JPH0658809B2 - Sodium-sulfur battery - Google Patents

Sodium-sulfur battery

Info

Publication number
JPH0658809B2
JPH0658809B2 JP62029168A JP2916887A JPH0658809B2 JP H0658809 B2 JPH0658809 B2 JP H0658809B2 JP 62029168 A JP62029168 A JP 62029168A JP 2916887 A JP2916887 A JP 2916887A JP H0658809 B2 JPH0658809 B2 JP H0658809B2
Authority
JP
Japan
Prior art keywords
sodium
partition member
anode
sulfur battery
solid electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62029168A
Other languages
Japanese (ja)
Other versions
JPS63195973A (en
Inventor
貞夫 森
正夫 荻野
年清 武田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Tokyo Electric Power Co Inc
Original Assignee
NGK Insulators Ltd
Tokyo Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd, Tokyo Electric Power Co Inc filed Critical NGK Insulators Ltd
Priority to JP62029168A priority Critical patent/JPH0658809B2/en
Publication of JPS63195973A publication Critical patent/JPS63195973A/en
Publication of JPH0658809B2 publication Critical patent/JPH0658809B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/36Accumulators not provided for in groups H01M10/05-H01M10/34
    • H01M10/39Accumulators not provided for in groups H01M10/05-H01M10/34 working at high temperature
    • H01M10/3909Sodium-sulfur cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Secondary Cells (AREA)

Description

【発明の詳細な説明】 発明の目的 (産業上の利用分野) 本発明は電池効率の優れ、陽極容器の耐腐蝕性が良好で
電池寿命の長いナトリウム−硫黄電池に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a sodium-sulfur battery having excellent battery efficiency, good corrosion resistance of an anode container, and long battery life.

(従来の技術) 最近電気自動車用、夜間電力貯蔵用の二次電池として性
能面及び経済面の両面において優れている高温型のナト
リウム−硫黄電池の研究開発が進められている。
(Prior Art) Recently, research and development of a high-temperature type sodium-sulfur battery, which is excellent in both performance and economy as a secondary battery for electric vehicles and nighttime electricity storage, has been advanced.

即ち、性能面では、ナトリウム−硫黄電池は鉛蓄電池に
比べて理論エネルギー密度が高く、充放電時における水
素や酸素の発生といった副反応もなく、活物質の利用率
も高く、経済面ではナトリウム及び硫黄が安価であると
いう利点を有している。
That is, in terms of performance, the sodium-sulfur battery has a higher theoretical energy density than a lead storage battery, there is no side reaction such as generation of hydrogen or oxygen during charge / discharge, the utilization rate of the active material is high, and sodium and sulfur are economically used. Sulfur has the advantage of being inexpensive.

ナトリウム−硫黄電池は陽極に溶融硫黄、陰極に溶融金
属ナトリウム及びこの両者を隔離しナトリウムイオンに
対して選択的な透過性を有するβアルミナ製の固体電解
質管からなっており、放電時には次のような反応によっ
てナトリウムイオンが固体電解質管を透過して陽極の硫
黄と反応し多硫化ナトリウムを生成する。
A sodium-sulfur battery is composed of molten sulfur at the anode, molten metal sodium at the cathode, and a solid electrolyte tube made of β-alumina that separates both of them and has selective permeability for sodium ions. By such a reaction, sodium ions permeate the solid electrolyte tube and react with sulfur on the anode to produce sodium polysulfide.

2Na+XS→NaSx また、充電時には放電時とは逆の反応が起こり、ナトリ
ウム及び硫黄が生成される。
2Na + XS → Na 2 Sx During charging, the opposite reaction to that during discharging occurs, and sodium and sulfur are produced.

