調べた結果相転移の前後で電気伝導
度が大きく変化した。
Example 6 A polymer matrix prepared in the same manner as in Example 1 was immersed in propylene carbonate in which 1 mol / l of lithium perchlorate was dissolved to obtain a medium. An electrode was attached to this medium, and the temperature dependence of the electrical conductivity was examined. As a result, the electrical conductivity changed significantly before and after the phase transition.

【0021】実施例7 過塩素酸リチウムを1mol/l溶かした1,2−エトキシ
メトキシエタンに実施例1と同じ様に作製した高分子マ
トリックスを浸漬し媒体を得た。この媒体に電極をつ
け、電気伝導度の温度依存性を調べた結果相転移の前後
で電気伝導度が大きく変化した。
Example 7 A polymer matrix prepared in the same manner as in Example 1 was immersed in 1,2-ethoxymethoxyethane in which 1 mol / l of lithium perchlorate was dissolved to obtain a medium. An electrode was attached to this medium, and the temperature dependence of the electrical conductivity was examined. As a result, the electrical conductivity changed significantly before and after the phase transition.

【0022】実施例8 過塩素酸リチウムを1mol/l溶かした1,2−エトキシ
メトキシエタン/プロピレンカーボネート混合溶媒(容
積比50/50)に実施例1と同じ様に作製した高分子
マトリックスを浸漬し媒体を得た。この媒体に電極をつ
け、電気伝導度の温度依存性を調べた結果相転移の前後
で電気伝導度が大きく変化した。
Example 8 A polymer matrix prepared in the same manner as in Example 1 was immersed in a 1,2-ethoxymethoxyethane / propylene carbonate mixed solvent (volume ratio 50/50) in which 1 mol / l of lithium perchlorate was dissolved. The medium was obtained. An electrode was attached to this medium, and the temperature dependence of the electrical conductivity was examined. As a result, the electrical conductivity changed significantly before and after the phase transition.

【0023】実施例9 界面活性剤及び自己架橋成分を含む高分子微粒子分散液
として、日本ゼオン製スチレン・ブタジエン系ラテック
ス(商品名Nipol LX 432A)10gをとり、分子量6
000のポリオキシエチレン1g及び過塩素酸リチウム
0.11gを加えた後95℃で加熱し、固形分が70重
量%になるまで乾燥した後、塗布厚さ100μmのフィ
ルムアプリケータでシート状に引伸ばした。これを10
0℃で1時間乾燥した。更に110℃、0.1Torrで2
0時間乾燥することにより媒体を得た。この媒体に電極
をつけ、電気伝導度の温度依存性を調べた結果相転移の
前後で電気伝導度が大きく変化した。
Example 9 As a polymer fine particle dispersion containing a surfactant and a self-crosslinking component, 10 g of styrene-butadiene latex (trade name Nipol LX 432A, manufactured by Nippon Zeon Co., Ltd.) was taken, and the molecular weight was 6
000 polyoxyethylene (1 g) and lithium perchlorate (0.11 g) were added, followed by heating at 95 ° C. and drying until the solid content became 70% by weight, and then drawing into a sheet with a film applicator having a coating thickness of 100 μm. extended. This is 10
It was dried at 0 ° C. for 1 hour. 2 at 110 ° C and 0.1 Torr
The medium was obtained by drying for 0 hours. An electrode was attached to this medium, and the temperature dependence of the electrical conductivity was examined. As a result, the electrical conductivity changed significantly before and after the phase transition.

【0024】実施例10 過塩素酸リチウムを1mol/l溶かしたエチレンカーボネ
ート/ポリオキシエチレン混合物(重量比50/50)
に実施例1と同じ様に作製した高分子マトリックスを浸
漬し媒体を得た。この媒体に電極をつけ、電気伝導度の
温度依存性を調べた結果相転移の前後で電気伝導度が大
きく変化した。
Example 10 Ethylene carbonate / polyoxyethylene mixture in which 1 mol / l lithium perchlorate was dissolved (weight ratio 50/50)
A polymer matrix prepared in the same manner as in Example 1 was dipped in to obtain a medium. An electrode was attached to this medium, and the temperature dependence of the electrical conductivity was examined. As a result, the electrical conductivity changed significantly before and after the phase transition.