ナトリウム−硫黄電池の構造は、第2図に示すように1
は陽極端子、2は同陽極端子1の上端部に立設された円
筒状の陽極容器、3は陽極容器2の上端部に固着された
αアルミナ製の絶縁板、4は同絶縁板3の内周部に固着
され、下方へ延びる円筒状の袋管を形成するβアルミナ
製の固体電解質管であって、陰極作用物質であるナトリ
ウムイオンを透過させる機能を有している。
The structure of the sodium-sulfur battery is as shown in FIG.
Is an anode terminal, 2 is a cylindrical anode container standing on the upper end of the anode terminal 1, 3 is an insulating plate made of α-alumina fixed to the upper end of the anode container 2, and 4 is the insulating plate 3. It is a solid electrolyte tube made of β-alumina that is fixed to the inner peripheral portion and forms a cylindrical bag tube extending downward, and has a function of allowing sodium ions, which is a cathode acting substance, to permeate.

5は上記絶縁板3の上端面に固着された円筒状のリザー
バー(陰極容器)、6は同リザーバー5の上部蓋の中央
部に固着され、リザーバー5を通して固体電解質管4底
部まで延びた細長い陰極管、7は同陰極管6の上端部に
固着された陰極端子である。
Reference numeral 5 is a cylindrical reservoir (cathode container) fixed to the upper end surface of the insulating plate 3, and 6 is a long and narrow cathode fixed to the center of the upper lid of the reservoir 5 and extending to the bottom of the solid electrolyte tube 4 through the reservoir 5. The tube, 7 is a cathode terminal fixed to the upper end of the cathode tube 6.

そして8は陽極作用物質である硫黄を含んだカーボンマ
ット等の陽極用導電材である。
Reference numeral 8 is a conductive material for an anode such as carbon mat containing sulfur as an anode acting substance.

上記のようなナトリウム−硫黄電池の陽極容器2と固体
電解質管4とで形成される空間、即ち陽極用導電材8を
収容する空間は第8図に示すように単なる空洞であり、
その空洞内全体に陽極用導電材8が収容されている。
The space formed by the anode container 2 and the solid electrolyte tube 4 of the sodium-sulfur battery as described above, that is, the space for accommodating the conductive material 8 for the anode is a simple cavity as shown in FIG.
Anode conductive material 8 is housed in the entire cavity.

(発明が解決しようとする問題点) 前記のように、従来のナトリウム−硫黄電池の陽極容器
2と固体電解質管4とで形成される空間は単なる空洞で
あるので、放電時に陽極作用物質である硫黄と陰極作用
物質であるナトリウムとの反応生成物である硫化ナトリ
ウムが生成され、その末期には特に比重が重く、電気抵
抗が大きく、かつ腐蝕性の大きい三硫化ナトリウムが上
記空洞中で沈降し、その部分では電流は流れず、そこか
ら上で流れるため電流密度が不均一となる。
(Problems to be Solved by the Invention) As described above, since the space formed by the anode container 2 and the solid electrolyte tube 4 of the conventional sodium-sulfur battery is a mere cavity, it is an anode acting substance during discharge. Sodium sulfide, which is a reaction product of sulfur and sodium that is a cathode active substance, is produced, and sodium trisulfide, which has particularly high specific gravity, large electric resistance, and corrosiveness, is precipitated in the cavity at the end of the period. The current does not flow in that portion, and the current density flows unevenly because it flows upward.

従って、充電電力に対する放電電力の比で表わされる充
放電電力効率が低下する。
Therefore, the charging / discharging power efficiency represented by the ratio of the discharging power to the charging power decreases.

また、放電時に最終的に生成する三硫化ナトリウムは腐
蝕性が大きいので、沈降した三硫化ナトリウムが陽極容
器と接触した場合、陽極容器が腐蝕するという問題点が
あり、その腐蝕に基づいて硫黄が鉄と反応して硫化鉄
(Fe)を生成し、ナトリウムとの反応に関与す
る硫黄が減少するので、電池容量が例えば0.5mmの腐
蝕で40%も低下する場合もあるという問題点がある。
Further, since sodium trisulfide finally generated during discharge has a high corrosive property, there is a problem that when the precipitated sodium trisulfide comes into contact with the anode container, the anode container is corroded, and sulfur is generated based on the corrosion. Reacting with iron to produce iron sulfide (Fe 2 S 3 ) and reducing the sulfur involved in the reaction with sodium, the problem that the battery capacity may decrease by 40% by corrosion of 0.5 mm, for example There is a point.

発明の構成 (問題点を解決するための手段) 本発明は前記問題点を解決するために、固体電解質管と
陽極容器の間に形成される陽極用導電材収容空間を上下
複数層に分割する区画部材を耐腐蝕性材料によって形成
するとともに、放電中の大半の時間腐蝕性生成物を陽極
容器に対し非接触状態に貯留する貯留部を同区画部材の
上面側に形成するようにしている。
Structure of the Invention (Means for Solving the Problems) In order to solve the above problems, the present invention divides a conductive material accommodating space for an anode formed between a solid electrolyte tube and an anode container into upper and lower layers. The partition member is formed of a corrosion-resistant material, and a storage portion that stores the corrosion product for most of the time during discharge in a non-contact state with the anode container is formed on the upper surface side of the partition member.

(作用) 上記構成を採用したことにより、電気抵抗が大きく、腐
蝕性の大きい三硫化ナトリウムを主とする沈降物が陽極
容器と固体電解質管で形成される空間の最下部に集中す
ることなく、上下に分散されて電気抵抗が均一化され、
また沈降物が実質上陽極容器に接触することが極めて少
なくなる。
(Operation) By adopting the above-mentioned configuration, a precipitate mainly composed of sodium trisulfide having a large electric resistance and a high corrosiveness does not concentrate at the bottom of the space formed by the anode container and the solid electrolyte tube, It is distributed vertically and the electric resistance is made uniform,
Further, the sediment is substantially less likely to contact the anode container.

(実施例) 次に本発明を具体化した一実施例を第1図及び第2図を
用いて説明する。
(Embodiment) Next, an embodiment embodying the present invention will be described with reference to FIGS. 1 and 2.

本発明のナトリウム−硫黄電池は第1図に示すように陽
極容器2と固体電解質管4の間に形成される陽極用導電
材8の収容空間に、同空間を上下複数層に分割する区画
部材10を設けた点に特徴があり、その他の部分の構造
は第2図に示すように従来のナトリウム−硫黄電池の構
造と同様である。
As shown in FIG. 1, the sodium-sulfur battery of the present invention has a partition member for dividing the space into a plurality of upper and lower layers in a storage space for the anode conductive material 8 formed between the anode container 2 and the solid electrolyte tube 4. 10 is provided, and the structure of the other parts is the same as the structure of the conventional sodium-sulfur battery as shown in FIG.

本発明のナトリウム−硫黄電池の特徴的部分の構造は、
第1図に示すように2はステンレス製又はニッケル製の
陽極容器、4は固体電解質管、10は陽極容器2と固体
電解質管4の間に形成される陽極用導電材8の収容空間
に形成された区画部材であって、陽極容器2側が高い逆
円錐筒状をしている。Pは区画部材10の上面側に形成
される貯留部であり、固体電解質管4側が低くなってい
るため、比重の重い三硫化ナトリウムが貯留される。
The structure of the characteristic portion of the sodium-sulfur battery of the present invention is
As shown in FIG. 1, 2 is an anode container made of stainless steel or nickel, 4 is a solid electrolyte tube, and 10 is a space formed between the anode container 2 and the solid electrolyte tube 4 for accommodating an anode conductive material 8. The partition member has a shape of an inverted conical cylinder having a high anode container 2 side. P is a storage portion formed on the upper surface side of the partition member 10, and since the solid electrolyte tube 4 side is low, sodium trisulfide having a large specific gravity is stored.

8は上記区画部材10で区画形成された各空間に収容さ
れた陽極用導電材であって、例えば陽極作用物質である
硫黄を含浸したカーボンマットである。
Reference numeral 8 denotes a conductive material for an anode housed in each space defined by the partition member 10 and is, for example, a carbon mat impregnated with sulfur which is an anode acting substance.