【0025】実施例1〜10までの電気伝導度の温度依
存性を温度(℃、横軸)と電気伝導度(S/cm、縦軸)
との関係で図1に示す。図1からも明らかなように相転
移の前後で大幅に電気伝導度が変化している。
The temperature dependence of the electric conductivity of Examples 1 to 10 is shown by the temperature (° C, horizontal axis) and the electric conductivity (S / cm, vertical axis).
It is shown in FIG. As is clear from FIG. 1, the electrical conductivity changes significantly before and after the phase transition.

【0026】[0026]

【発明の効果】以上の説明で明らかなように、本発明に
より媒体の電気伝導度は電解質の相転移の前後で大幅に
変化し、温度センサの媒体に提供することができる。こ
の媒体は成形性が良く、機械的強度もあり、安価にでき
るため温度センサとして好適に用いることができる。ま
た、伝導度を大幅に変えることができるためスイッチン
グ素子としても利用できる。
As is apparent from the above description, according to the present invention, the electric conductivity of the medium can be largely changed before and after the phase transition of the electrolyte and can be provided to the medium of the temperature sensor. This medium has good moldability, mechanical strength, and can be manufactured at low cost, so that it can be suitably used as a temperature sensor. Further, since the conductivity can be largely changed, it can be used as a switching element.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の10例のものの電気伝導度の温度依存
性を示す図である。
FIG. 1 is a diagram showing temperature dependence of electric conductivity of ten examples of the present invention.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 イオン電解質とその支持体から構成され
る媒体からなる温度センサにおいて、該媒体の電気伝導
度が、電解質相の相転移温度前後で著しく異なるもので
あることを特徴とする温度センサ。
1. A temperature sensor comprising a medium composed of an ionic electrolyte and a support thereof, wherein the electrical conductivity of the medium is significantly different before and after the phase transition temperature of the electrolyte phase. .
【請求項2】 該支持体が高分子マトリックスからな
り、電解質が金属塩を含有する水、極性溶媒、ポリエー
テル、又はこれらの混合物からなることを特徴とする請
求項1に記載の温度センサ。
2. The temperature sensor according to claim 1, wherein the support comprises a polymer matrix, and the electrolyte comprises water containing a metal salt, a polar solvent, a polyether, or a mixture thereof.
JP23148592A 1992-08-07 1992-08-07 Thermosensor Pending JPH0658822A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23148592A JPH0658822A (en) 1992-08-07 1992-08-07 Thermosensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23148592A JPH0658822A (en) 1992-08-07 1992-08-07 Thermosensor

Publications (1)

Publication Number Publication Date
JPH0658822A true JPH0658822A (en) 1994-03-04

Family

ID=16924234

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23148592A Pending JPH0658822A (en) 1992-08-07 1992-08-07 Thermosensor

Country Status (1)

Country Link
JP (1) JPH0658822A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2566318A1 (en) * 1984-06-20 1985-12-27 Chicago Rawhide Mfg Co MULTI-PART MOLD AND METHOD FOR MANUFACTURING COMPOSITE MOLDED ARTICLE
EP0334094A2 (en) * 1988-03-19 1989-09-27 Tetra Laval Holdings & Finance SA Device for injection of a plastic part onto a paper tube by means of a supporting piece
FR2744079A1 (en) * 1996-01-25 1997-08-01 Reydel Sa PANEL, IN PARTICULAR FOR THE INTERIOR TRIM OF THE DOORS OF VEHICLES HAVING AT LEAST LOCALLY AN AREA OF AESTHETIC APPEARANCE
CN112345110A (en) * 2020-04-16 2021-02-09 首都医科大学 Manufacturing method of eutectic solvent type temperature sensor