上記区画部材10の区画部材間隔及び角度は次のように
するのが望ましい。
It is desirable that the partition member interval and the angle of the partition member 10 be as follows.

区画部材間隔…陽極用導電材の厚みの1倍〜30倍 区画部材間隔が陽極用導電材厚みの1倍未満であると陽
極室内の有効体積が小さくなるとともに、固体電解質管
4表面の有効面積が減少するため、電池の容量低下、分
極増大が起こり、実用上支障を生じやすい。30倍を越
えると三硫化ナトリウムの貯留体積が区画された陽極室
内体積に比較し極めて小さくなり、本発明の効果を発揮
しにくくなる。従って、区画部材間隔は陽極用導電材厚
みの1〜30倍にするのが望ましい。
Partition member spacing: 1 to 30 times the thickness of the conductive material for the anode If the partition member spacing is less than 1 time the thickness of the conductive material for the anode, the effective volume in the anode chamber is reduced and the effective area of the surface of the solid electrolyte tube 4 is reduced. Is decreased, the capacity of the battery is decreased and the polarization is increased, which is likely to cause a problem in practical use. When it exceeds 30 times, the storage volume of sodium trisulfide becomes extremely small compared to the partitioned volume of the anode chamber, and it becomes difficult to exert the effect of the present invention. Therefore, it is desirable that the partition member interval be 1 to 30 times the thickness of the conductive material for the anode.

角度…5度〜60度 区画部材角度が5度未満になると三硫化ナトリウムを陽
極容器に接触させることなく貯留させることは困難にな
り効果は低くなる。一方角度が60度を超えると三硫化
ナトリウムの貯留量は多くなり、陽極容器の腐蝕の問題
はなくなるが、陽極の内部抵抗が2倍以上と高くなり、
充放電効率が低下し実質的には使用しづらくなる。従っ
て、区画部材角度は5度〜60度の範囲が望ましい。
Angle: 5 degrees to 60 degrees If the partition member angle is less than 5 degrees, it becomes difficult to store sodium trisulfide without contacting the anode container, and the effect becomes low. On the other hand, when the angle exceeds 60 degrees, the storage amount of sodium trisulfide increases, and the problem of corrosion of the anode container disappears, but the internal resistance of the anode increases to more than double,
The charging / discharging efficiency is lowered and it becomes practically difficult to use. Therefore, the partition member angle is preferably in the range of 5 degrees to 60 degrees.

なお、区画部材10の材質は耐腐蝕性材料、例えばモリ
ブデンが用いられる。
The partition member 10 is made of a corrosion resistant material such as molybdenum.

上記のように構成されたナトリウム−硫黄電池について
その作用を説明する。
The operation of the sodium-sulfur battery configured as above will be described.

上記実施例において、電池の放電時にはナトリウムはナ
トリウムイオンとなって固体電解質管4を透過し、陽極
容器2、固体電解質管4及び区画部材10で区画形成さ
れた陽極用導電材8収容空間に入り、そこで前記した反
応式に基づいて硫黄と反応し多硫化ナトリウム特に最終
的には三硫化ナトリウムを生成する。生成した三硫化ナ
トリウムは重いので沈降し、上記区画部材10の上面側
に形成される貯留部P内に下部から順に貯留される。貯
留部Pは区画部材10と固体電解質管4により包囲され
た断面逆三角形状の空間とされている。
In the above embodiment, when the battery is discharged, sodium becomes sodium ions and permeates the solid electrolyte tube 4, and enters the anode conductive material 8 accommodating space defined by the anode container 2, the solid electrolyte tube 4 and the partition member 10. There, it reacts with sulfur based on the above reaction formula to produce sodium polysulfide, and finally sodium trisulfide. Since the generated sodium trisulfide is heavy, it settles and is stored in the storage portion P formed on the upper surface side of the partition member 10 in order from the bottom. The storage portion P is a space having an inverted triangular cross section surrounded by the partition member 10 and the solid electrolyte tube 4.

従って、三硫化ナトリウムは区画部材10と固体電解質
管4には接触するが、陽極容器2には実質上接触しな
い。言い換えれば腐蝕性生成物である三硫化ナトリウム
は電池の放電中の大半の時間陽極容器2と非接触状態に
保たれる。
Therefore, sodium trisulfide contacts the partition member 10 and the solid electrolyte tube 4, but does not substantially contact the anode container 2. In other words, the corrosive product sodium trisulfide remains in non-contact with the anode vessel 2 for most of the time the battery is discharged.

よって、耐腐蝕性に関しては、電池の充放電の繰換しが
1000サイクルとなっても何ら問題はない。
Therefore, as to the corrosion resistance, there is no problem even if the charging and discharging of the battery is repeated 1000 times.

区画部材10はモリブデン等の耐腐蝕性の材料が使用さ
れているので、三硫化ナトリウムが接触しても腐蝕する
ことがない。
Since the partition member 10 is made of a corrosion-resistant material such as molybdenum, it does not corrode even when contacted with sodium trisulfide.

また、沈降する三硫化ナトリウムは区画部材10によっ
て区画された空間に分散されるので、電流密度がより均
一になり充放電電力効率の低下が非常に小さく、100
0サイクル以上という充放電の繰返しに十分耐えること
ができる。
Further, since the precipitated sodium trisulfide is dispersed in the space partitioned by the partition member 10, the current density becomes more uniform, and the decrease in charge / discharge power efficiency is very small.
It can sufficiently withstand repeated charging and discharging of 0 cycles or more.

本発明のナトリウム−硫黄電池は上記実施例に限られ
ず、次のように構成することもできる。
The sodium-sulfur battery of the present invention is not limited to the above embodiment, but may be configured as follows.

(1)区画部材10は前記実施例においては逆円錐状の
ものであったが、第3図に示すように同区画部材10の
上端部にガス抜き孔11を設けることができる。この場
合には陽極用導電材8収容空間におけるナトリウムと硫
黄の反応の不均一な進行に基づく圧力変動により区画部
材10に応力がかかって破損するのを防止することがで
きる。
(1) Although the partition member 10 has an inverted conical shape in the above embodiment, a gas vent hole 11 can be provided at the upper end of the partition member 10 as shown in FIG. In this case, it is possible to prevent the partition member 10 from being stressed and damaged due to pressure fluctuations due to the non-uniform progress of the reaction between sodium and sulfur in the anode conductive material 8 housing space.

(2)区画部材10の形状を第4図に示すようにL字形
とし、陽極容器2の内面に沿って立ち上るように形成す
ることができる。この場合にも沈降した三硫化ナトリウ
ムは陽極容器2に接触しないので腐蝕の問題が生じな
い。
(2) The partition member 10 can be formed in an L shape as shown in FIG. 4 so as to stand up along the inner surface of the anode container 2. Also in this case, since the precipitated sodium trisulfide does not come into contact with the anode container 2, there is no problem of corrosion.

(3)区画部材10の形状を第5図に示すように皿状と
することができる。このような皿状の区画部材10は、
三硫化ナトリウムの生成量が少ない即ち放電時間の短い
場合に適している。
(3) The partition member 10 may be dish-shaped as shown in FIG. Such a dish-shaped partition member 10
It is suitable when the amount of sodium trisulfide produced is small, that is, when the discharge time is short.

(4)区画部材10の形状を第6図に示すようなV字状
又は第7図に示すようなU字状に形成することができ
る。このようなV字状又はU字状の区画部材10は、放
電時間が比較的長く三硫化ナトリウムの生成量が多い場
合に好適に使用することができる。
(4) The partition member 10 can be formed in a V shape as shown in FIG. 6 or a U shape as shown in FIG. Such a V-shaped or U-shaped partition member 10 can be preferably used when the discharge time is relatively long and the amount of sodium trisulfide produced is large.