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2566318A1 (en) * 1984-06-20 1985-12-27 Chicago Rawhide Mfg Co MULTI-PART MOLD AND METHOD FOR MANUFACTURING COMPOSITE MOLDED ARTICLE
EP0334094A2 (en) * 1988-03-19 1989-09-27 Tetra Laval Holdings & Finance SA Device for injection of a plastic part onto a paper tube by means of a supporting piece
EP0334094B1 (en) * 1988-03-19 1993-09-29 Tetra Laval Holdings & Finance SA Device for injection of a plastic part onto a paper tube by means of a supporting piece
FR2744079A1 (en) * 1996-01-25 1997-08-01 Reydel Sa PANEL, IN PARTICULAR FOR THE INTERIOR TRIM OF THE DOORS OF VEHICLES HAVING AT LEAST LOCALLY AN AREA OF AESTHETIC APPEARANCE
CN112345110A (en) * 2020-04-16 2021-02-09 首都医科大学 Manufacturing method of eutectic solvent type temperature sensor
CN112345110B (en) * 2020-04-16 2023-04-07 首都医科大学 Manufacturing method of eutectic solvent type temperature sensor

Similar Documents

Publication Publication Date Title
Watanabe et al. Ionic conductivity of hybrid films composed of polyacrylonitrile, ethylene carbonate, and LiClO4
US6949318B2 (en) Polymeric gel electrolyte and lithium battery employing the same
Stephan Review on gel polymer electrolytes for lithium batteries
Song et al. Review of gel-type polymer electrolytes for lithium-ion batteries
Li et al. Effect of Al2O3 nanoparticles on the electrochemical characteristics of P (VDF-HFP)-based polymer electrolyte
Wu et al. PVdF-HFP/P123 hybrid with mesopores: a new matrix for high-conducting, low-leakage porous polymer electrolyte
JP7189122B2 (en) Ion-conducting material and manufacturing method for electrochemical generator
Vijayakumar et al. Effect of nanoscale CeO 2 on PVDF-HFP-based nanocomposite porous polymer electrolytes for Li-ion batteries
Faridi et al. Electrochemical investigation of gel polymer electrolytes based on poly (methyl methacrylate) and dimethylacetamide for application in Li-ion batteries
Deb et al. Gel-polymer electrolytes plasticized with pyrrolidinium-based ionanofluid for lithium battery applications
KR20090015161A (en) Novel polymer electrolyte and electrochemical device
JP7152429B2 (en) Solid polymer electrolyte for batteries
Magistris et al. Poly (vinylidenefluoride)-based porous polymer electrolytes
Hwang et al. Electrochemical studies on poly (vinylidene fluoride–hexafluoropropylene) membranes prepared by phase inversion method
Nagajothi et al. Electrochemical performance of plasticized PEO-LiTf complex-based composite gel polymer electrolytes with the addition of barium titanate
Wang et al. Ion-conducting polymer electrolyte based on poly (ethylene oxide) complexed with Li1. 3Al0. 3Ti1. 7 (PO4) 3 salt
JPH0658822A (en) Thermosensor
KR19990039865A (en) Polymer gel electrolyte for secondary battery and manufacturing method thereof
Sehrawat et al. High‐performance sodium ion conducting gel polymer electrolyte based on a biodegradable polymer polycaprolactone
WO2019218542A1 (en) Microporous polymer film with ion conductivity and preparation method and application thereof
KR20070024886A (en) Polymer electrolyte containing ionic liquid
KR100327096B1 (en) preparation of porous polymer film, hybrid-type polymer electrolytes and lithium secondary polymer batteries using the polymer film, and the preparation thereof
JP4383015B2 (en) Solid polymer ion conductor and method for producing the same
Fang et al. An overview of solid-like electrolytes for supercapacitors
Hambali et al. Studies of ion transport and electrochemical properties of plasticized composite polymer electrolytes