発明の効果 充放電の繰返しサイクルが1000回以上という優れた
充放電電力効率を発揮するとともに、腐蝕性の強い三硫
化ナトリウムが生成しても、区画部材の貯留部に貯留す
ることができるため三硫化ナトリウムが下方に集中的に
堆積してしまうことがなく、また区画部材位置における
陽極容器の腐蝕が防止されるため陽極容器に対するダメ
ージが軽減されて電池の寿命が長くなる。更に、区画毎
に分散されて三硫化ナトリウムが貯留されるため充電時
に大部分の三硫化ナトリウムは再びナトリウムと硫黄に
分解され、高い充電容量を維持できる。また、固体電解
質管の区画毎に分散されて区画毎に充放電するため局部
的な劣化の発生が防止されこれも電池の長寿命化に貢献
する。
EFFECTS OF THE INVENTION In addition to exhibiting excellent charge / discharge power efficiency of 1000 charge / discharge cycles, even if highly corrosive sodium trisulfide is generated, it can be stored in the storage part of the partition member. Sodium sulfide is not concentratedly deposited downward, and corrosion of the anode container at the partition member position is prevented, so damage to the anode container is reduced and the life of the battery is extended. Furthermore, since sodium trisulfide is stored by being dispersed in each compartment, most of sodium trisulfide is decomposed into sodium and sulfur again during charging, and a high charge capacity can be maintained. Further, since the solid electrolyte tubes are dispersed in each section and charged and discharged in each section, local deterioration is prevented from occurring, which also contributes to prolonging the life of the battery.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の一実施例を示すナトリウム−硫黄電池
の部分拡大縦断面図、第2図はナトリウム−硫黄電池の
縦断面図、第3〜7図は本発明の別例を示すナトリウム
−硫黄電池の部分拡大縦断面図、第8図は従来のナトリ
ウム−硫黄電池の部分拡大縦断面図である。 2……陽極容器、4……固体電解質管、8……陽極用導
電材、10……区画部材、P……貯留部。
FIG. 1 is a partially enlarged vertical sectional view of a sodium-sulfur battery showing an embodiment of the present invention, FIG. 2 is a vertical sectional view of a sodium-sulfur battery, and FIGS. 3 to 7 are sodium showing another example of the present invention. -A partially enlarged vertical sectional view of a sulfur battery, and Fig. 8 is a partially enlarged vertical sectional view of a conventional sodium-sulfur battery. 2 ... Anode container, 4 ... Solid electrolyte tube, 8 ... Anode conductive material, 10 ... Partitioning member, P ... Storage part.

フロントページの続き (56)参考文献 特開 昭62−17964(JP,A) 特公 昭59−10539(JP,B2)Continuation of the front page (56) References JP 62-17964 (JP, A) JP 59-10539 (JP, B2)

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】固体電解質管(4)と陽極容器(2)の間
に形成される陽極用導電材(8)収容空間を上下複数層
に分割する区画部材(10)を耐腐蝕性材料によって形
成するとともに、放電中の大半の時間腐蝕性生成物を陽
極容器(2)に対し非接触状態に貯留する貯留部(P)
を同区画部材(10)の上面側に形成したナトリウム−
硫黄電池。
1. A partition member (10) for dividing a space for accommodating a conductive material for an anode (8) formed between a solid electrolyte tube (4) and an anode container (2) into a plurality of upper and lower layers is made of a corrosion resistant material. A storage part (P) for forming and storing the corrosive products for most of the time during discharge in a non-contact state with the anode container (2).
Formed on the upper surface side of the partition member (10)
Sulfur battery.
【請求項2】区画部材(10)は陽極容器(2)側が高
い逆円錐筒状とされ、前記貯留部(P)において腐蝕性
生成物を固体電解質管(4)側のみで接触して貯留する
ようにした特許請求の範囲第1項に記載のナトリウム−
硫黄電池。
2. The partition member (10) is in the shape of an inverted conical cylinder having a high anode container (2) side, and corrosive products are stored in the storage section (P) by contacting only with the solid electrolyte tube (4) side. Sodium according to claim 1
Sulfur battery.
【請求項3】区画部材(10)の断面はL字状、皿状、
V字状又はU字状とされ上面側に貯留部(P)を形成し
た特許請求の範囲第1項に記載のナトリウム−硫黄電
池。
3. The section of the partition member (10) is L-shaped, dish-shaped,
The sodium-sulfur battery according to claim 1, wherein the sodium-sulfur battery is V-shaped or U-shaped and has a storage portion (P) formed on the upper surface side.
【請求項4】区画部材(10)は上部にガス抜き穴(1
1)を備えたものである特許請求の範囲第1項乃至第3
項に記載のナトリウム−硫黄電池。
4. The partition member (10) has a gas vent hole (1) at the top.
Claims 1 to 3 provided with 1).
The sodium-sulfur battery according to the item.
JP62029168A 1987-02-09 1987-02-09 Sodium-sulfur battery Expired - Lifetime JPH0658809B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62029168A JPH0658809B2 (en) 1987-02-09 1987-02-09 Sodium-sulfur battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62029168A JPH0658809B2 (en) 1987-02-09 1987-02-09 Sodium-sulfur battery

Publications (2)

Publication Number Publication Date
JPS63195973A JPS63195973A (en) 1988-08-15
JPH0658809B2 true JPH0658809B2 (en) 1994-08-03

Family

ID=12268712

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62029168A Expired - Lifetime JPH0658809B2 (en) 1987-02-09 1987-02-09 Sodium-sulfur battery

Country Status (1)

Country Link
JP (1) JPH0658809B2 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3360926D1 (en) * 1982-06-16 1985-11-07 Ciba Geigy Ag Hydroquinone ethers and a process for preparing them
JPS6217964A (en) * 1985-07-16 1987-01-26 Yuasa Battery Co Ltd Sodium-sulfur battery

Also Published As

Publication number Publication date
JPS63195973A (en) 1988-08-15

Similar Documents

Publication Publication Date Title
SU1122241A3 (en) Chemical current source
KR880007786A (en) Electrochemical Hydrogen Storage Alloys and Electrochemical Cells
US4038462A (en) Solid-electrolyte battery, particularly for the storage of electrical energy
US5571600A (en) Sulfur/aluminum electrochemical batteries
US4952465A (en) Additive for energy storage devices that evolve oxygen and hydrogen
US4246326A (en) Multi-layer auxiliary electrode
KR20100088140A (en) Electrode with reduced resistance grid and hybrid energy storage device having same
KR20100084666A (en) Recombinant hybrid energy storage device
US3853625A (en) Zinc fibers and needles and galvanic cell anodes made therefrom
US6033796A (en) Chemical reaction battery
US5552244A (en) Reversible high energy capacity metal-sulfur battery and method of making same
US5506072A (en) Reversible high energy capacity metal-sulfur battery and method of making same
US4113924A (en) Zinc-halogen compound electrochemical cell having an auxiliary electrode and method
US3317349A (en) Ambipolar battery including electrodes of identical nickelous composition
JPH0658809B2 (en) Sodium-sulfur battery
US3218195A (en) Electricity generating cell
US3844838A (en) Alkaline cells with anodes made from zinc fibers and needles
US4615957A (en) Sodium-sulfur storage battery
US701804A (en) Reversible galvanic battery.
US4401714A (en) Corrosion resistant positive electrode for high-temperature, secondary electrochemical cell
HU196533B (en) Lead accumulator, preferably for long-lasting uniform employment
WO1980002472A1 (en) Electric storage batteries
US2994730A (en) Sealed counter cell
US3432349A (en) Electric storage cell
US4204034A (en) Electrochemical cell